STUDIES IN THE ANATOMY
OF
ANOMALOUS MONOCOTYLEDONS.

Ph.D. Thesis.

E.V. WATSON.
PART I.

A STUDY OF THE ANATOMY OF TRICHOPUS ZEYLANICUS.
Trichopus zeylanicus Gaertn., is a small, erect perennial herb, a native of damp, low-lying, sandy situations in the shelter of trees in Ceylon and the East Indies, presenting many remarkable features which have given rise to a great deal of discussion as to its true affinities.

In Edwards's Botanical Register (1832) this plant was placed in the Aristolochiaceae; in Endlicher's Genera Plantarum (1836-40) Trichopus appears as one of a number of "Genera non satis nota," to which Aristolochian affinities were ascribed. For some time the balance of opinion remained in favour of its inclusion in the Aristolochiaceae, but in 1869 Beccari carried out the first reasonably detailed investigation of the plant; and, after paying some attention to the broader features of its anatomy, in addition to reviewing the external characters, Beccari concluded that Trichopus belongs more properly to the Dioscoreaceae.

Subsequent to this period Trichopus has been regarded as an anomalous monotypic genus of the Dioscoreaceae, and in 1894 Queva showed that the main features of its anatomy fell into line with this family, and summarised the chief points in which it diverged from the normal Dioscoreaceous plan of construction.

(B) SOURCE of MATERIAL and OBJECTS of the PRESENT INVESTIGATION.

The work was carried out in the laboratories of the Royal Botanic Garden, Edinburgh, and the material used consisted of a number of plants collected by Petch in Ceylon and procured by I.H. Burkill. It should be noted that the form occurring in the hills of Travancore (Singampatty), and figured in the "Icones Plantarum Indiae Orientalis" (1874) under the name Trichopodium zeylanicum Thw., differs markedly in the shape/
shape and venation of the leaves from the Ceylon form, and accordingly it may be expected that there would be corresponding differences between the more minute details of the anatomy of the two forms.

The object of the present investigation was to confirm, and, as far as possible, to extend the work of Queva on the anatomy of Trichopus zeylanicus (1894), with a view to establishing how far the details of anatomical construction go to confirm the conclusion that the affinities of this species lie with the Dioscoreaceae. At the same time an attempt has been made to present in as complete a form as possible a detailed description of the anatomy of the vegetative organs, since no full account of the anatomy has hitherto been published.

The condition of the material available prevented a satisfactory elucidation of many points, and some sections of the work must thus appear somewhat incomplete. It was especially difficult to obtain an adequate series of sections of the reproductive shoot, so that an investigation of the vascular supply to the peduncles could scarcely be attempted. Similar difficulties were encountered in the treatment of the greatly hardened tissues of the rhizome.

The reproductive organs of the plant were not studied; and in the absence of suitable material, the meristematic tissues could not be included in the investigation.

(C) GENERAL DESCRIPTION of the PLANT, presenting the DETAILS of its ANATOMY.

SPECIFIC EXTERNAL FEATURES and GENERAL PLAN of WORK.

Trichopus zeylanicus (Plate I Fig. I.) is seen to differ in its external morphology from the normal type of the Dioscoreaceae in the following main points:

1. The absence of any externally conspicuous tubers or swellings, either of root system or of stem structure.
2. The fact that each aerial stem consists of but a single internode and bears only one foliage leaf.
3. The complete absence of any trace of the climbing habit.
4. The fact that the reproductive shoot is telescoped into a short axis of a few millimetres in length, on/
on which the bracts and peduncles arise in close succession.

The anatomy of the different organs is described in the following order: (1) Root; (2) Rhizome; (3) Aerial stem; (4) Leaf; (5) Reproductive shoot. The most significant points in the anatomy of each are summarised shortly at the conclusion of the description of that organ; and there follows an account of the principal features of interest in the various tissue systems as compared with the other members of the Dioscoreaceae.

DETAILS of the ANATOMY of the INDIVIDUAL ORGANS.

(1) The Root.

There is a well-developed root system in *Trichopus zeylanicus*, but it differs markedly from that of other members of the Dioscoreaceae. It is usual in the family for the roots to possess either annual or perennial swellings, or to be distinguished by numerous spiny protuberances. Thus in *Trichopus* there is a distinct departure from the normal, for its numerous slender roots at their thickest point scarcely exceed 2 mm. in diameter, and are without any form of spiny outgrowth.

The roots arise at irregular intervals from the basal portion of the rhizome, the vascular tissue being developed in direct continuity with the peripheral bundles of that organ. Each root extends for about 15 cm., remaining uniformly thick, and sending out a number of much finer ramifications. This uniformity in thickness is, however, not quite complete, there being a slight constriction at the crown of the root. This is associated with the greater width of the cortex as compared with the stele in the mid part of the organ, a feature which is found to be of interest in connection with the storage system of *Trichopus*.

The outermost layer of the root is composed of cells which appear in transverse section rounded, lenticular, or more often loosely irregular in shape, with strongly convex and slightly thickened external walls. This layer of cells constitutes a loose epidermal sheath, and the tissues of the root proper are limited by the strongly suberised inner walls of these cells.

The outer cortex consists of from two to three layers of small, more or less regularly arranged, and closely/
closely packed parenchymatous cells. These cells have fairly thick cellulosic walls, but show no trace of lignification. They take no part in the function of storage, which is confined to the cells of the inner cortex.

Proceeding inwards, a broad inner cortical zone occupies nearly two-thirds of the cross-sectional diameter of the root in the region of greatest thickness. The cells in this region are larger and appear more or less isodiametric in transverse section, but in longitudinal section are seen to be greatly elongated, and must be regarded as broadly cylindrical parenchymatous elements. The cellulosic walls are thin, and the tissue is well provided with intercellular spaces.

As already indicated, this inner cortical tissue serves very largely for storage, and as it would appear physiologically to be the equivalent of the extensive system of root tubers of other members of the family, considerable attention was paid to the nature of the storage system occurring here. The principal food reserve appears to consist of starch, and close aggregates of starch grains were found in the majority of the cells. Also occurring in this internal cortical zone are the raphide sacs. These structures are numerous throughout the length of all the principal roots, and each consists of a wide, approximately cylindrical sac, containing a bundle of elongated, needle-shaped crystals of calcium oxalate embedded in a loose mucilaginous matrix. (Plate III Fig. 1.) The cells which lie immediately external to the endodermis are much smaller in size, and the intercellular spaces are correspondingly less developed in this internal tissue.

There is nothing very abnormal in the structure of the single layer of cells comprising the endodermis. With the exception of certain thin-walled passage cells that occur at fairly regular points, opposite the protoxylem, each cell of the endodermis possesses the customary lignified internal and radial walls. The passage cells are developed in direct continuity with groups of thin-walled pericyclic cells, which are interesting, and appear to be rather characteristic of the Dioscoreaceae. (Plate IV Fig. 2.) In the crown of the root they are not well represented, and are often quite indistinguishable in their accustomed position between the protoxylem and the endodermis; while sections cut in the swollen mid part of the root show a very distinct group of thin-walled pericyclic cells, associated with one or two quite unthickened endodermal cells, opposite each of the xylem arches.

With/
With the exception of the phloem patches, and the groups of thin-walled pericyclic cells described above, the stelar tissue is lignified throughout (Plate IV Fig. I.). External to the phloem groups are found in most cases a few strongly thickened, sclerenchymatous elements, with lignified walls in direct connection with the endodermis. The number of xylem arches varies from twelve to fourteen at the crown of the root, with alternating phloem groups. At a point farther down the root, the number of separate phloem groups is reduced by anastomoses, so that in the thickest part only ten arches alternating with ten phloems can be seen. In the finer ramifications of the root system the number is still further reduced, so that, in sections of a lateral root about \(\frac{1}{2} \) mm. in thickness, six arches only were found to be present. (Plate II Fig. 3.) The lignified pith consists of cells which in transverse section present a very regular hexagonal outline, but are greatly elongated longitudinally, their lateral walls being perforated by minute pits. (Plate III Fig. 2.)

It was observed that in the narrow, constricted crown region of the root, where passage areas and individual bundles are much more poorly developed, the pith is very extensive, while farther down, where the distinct passage areas can be very clearly seen, the pith is much more restricted, and the vascular bundles, though fewer, are individually better developed and extend farther in towards the centre of the root.

Neither phloem nor xylem was found to present features in any way different from what would be expected in a normal Monocotyledonous root. The phloem consists of uniformly small sieve tubes and companion cells, and in the xylem variously pitted vessels are interspersed with lignified xylem parenchyma, which closely resembles the wider lignified parenchyma of the pith.

Summarising these observations on the root system, it will be seen that Trichopus zeylanicus differs from other members of the family in that the products of metabolism and food reserves are not stored in conspicuous tuberous swellings, but are distributed throughout the cortical tissue of the extensive root system. In other ways the root of this species is not to be regarded as presenting any strikingly peculiar features. The presence of only a single endodermal layer here is, however, of some interest, since a double endodermis is said by Knuth to be rather characteristic of the Dioscoreaceae.

(2) The Rhizome./
The rhizome in most of the plants examined consisted of a stout, short, vertical organ, either quite unbranched, or with one or two ramifications. However, in a few exceptional instances this organ was found to be greatly elongated horizontally, extending for a length of about 8 to 10 cm. without branching at all. It would seem, then, that in *Trichopus* the rhizome is subject to a considerable amount of variation in general form.

In the vertical type of rhizome the numerous roots and aerial stems are given off at extremely close intervals, and diametrically opposite each aerial stem there arises a scale-leaf. These short, acicular scale-leaves are very numerous, and form a complete protective covering over the upper parts of the rhizome. In the elongated terminal regions of the horizontal type of rhizome, however, stems and roots are given off at less frequent intervals, and there is accordingly a much scantier covering of scale-leaves.

A transverse section of the close, vertical type of rhizome is so complicated in outline by the large number of structures arising from it at such close intervals, that the following general description will be found to apply with strict accuracy only to those elongated parts of the organ which are not interrupted by the simultaneous passage outwards through the cortex of vascular tissue destined to supply several different roots and aerial stems.

The outline of a transverse section of the rhizome is approximately oval, and, extending rather less than half the way in towards the centre, there is a broad band of cortical tissue. (Plate V Fig. 2.) The epidermis of the rhizome is made up of closely fitting tabular cells, the thickened outer walls of which are provided with a well-marked corrugated cuticle. The cortex is about ten cells thick, and the thin-walled, loosely packed, parenchymatous elements present a fairly uniform appearance. Certain enlarged sacs, similar to those found in the cortex of the root, contain the raphides. These raphide sacs are numerous, and as many as eight or ten may be included in a single transverse section. Starch is not stored to any extent in the cortex, although small aggregations of grains sometimes occur in the innermost cells.

The endodermis consists of a single layer of cells with the usual thickening of the internal and radial/
radial walls. Gaps in this otherwise continuous sheath are furnished by occasional small, unthickened cells, corresponding in function to the passage cells found in the endodermis of the root. Internal to the endodermis a sheath of cells, oblong in transverse section, and without thickening or food reserve content, represents the pericycle.

The stele contains a great number of separate vascular bundles, embedded in a matrix composed of fairly large cells, irregular in outline and separated by only small intercellular spaces. The bundles are smaller and more numerous towards the periphery, while a few large bundles occupy the central pith region.

Each individual bundle is of the concentric type commonly found in the rhizomes of monocotyledons. (Plate V Fig. 3.) Phloem, accompanied by thin-walled parenchyma, is surrounded by a sheath of reticulately pitted lignified elements. In addition, as Queva pointed out, a few small tracheides may be recognised in the anterior region. The sieve tubes of the phloem are of small cross-sectional diameter; this generalisation holds not only for the bundles of the rhizome, but also throughout the entire plant, wide sieve tubes such as are found in many Dioscoreaceae being quite absent from the vascular tissue of Trichopus zeylanicus. This description is applicable only to those bundles which are not destined to pass out into the stem at a point immediately above the position in which the cut is made: in these latter the xylem and phloem both take on the stem arrangement before that organ has become externally separated from the rhizome.

The principal significance of the pith cells of the rhizome would seem to be in connection with the storage of food reserves, as in all the examples examined the cells were found to be densely packed with starch grains.

The chief feature of interest concerning the rhizome of Trichopus zeylanicus, as compared with other members of the family, would seem to lie in the existence within the pith of great quantities of reserve starch. The pith of the rhizome, with the cortex of the roots, may be looked upon as a greatly attenuated food storage system which is physiologically equivalent to the massive tubers of other Dioscoreaceae.

With reference to the course followed by individual bundles in the rhizome, Queva states that he/
Diagram to show method adopted in numbering bundles of stem.
he had insufficient material at his disposal to investigate this point. Accordingly in the present enquiry a continuous series of sections was cut through a length of about 5 mm. from the elongated, horizontal type of rhizome, with the object of tracing so far as possible the mode of origin of the principal bundles of the aerial stem.

The twelve bundles which comprise the vascular tissue of the normal stem may be numbered in the manner set out in the accompanying diagram. Nos. 1, 2, and 3 are the three main bundles, of which No. 1 is the largest. Diametrically opposite to No. 1 lies No. 4, opposite to No. 2, No. 5, and opposite to No. 3 is No. 6, these three being of the second order of magnitude; while in the normal condition, one on either side of each of these three, lie the remaining six small-sized bundles, which have been numbered from No. 7 to No. 12 in the diagram.

The outline drawings 1 to 9 (Plates VI & VII.) illustrate how these bundles arise, and become grouped into the formation in which they pass out into the aerial stem; and how, simultaneously, a single narrow strand passes out through the stele and across the cortex to furnish the vascular supply to the scale-leaf which grows out at a point diametrically opposite to the stem.

It will be seen that at an early stage the bundles that are to represent Nos. 1, 2, and 3 pass inwards towards the centre of the pith, and certain fusions between those bundles are associated with the increase in size which takes place in them at this point. These bundles are represented in the diagrams by the single lines of shading, as opposed to the cross-hatching employed for other stem bundles, and they will be seen (Plate VII.) at a point before the outline of the stele has been disturbed in any way, to be arranged in the form in which they remain unaltered during their passage out into, and up the course of, the aerial stem.

The bundles numbered 4 to 12, however, take up their position in an even simpler manner. A single large strand, which will later divide into the group which become Nos. 4, 7 and 8, moves across from the anterior side. At the same time the lateral groups, comprising Nos. 5, 9, and 10, and Nos. 6, 11, and 12, fall naturally into position, being formed directly from the peripheral bundles which lie on either side of the point at which the stem is to emerge from the stele.
The dotted line in Figs. 5 to 8 is employed to indicate the line which appears at this point to separate the clear stem cells, devoid of food reserve, from the dark cells of the pith of the rhizome, which are densely packed with starch grains.

Several series showing the mode of origin of the stem were cut in this way, and it was found that the process by which the vascular tissue of the stem originated from the rhizome deviated little from the type outlined above. The only respect in which the present instance may be regarded as somewhat exceptional is in the fact that the three anterior bundles, Nos. 4, 7, and 8, do not become completely differentiated until a later stage than that figured in Fig. 8.

The small and very numerous vascular strands around the periphery of the rhizome stele, apart from certain minor anastomoses, maintain an undisturbed course throughout the process of stem enation. But, as Queva observed, and as has been confirmed in the present investigation, it is these peripheral bundles that provide the vascular supply for the ramifications of the rhizome, and it is with them too that the vascular tract of the root shows a direct connection.

It remains to describe the structure of those scale-leaves which arise diametrically opposite to the aerial stems, and which also subtend the branches of the rhizome itself. A transverse section of a scale-leaf presents a sharply triangular outline, the corners being produced into more or less well-defined wings (Plate V Fig. I.). The outer walls of the closely packed epidermal cells are provided with a distinct corrugated cuticle, and the cells themselves are filled with dark contents. The mesophyll of the scale-leaf consists of a uniform loosely packed, thin-walled tissue, of rather large cells, irregular in shape. In this mesophyll there occur raphide sacs similar to those found in other parts of the plant.

The single central strand, which forms the vascular supply, is not clearly differentiated as regards its constituent elements. It is surrounded by a lignified sheath, which on either side is continued out into the lateral wings of the organ. In this way a rigid plate of tissue, expanded in the middle line to enclose the vascular bundle, serves as a scaffolding on which the looser tissues of the leaf are supported.

(5) The Aerial Stem.

(a) General Anatomy of the Aerial Stem.

The aerial stems, arising from the rhizome in the manner/
manner described, ascend to a height which varies from 1 to 10 cm. before the single leaf is given off. Scattered irregularly over the surface of the stem are the glandular, capitate hairs which will be described in connection with the leaf, on which they occur in greater abundance.

The unevenly fluted transverse section is generally about 1 mm. in diameter, the wide stele being surrounded by a narrow cortical ring (Plate VIII Fig. I.). The cells of the epidermis are small and uniform in shape, rectangular in transverse section, but elongated in the direction of the growing axis of the stem. The cellulosic walls are thick, the thickening being greatest on the external wall, which is also provided with a cuticle of the corrugated type found throughout the plant. Within these cells it is possible to recognise a few sparsely scattered chloroplasts.

The hypodermal layer of the stem is composed of cells rounded in transverse section, separated by only minute intercellular spaces, and characterised by cellulosic walls of medium thickness and abundant chloroplast contents. In this region of the stem the tendency towards thickening at the corners, which appears in all these cells, is greatly accentuated, so that fairly well-formed collenchyma can be recognised immediately below the epidermis. At this point, too, there are frequently found one or two cells rather larger and nearly circular in outline, which contain raphides of calcium oxalate. (Plate IX Fig. I.)

The remaining two to three layers of cells which go to complete this narrow cortical zone consist of thin-walled parenchyma, well provided with intercellular spaces. The cells of the innermost layer contain a few chloroplasts, and are distinguished by their smaller and more uniform size.

No distinctly recognisable endodermal sheath surrounds the stelar region, but a well-marked ring of sclerenchyma, of uniform width, is continuous around the stele external to the vascular bundles. Passing inwards towards the pith, the cells which comprise the groundwork of the stele become increasingly large in size, while the lignification of the walls is progressively reduced in extent (Plate IX Fig. 4.). The individual vascular bundles are thus embedded in thick-walled tissue, but the degree of lignification in this tissue is much less than in the external sclerenchymatous sheath. The innermost, partially lignified cells of this tissue give place internally to a loose and much-disintegrated pith, with wide thin-walled elements filled with an abundance of starch grains. The degree to which this pith is developed varies/
varies in the different stems, and must depend largely on the condition of the individual stems at the time when the material was gathered. To whatever extent these thin-walled pith cells are developed, however, it is clear that their principal function is the storage of food reserves.

Reference has been made already to the disposition of the individual vascular bundles, in connection with the manner in which the aerial stems are given off from the rhizome. The posterior position is occupied by the largest bundle, No. 1, while antero-laterally lie Nos. 2 and 3, which are only slightly smaller in size. These three are the foliar strands, the remaining nine bundles found in the normal stem either passing out into the flowering shoot or being absorbed in a general anastomosis at the node. The details of the course of these bundles is discussed at a later point. At this stage it is necessary only to point out that Nos. 4, 5, and 6 form an inner ring of medium-sized bundles, while the strands numbered 7 to 12 comprise an outermost ring, each strand being of very small size. (Plate VIII.)

Variations in this general plan do occur: thus in the stems of more robust growth an additional isolated strand may appear lateral to No. 1; similarly, in the most slender stems one or more of the outer ring, Nos. 7 to 12, may be aborted. (Plate VIII Fig. 2.) Sections cut at various levels of the same stem show that anastomoses between the base and the node rarely or never occur, and that where thirteen bundles are recognisable in sections cut at a level just below the node these thirteen are also fully differentiated at the base of the stem.

The structure of the individual bundles appears at first sight to present considerable diversity in details, but four main types may be recognised:

(1) The external ring of bundles, Nos. 7 to 12, all of small size. Here one can recognise two diverging arches of xylem tissue, each of which terminates posteriorly in one large vessel. In the "bay" thus formed lies a well-developed single mass of phloem (Plate IX Fig. 3.).

(2) Bundles Nos. 4, 5, and 6; these are of larger size; and, while the phloem is retained in a single mass, it is found that four, or more rarely six, large vessels occur in the xylem (Plate IX Fig. 2.). In most cases two anterior and two posterior vessels of major importance can be seen.

(3) Bundles 2 and 3; these bundles, which were seen to originate in the rhizome from the fusion of two average-sized rhizome strands, show in their plan of construction distinct evidence of anastomosis. One large vessel appears immediately anterior to the phloem; antero/
antero-laterally either one or two large vessels occur on each side, while two posterior vessels are usually situated external to the phloem. Further, the phloem here becomes subdivided into two, or more often into three, distinct groups, with narrow strips of xylem tissue passing out between them. (4) Finally, the greatest degree of elaboration is attained in the posterior bundle, No. 1, where, in addition to an extensive development of xylem tissue in the customary internal position, no fewer than four pairs of large vessels lie lateral to and external to the phloem. The phloem is here represented by four distinct patches, the two anterior phloem groups being separated by the vessels of the main anterior xylem mass, while between the two posterior groups, wedges of xylem tissue connect with the outlying vessels (Plate IX Fig. 4.).

It is seen, then, that a series of structural types of increasing complexity can be recognised in the vascular bundles which constitute the ring of conducting tissue in the stem.

(b) The Course of the Bundles in the Stem.

The bundles Nos. 1, 2, and 3 of the stem preserve their integrity at the node and continue into the petiole, No. 1 forming the strand of the midrib, and Nos. 2 and 3 the two principal lateral bundles of the leaf. The course followed by the remaining nine bundles of the normal stem depends on the rather remarkable relation existing between the stem, leaf, and flowering shoot in Trichopus.

In a small percentage of cases the stem passes up without any externally visible interruption into the petiole of the leaf, so that the swelling of tissue at the pulvinus of the leaf comes to surround entirely the growing point of the stem. A complete series of sections, cut at intervals of 10μ, through this point of junction shows that the change from the stem arrangement to the petiole arrangement of vascular tissue takes place at the extreme base of the swelling. The rapid change takes place within a length of only 140μ. The sclerenchymatous ring which surrounds the stele of the stem is disintegrated so as to form a separate lignified sheath around each of the separate petiole bundles; and the three strands, Nos. 1, 2, and 3, each receive vascular tissue from the groups lying on either side of them, while small strands pass inwards to end blindly in the pith region (Plate X.).

When a flowering shoot passes out at the junction of stem and petiole, however, the medium-sized bundles, Nos./
Nos. 4, 5, and 6, pass into the pith and become split up into a number of strands which will ultimately pass out into the flowering shoot. The outer ring of small bundles, Nos. 7 to 12, however, as in the other type of construction, undergo anastomoses with the large foliar bundles, Nos. 1, 2, and 3, each of these latter receiving a small strand of vascular tissue from either side (Plates XI & XII).

After the above arrangement has been completely established, a small strand is usually, but not invariably, broken off from each of the bundles Nos. 2 and 3, thus giving two small intermediate strands of vascular tissue which traverse the petiole between Nos. 1 and 2, and Nos. 1 and 3 respectively.

(c) Comparative Discussion on the Anatomy of the Aerial Stem.

Since the aerial stem of Trichopus comprises but a single internode, with a single leaf given off from the upper node, this monotypic genus presents necessarily in the general plan and course of its cauline and foliar vascular strands a strong contrast to other genera of the family. Accordingly, one finds that the bundles have become greatly reduced in number, and their course is so highly modified that it is impossible to bring the arrangement of the vascular tissue in this stem into line with the general plan recognised as typical of the Dioscoreaceae.

Nevertheless, there are many features in the anatomy of the stem of Trichopus zeylanicus which support most clearly its affinity with others of the family. Thus, the corrugated cuticle, the occurrence of raphide cells just below the epidermis of the ridges of the stem, and the tendency towards the development of collenchyma in the outer layers of the cortex are features common to many species of Dioscorea.

Further, in the individual bundles the structure shows peculiarities which are specially characteristic of the Dioscoreaceae. The most prominent of these are (1) the tendency for the phloem to become subdivided into a number of separate patches in the larger bundles, and (2) the development of arches of xylem tissue through the phloem groups, with the result that certain of the large vessels come to be situated in a very unusual position external to the phloem.

Thus, while differences necessarily exist corresponding to the very different configuration of the stem in relation to other organs of the plant, the affinity/
affinity of Trichopus with the Dioscoreaceae is clearly demonstrated by certain details of the structure of the stem.

(4) The Leaf.

(a) External Morphology of the Leaf.

The single leaf which arises at the apex of each aerial stem is borne on a petiole varying from 2 to 6 cm. in length, and this petiole is marked by a distinct basal swelling. The petiole passes gradually into the wide lamina, which varies in shape from broadly cordate to typically lanceolate, but is normally narrowly cordate and tapers to the rounded apex, in the notch of which lies a minute acumen.

The details given here of the external morphology of the leaf apply with strict accuracy only to the Ceylon form of Trichopus, material of which was used for the present investigation. This point may be emphasised here in connection with the leaf structure, since it is largely on the grounds of differences in the foliar organs that some authorities have recognised two distinct varieties of Trichopus zeylanicus.

The venation of the leaf in Trichopus is reticulate, but the finer ramifications are connected with three main veins which follow a course from base to apex of the leaf. The centrally placed vein constitutes the midrib, while the two lateral veins pass outwards so as to reach the margin at a point about half-way along the length of the leaf. From this point to the apex these two veins are marginal in position. In addition to these three principal veins there are two others which occupy the marginal position in the proximal half of the leaf, and, originating in the branching of the two laterals, end at the point where these lateral veins reach the margin of the leaf.

Distributed over the surface of the petiole, and very numerous on both upper and lower epidermis of the lamina, are the capitate hairs which occur widely in the Dioscoreaceae, and are believed to be glandular in function. Each hair consists of a head of thin-walled cells with dense protoplasmic contents, borne on a short stalk which fits into a slight depression of the epidermis. (Plate XV Fig. 2.)

A transverse section of the base of the petiole, in the region of the swelling, presents an outline which/

1Always three in material used, but may be five or even seven in number.
which is marked by an anterior groove and a correspond-
ing posterior prominence. Lateral to the anterior
groove are two prominent crests, while two further
bulges in the outline occur postero-laterally.
Farther up the course of the petiole the V-shape of
the transverse section becomes more distinctly marked
and the anterior groove much deeper; and the two
antero-lateral and one posterior prominence are much
more sharply defined, in correlation with the greatly
reduced extent of the ground tissue of the petiole
(Plate XIII).

(b) Anatomical Structure of the Base
of the Petiole.

Within the epidermis, which consists of a single
layer of small-sized, closely packed cells, the main
mass of the tissue in this swollen basal region of the
petiole is composed of parenchymatous elements separ-
ated by minute intercellular spaces. No clear
differentiation into cortex and pith can be traced,
but towards the centre one finds cells of a more
uniformly large size with walls that are without any
form of thickening; while immediately beneath the
epidermis there are several layers of small-celled
tissue, characterised by well-marked collenchymatous
thickening.

Reserve food in the form of starch is almost
completely absent from the petiole. Raphide sacs,
however, are numerous, and a single section will
normally pass through eight to ten of these sacs.

The vascular supply of the petiole consists of
three principal bundles, in addition to which there
may be two, or sometimes more, isolated intermediate
strands.

As already indicated, the three main bundles
represent Nos. 1, 2, and 3 of the vascular ring of the
stem, with the addition in each case of a certain
portion of the vascular tissue comprised by the
remaining stem bundles 4 to 12. The posterior
(midrib) bundle, derived from No. 1 of the stem, is
the largest, the two antero-laterally placed bundles
being approximately of equal size.

In each of these three bundles of the petiole it
is possible to recognise certain points of difference
from the type of structure seen in the vascular strands
of the stem. Thus (1) there is a well-developed ligni-
ified sheath around each bundle, consisting posteriorly
of two to three layers of true sclerenchymatous fibres,
and thinning anteriorly to a uniform width of a single
cell/
(2) the large vessels are of smaller diameter, and are in no instance external to the outermost phloem groups; and (3) the phloem is divided into a varying number of small, rather ill-defined patches, each phloem group being distinctly smaller than those found in the bundles of the stem.

The intermediate strands referred to above consist of a single ring of lignified cells enclosing a few ill-defined tracheids and phloem cells. These intermediate bundles appear to represent the main trunks of a number of finer ramifications which end blindly in the tissues of the petiole.

(c) Anatomical Structure of the Upper Part of the Petiole.

Above the region of the basal swelling, the petiole undergoes certain alterations in the structural details of its several component tissue systems.

The epidermis consists no longer of cells of uniform dimensions, for in the region of the anterior groove the epidermal cells assume a very much larger size. In this small section of the epidermis the cells may attain to a size six times as great as that of the cells in the rest of the superficial layer. (Plate XIV Fig. 1.)

The ground tissue, besides being greatly reduced in extent, shows an almost complete absence of raphide sacs. Further, the cells lying immediately below the epidermis in the anterior and antero-lateral regions of the petiole are abundantly filled with chloroplasts, a somewhat sparser chloroplast content distinguishing the hypodermal layer posteriorly.

With regard to the vascular tissue, the only change which is associated with the passage of the bundles up the petiole concerns the extent of the sclerenchymatous sheath. This sheath is increased in width until it comes to consist of four to five cell-layers anteriorly, and six to eight cell-layers in the posterior position around each bundle. (Plate XIV.)

(d) Anatomical Structure of the Lamina.

The thin texture of the leaf-blade in *Trichopus* is well shown by the shape of a transverse section, which, swollen in the region of the midrib, becomes very sharply constricted on either side, the amount of tissue lying between the upper and the lower epidermis being remarkably small in the expanded portions of the leaf-blade (Plate XV Fig. 1.).
In surface view the cells of the lower epidermis appear sinuous and irregular in outline, while those of the upper epidermis are more regular in shape. On both surfaces of the leaf the glandular, capitate hairs are borne abundantly, but stomata are confined to the under side. As is the rule in the family, the stomata are orientated irregularly over the surface. (Plate XVII Fig. 2.) The cells of the upper epidermis are of a uniformly large size in transverse section, the distinctly thickened external walls being but slightly convex, so that the upper surface of the leaf, viewed in section, presents a remarkably flat appearance. In contrast, the cells of the lower epidermis are very uneven in size, those of the expanded portions of the lamina being much larger than those covering the under side of the midrib. Even the former, however, are small in comparison with the strikingly large dimensions of the upper epidermal cells (Plate XVII Fig. I.).

The palisade tissue consists of a single layer of narrowly rectangular or rounded oblong cells, varying somewhat in size and fitting closely together with the intervention of few intercellular spaces. These cells occupy a narrow zone in the leaf section, in width equal only to about two-thirds of that occupied by the upper epidermis, but they are abundantly filled with chloroplasts, and constitute the most important photosynthetic tissue of the plant. (Plate XVII Fig. I.)

The rounded, orbicular, or broadly oblong cells of the spongy tissue are well supplied with chloroplasts, but do not comprise so compact a photosynthetic tissue as the palisade layer. In this region, too, raphide sacs of the usual broadly cylindrical shape are scattered sparsely but very regularly through the substance of the spongy chlorenchyma.

About the midrib, in addition to the fact of the lower epidermal cells being of much reduced size, the general configuration of the mesophyll becomes completely altered. Above the vascular bundle the chlorophyllous tissue is represented, not by true palisade cells, but by one to two rather irregular layers of cells containing chloroplasts, but in shape resembling the spongy rather than the palisade cells of the leaf. The remainder of the mesophyll in this region is composed of thin-walled, loosely packed, parenchymatous elements, which give place immediately beneath the epidermis to smaller cells with a varying amount of collenchymatous thickening, but with no trace of lignification (Plate XVI.)
The structure of the vascular bundles in the lamina is little different from what is found in the petiole. In the lamina, however, the phloem becomes further split up, so that as many as seven distinct phloem groups may be formed. In addition, as the apex of the leaf is approached, the individual phloem patches become small and irregular, the vessels fewer and of decreased diameter, and the sclerenchymatous sheath becomes the most conspicuous feature of the strand.

(e) Comparative Discussion on the Anatomy of the Leaf.

In one very striking respect the leaf of Trichopus differs from the normal structural plan in the Dioscoreaceae. The difference lies in the complete absence of the anterior arch of vascular tissue (Queva's "arc antérieur") from the petiole. This anterior strand, which takes origin at the base of the petiole, and assumes increasing importance higher up, is very characteristic of other genera of the family.

Secondly, there was found to be no trace of extra-floral nectaries on the leaves of Trichopus. This is not an important point, but it is significant that the leaves of many Dioscoreaceae are characterised by the presence of these groups of thin-walled glandular cells.

In other respects, however, the affinity of Trichopus with others of the Dioscoreaceae is clearly demonstrated. The shape and venation of the leaf, the pulvinar swelling at the base of the petiole, the disintegration of the phloem into several small groups, and the presence of glandular capitate hairs on the leaf surface are all features in which the leaf conforms to the type of the family.

(5) The Structure and Disposition of the Reproductive Axis and Peduncles.

In the majority of the aerial stems of Trichopus there arises at the node, anteriorly and hence in a position diametrically opposite to the leaf, a short, conical reproductive shoot bearing a fascicle of flowers, and covered with minute protective bracts.

The outline of the main axis of this reproductive shoot, in transverse section, is irregularly oval, being continually interrupted by the passage outwards of the vascular supply to the peduncles and bracts. Within the close-fitting epidermal ring of cells is a narrow cortical zone, composed of parenchymatous cells. The individual bundles, derived from the stem in the manner described above, are small and scattered, and tend to resemble in structural plan the bundles of the rhizome.
rhizome. Within the pith region the separate strands become so greatly disorganised in connection with the enation of bracts and peduncles that their precise course is not readily made out.

The peduncles are given off abaxially, so as to constitute two more or less distinct orthostichies, one on either side of the mid-anterior line. Diametrically opposite each peduncle arises a bract (Plate XVIII Fig. I.). When branching takes place, the branch arises in the axil of a bract. It is evident, then, as far as one is able to make out, that the same constant relation is maintained between main axis and organs derived from it throughout the whole plant. The origin of the peduncles is directly comparable with the origin of the flowering shoot from the aerial stem, and again with the origin of the aerial stem from the rhizome. In each case the disturbance involves the innermost bundles, for it is the most centrally placed strands that constitute the vascular supply to the secondary structure; and in each instance, too, a foliar structure is given off diametrically opposite to the branch. On the other hand, the branching of the main axis of the rhizome is to be compared with the branching of the main axis of the flowering shoot, as in each case the branch arises in the axil of a subtending leaf.

Each bract is narrowly and sharply triangular in outline, and in general anatomy resembles the scale-leaves which form a covering over the rhizome, with the exception that here there is no lignified band of tissue connecting the midrib with the edges of the leaf. This is as one would expect, for it is unlikely that in sub-aerial organs of this type so rigid a central mechanical system would be required as in corresponding structures in the soil.

The narrow cortex of the peduncle appears to resemble closely the cortex of the aerial stem. Large-sized raphide sacs are distributed through the groundwork of smaller, loosely packed parenchyma cells.

The stele is bounded by a rather narrow ring of mechanical tissue similar to that found in the stem (Plate XVIII Fig. 2.). The vascular tissue is composed of six separate bundles, three of which are distinctly larger than the other three. In each bundle the xylem presents two diverging arches, each of which terminates in one or more large vessels, and in the "bay" of which lies the phloem. In the three large-sized bundles the phloem is split into three distinct patches, while in the bundles of smaller size there/
there are only two separate phloem groups. Owing to a tendency towards disintegration, it was impossible to obtain peduncles in which the structure of the phloem elements could be made out.

A feature of interest in the very young leaves surrounding the apex of the reproductive shoot is the great number of raphide sacs which are very conspicuous in the rather limited amount of parenchymatous tissue.

From these observations on the flowering shoot of Trichopus it is not possible to draw many conclusions that are of value from the standpoint of comparison with other members of the Dioscoreaceae. Attention has already been drawn to the fact that the inflorescence, consisting here of a fascicle of flowers borne on long filiform peduncles, departs far from the usual type of the family. No special features occur here, apart from such as have been noted in the descriptions of other organs of the plant. However, the occurrence of raphide sacs in such large numbers in the young bracts about the apex of the floral axis is of some interest, in that it demonstrates the extremely wide extent of the occurrence of these structures throughout the whole plant.

(D) GENERAL ACCOUNT of the EPIDERMAL, MECHANICAL, CONDUCTING, and STORAGE SYSTEMS of TRICHOPUS ZEYLANICUS as compared with other DIOSCOREACEAE.

It has been seen that the normal epidermal cells of the sub-aerial organs of Trichopus possess fairly thick cellulosic external walls, covered with a thin, corrugated cuticle. This type of epidermis is characteristic of many species of Dioscorea; moreover, in its epidermal system Trichopus shows still more clearly a relationship with the Dioscoreaceae in the possession of the glandular, capitate hairs which were found to occur on the stems, and more particularly on the leaves of the plant. Finally, a large-celled epidermis of the type found in the leaves of Trichopus, and associated with the shady habitat of the plant, is known to be typical of many of the species of Dioscorea, so that this may be taken as furnishing still further evidence of the affinities of Trichopus with this group of plants.

The mechanical system, consisting in part of lignified parenchyma and in part of true sclerenchyma fibres, is strikingly developed throughout the organs of the plant. In the possession of a lignified pith in the root, and of a well-formed sheath of mechanical tissue around the stele of the stem, Trichopus conforms to the general/
general plan of distribution of mechanical tissue in other genera of the family. The present species is exceptional, however, in the extreme thickness of the sclerenchymatous sheath around the vascular bundles of the leaf, a development which may perhaps be correlated with the sandy soil on which the plant normally grows.

In the general plan and arrangement of its vascular system, *Trichopus* has been seen to represent a somewhat isolated type. The variation in the extent to which the xylem arches penetrate in towards the centre of the root is of interest. In the roots of species of *Dioscorea* on which perennial swellings occur, the vascular tissue is distinguished in plan from those species where the swellings are annual, by the fact that it does not reach the centre of the root; so that *Trichopus* may be taken as showing in this point a structure approaching more closely to what is seen in the *Dioscoreas* with perennial root swellings than to that occurring in those species in which these swellings are only annual. At the same time it has been shown that the extent of vascular tissue is not constant in the root of *Trichopus*.

In the arrangement of xylem in the individual stem bundles this plant conforms to the type of the family, and its affinities with the *Dioscoreaceae* are further confirmed by the tendency of the phloem to become split into several distinct groups. Finally, it must be pointed out that one of the principal peculiarities of the conducting system of the *Dioscoreaceae* lies in the very few individual bundles in the aerial stem as compared with most other *Monocotyledons*; and the possession of still fewer bundles in the ring may be regarded as another important piece of evidence linking *Trichopus* with the *Dioscoreaceae*.

One finds in the storage system those features in which *Trichopus* departs most markedly from the type of the *Dioscoreaceae*. The presence of a prominent and well-developed tuber, frequently with accessory swellings on the roots, constitutes one of the most characteristic vegetative features of the family; and *Trichopus* was found to show no trace of any such tuber system.

This absence of externally conspicuous swellings is admittedly a departure from the normal organisation of the storage system in the *Dioscoreaceae*. Yet, in the wide stelar region of the rhizome, in the broad cortex of the root, and again in the pith cells of the aerial stem just below the node, very large quantities of/
of starch are stored. And it seems, therefore, that the difference between this species and other members of the family is not so fundamental as it would at first sight appear. It lies rather in the fact that the storage system of *Trichopus* is diffuse instead of being concentrated in tuberous swellings, the products of metabolism being distributed throughout the extensive thin-walled tissue of attenuated organs rather than stored in structures developed specially for the purpose.

Throughout all the organs of the plant raphides of calcium oxalate have been found to occur. They were seen to be numerous in the root-cortex, in the swelling at the base of the petiole, and especially conspicuous in the immature bracts; while they also occur in a regular manner throughout the cortical tissues of the stem and the rhizome, and in the mesophyll of the leaf. Raphide sacs of this particular type are found widely in the family; and the fact of their being so plentiful here, together with the presence in *Trichopus* of a characteristic swelling at the base of the petiole, similar to that constituting the pulvinus in the leaves of many Dioscoreas, certainly may be taken as two further points to support the relationship of *Trichopus* with the Dioscoreaceae.

(E) SUMMARY.

A detailed anatomical investigation of plants of *Trichopus zeylanicus* from Ceylon has enabled me to confirm and extend the work of Queva (1894) on this plant, and to establish a number of points of difference and at the same time many features of resemblance between the anatomy of this species and that of other Dioscoreaceae. These points may thus conveniently be summarised:-

1. ANATOMICAL FEATURES IN RESPECT OF WHICH TRICHOPUS ZEYLNICUS DEPARTS FROM THE TYPE OF THE DIOSCOREACEAE.

(1) The absence of any form of swelling or spiny outgrowth on the root system.

(2) The presence of only a single endodermis in the root.

(3)
The fact that the aerial stem consists of only a single internode.

The absence of any tuber system associated with the stem.

The fact that the arrangement, number, and course of the vascular bundles of the stem cannot be readily brought into line with the plan of organisation that is typical of the Dioscoreaceae.

The absence of any large-sized sieve tubes in the phloem.

The absence of any trace of the anterior arch of vascular tissue which is so characteristic of the leaves of most Dioscoreaceae.

The absence of extra-floral nectaries in the tissues of the leaf.

The greatly foreshortened floral axis on which the filiform peduncles are borne in a fascicle.

2. **ANATOMICAL FEATURES IN RESPECT OF WHICH TRICHOPUS ZEYLNICUS SHOWS EVIDENCE OF ITS AFFINITY WITH THE DIOCOREACEAE.**

The presence of thin-walled cells constituting passage areas in the pericycle occurring immediately internal to the passage cells of the endodermis of the root.

The very wide distribution of raphides of calcium oxalate throughout the organs of the plant. Especially was a resemblance noted between the large raphide-sacs, circular in cross-section, appearing in the sub-epidermal collenchyma of the stem and the similar structures occurring in an exactly similar position in species of Dioscorea.

The presence of a corrugated cuticle on the epidermis of a number of the organs of the plant.

The wide distribution of glandular, capitate hairs over the surface of the sub-aerial organs.
The small number of the individual vascular bundles as compared with the majority of Monocotyledons.

The existence of large vessels of the xylem in a position external to the phloem in the individual stem bundles.

The subdivision of the phloem into several distinct phloem groups. Especially characteristic of the Dioscoreaceae as a whole was found to be the existence in the vascular tissue of the midrib of the leaf of as many as seven individually distinct phloem groups.

The fact that the vascular tissue destined for the reproductive shoot constitutes an inner ring of bundles in the stem.

The shape and the venation of the leaf. The minute terminal acumen was a noteworthy feature too, since it is found also in a number of species of *Dioscorea*.

The pulvinar swelling at the base of the petiole.

The tendency for the development of collenchyma in the outer cortical layers which lie immediately beneath the ridges and prominences of the stem and the petiole.

The arrangement of stomata and the type of epidermis characterising the leaf.

CONCLUSION.

Trichopus zeylanicus will always be recognised as an isolated and anomalous species, which departs in many respects very far from the normal habit of the family in which it is placed. Nevertheless, the present investigation has shown that, despite its many divergent features, it presents in the details of its anatomy a very considerable weight of evidence to support its inclusion in this family. Accordingly, I am led to the conclusion that its peculiarities are not quite so marked as would at first sight appear, and that the facts of its anatomy go far to establish the affinities of Trichopus with the Dioscoreaceae.

REFERENCES./
REFERENCES.

Beddome, R.H. Icones plantarum Indiae Orientalis (1868-9), t. 290.

Bentham, G., & Hooker, J.D. Genera plantarum, iii (1883), 745.

Endlicher, S. Genera plantarum (1836-40), n. 2165.

Gaertner, J. De fructibus et seminibus plantarum, i (1788), 44, t. 14.

Hooker, J.D. Flora of British India, vi (1894), 297.

- Botanical Magazine, cxx (1894), t. 7350.

Knuth, R. Das Pflanzenreich. Dioscoreaceae (1924), 346.

Lindley, J. Botanical Register (1832), sub t. 1543.

Trimen, H. The Flora of Ceylon, iv (1898), 280.

Uline, E.B. Engler's Botanische Jahrbucher, xxv (1898), 155.
PART II.

OBSERVATIONS ON THE ANATOMY OF DIOSCOREA VILLOSA.

A COMPARISON WITH TRICHOPUS ZEYLNICUS.
OBSERVATIONS on the ANATOMY
of Dioscorea villosa L.

A comparison with Trichopus zeylanicus Gaertn.

(A) INTRODUCTORY.

In the first part of the present work a critical examination of the anatomy of Trichopus zeylanicus Gaertn. has shown that this monotypic genus does in many respects conform to the anatomical type of the family Dioscoreaceae. However, it has been seen to diverge from the normal in the absence of any trace of the climbing habit so characteristic of the genus Dioscorea, and also in the fact that it lacks a storage system in the form of swollen tubers.

Two six months-old plants of Dioscorea villosa L., kindly sent to me for anatomical work by Mr. I.H. Burkill, immediately suggested in the broad features of their morphology a resemblance to Trichopus zeylanicus which was sufficiently marked to indicate that a brief anatomical comparison might prove of interest. For it appeared that in young plants which were comparatively undeveloped there might be found a tendency for those points of difference which existed between Trichopus and Dioscorea villosa to be removed. It is evident that some species of Dioscorea would present even at an early stage an anatomical structure distinct from that of Trichopus, but D. villosa is not a species of this category; for in his extensive work on the family Dioscoreaceae Queva (3) pointed out that Dioscorea villosa even at maturity showed in the structure and organisation of its rhizome a special affinity with Trichopus. Furthermore, in the dimensions and external morphology of the aerial stems and leaves the plants examined showed such evident similarity to plants of the genus Trichopus as to suggest that these organs too might present in their anatomy features which would indicate a closer affinity between the two genera. (Plate I Fig. 2.)

(B) ANATOMICAL OBSERVATIONS.

An examination was made of the anatomy of the root, rhizome, aerial stem and leaf, from the standpoint of a comparison with Trichopus zeylanicus. The/
The observations made on each organ are here presented separately.

(1) The Root.

The resemblance between the roots examined and those of *Trichopus* was accentuated by the fact that tuberous swellings associated with the subterranean parts of the plant were not developed in the young condition in which the material was obtained.

Indeed, all the roots present were in a somewhat immature state, and even those of maximum thickness (approx. 5mm. thick) showed only three xylem arches, as compared with five recorded by Queva as typical of the mature roots of *D. villosa*.

Owing to the comparatively undeveloped state of the tissues these roots do not present material of such importance as other parts of the plant for the purpose of comparison with *Trichopus*. Nevertheless, in the disposition of the vascular tissue in the stele one important distinction can be observed. The xylem arches are found in the present instance to meet in the centre of the root, at which point one or two large vessels occur (Plate XIX Fig. I.), whereas in *Trichopus* a lignified pith of some width, though subject to a certain amount of variation, was always found to occupy the central region of the root.

The single layer of cells comprising the endodermis is similar in structure to that of *Trichopus*.

(2) The Rhizome.

The rhizomes examined had attained in the course of six months of growth a length of approximately 1cm. with a thickness of 2 to 3 mm.

In his work on the rhizome of mature plants of *D. villosa* Queva was able to trace the striking resemblance borne to the rhizome of *Trichopus*, both as regards structural features and in the peculiar mode of branching there seen. This type of branching has been mentioned in the foregoing paper on *Trichopus*, and consists of two distinct orders of ramification: (1) the branches of the rhizome itself, each of which arises in the axil of a foliar organ, and (2) the aerial stems arising from the rhizome, and always leaving the rhizome at points diametrically opposite leaf structures.
A series of sections through the apical region of the rhizome showed the second of these two types of branching very clearly in the plants examined, and in the diagrammatic representation (Plate XX Fig. 2.) may be seen the origin of three successive stems, each with six developing vascular bundles, and arising in each instance at a point diametrically opposite a scale leaf with a single small vascular bundle. Such a mode of enation of aerial stems is precisely similar to that traced in the case of Trichopus.

Owing to the young condition of the material the branches of the rhizome itself were in an undeveloped state. It was clear however, from an examination of serial sections, that the axis of the buds which would subsequently develop into branches lay on a plane which formed an angle slightly greater than a right-angle with the main axis of the rhizome.

In the details of anatomical structure transverse sections of young rhizomes of *D. villosa* differed from those of the mature rhizome of *Trichopus* only in such respects as immature tissues would be expected to differ from those which are fully developed. In the organisation and arrangement of the vascular bundles, in the presence of a narrow cortical region and a wide pith, and in the occurrence of great accumulations of starch in the ground tissue, the rhizomes of the two plants bear a striking resemblance to one another.

It is clear that the evidence of affinity between the rhizome of *Trichopus* and *D. villosa*, adduced by Queva from a study of mature plants, is strongly confirmed by an examination of the young rhizome of *D. villosa*.

(3) The Aerial Stem.

Transverse sections of the young stems of *D. villosa* present an irregular outline, with alternating ridges and furrows, a narrow cortex, and a wide stelar region separated from the cortex by a continuous zone of mechanical tissue. (Plate XIX Fig. 2.) In all these features the stems conform to the type described from mature plants by Queva, but in the number of vascular bundles a reduction is found, only six occurring in the young stems examined, as compared with ten in Queva's description.

Queva pointed out the peculiarity in the structure of the vascular bundles of the stem of *D. villosa*, which show in all cases only a single mass of phloem tissue. This feature was also seen in the present instance,
instance, and there was no evidence to suggest that the single phloem mass had been derived in the course of development from two or more separate strands of tissue. In this respect a distinct departure is seen from the type of construction usually found in the family Dioscoreaceae, where the phloem in the individual stem bundles occurs in the form of a number of separate strands.

The xylem presents one, or more often two large vessels in each bundle, and in the larger bundles there are two slightly smaller vessels, the disposition of the xylem being such as to form two diverging arms of tissue, in the fork of which lies the phloem. (Plate XXII Fig. 2.)

When a critical comparison is made between the stem structure just described and that met with in Trichopus, it is found that a remarkable degree of similarity can be traced. In the general plan of construction of stem tissues the two plants are essentially the same, and the only features in respect of which differences are seen are those of the vascular bundles. Trichopus was found to exhibit, in accordance with the absence of the climbing habit, a distinct reduction in the diameter of the large vessels. D. villosa, even in the young stems, has been found to retain a type of vessel having a much greater cross-sectional diameter in proportion to the size of the vascular bundle. Secondly, in the absence of any subdivision of the phloem tissue within the bundle, D. villosa differs from Trichopus, which was found to show in the larger bundles of the stem a degree of subdivision of the phloem comparable with that occurring in most Dioscorea species of which the anatomy is known. It is noteworthy, however, that in the region of the node of D. villosa the phloem strands of the larger vascular bundles became divided into two, and in this condition the structure of these vascular bundles bore a close resemblance to some of the stem bundles of Trichopus.

In the anatomical details of the stem other than those outlined above, a striking degree of similarity was found to exist between the two plants compared. (Plates XIX & XXI.) Indeed, one important distinction between Trichopus and the majority of the Dioscoreaceae was shown to be absent, for the large sieve tubes so characteristic of the stem bundles of most Dioscoreas were not seen in the young stem of D. villosa. The structure of the epidermis, the presence of scattered raphide sacs in the cortex, and the manner of pitting of the mechanical elements were all/
all features common to the two species.

A series of transverse sections cut through a node shows a striking parallel between the nodal anatomy here and that in *Trichopus*, with regard to the behaviour of the different stem bundles. Tracing the details in the transition region from below upwards (Plates XXIII & XXIV) one finds three of the six bundles present in the transverse section of the stem passing out unchanged into the leaf. Of the two small intermediately situated bundles one fuses with the lateral leaf-trace bundle, while the other passes inwards and is ultimately connected with the vascular tissue of the axillary bud. The sixth bundle of the stem, the largest in size, is further augmented by receiving a branch from one of the lateral bundles, and is found to be subdivided into the individual bundles which form the vascular system in the continuation of the main stem. As the petiole becomes separated from the main stem, each of the two lateral leaf-trace bundles undergoes division, thereby forming a series of five leaf-trace bundles.

Disturbances in the arrangement of mechanical tissue, shown in black in the figures, may also be observed in the transition region.

When this type of node is compared with that of *Trichopus*, it is seen that, if due account be taken of the fact that the main stem and axillary branch seen above the node in *D. villosa* are not represented in *Trichopus*, the two may be regarded as essentially similar in plan.

(4) The Leaf.

The general morphology of the cordate foliage leaves of the young plants of *D. villosa* examined showed no features strikingly different from *Trichopus*. Indeed the leaves of the latter, like those of *D. villosa*, conform to a type of leaf construction met with throughout those members of the Dioscoreaceae which possess simple leaves. Anatomically however, these young leaves of *D. villosa* furnish interesting material for a comparison with *Trichopus*.

a. Anatomy of the Petiole.

In the possession of a pronounced pulvinar swelling at the base of the petiole, and in the outline of the transverse section, which exhibits alternating ridges/
ridges and furrows with a very deep anterior furrow, (Plate XXV.,) the petiole of D. villosa agrees with that of Trichopus. It also shows no important point of distinction with regard to the composition and arrangement of the epidermal and ground tissues, differing only in the lack of enlarged anterior epidermal cells and the limited extent of the mechanical tissue.

The arrangement of the vascular bundles presents a remarkable lack of conformity between the different petioles examined. The most important characteristic feature stressed by Queva in his comparison of the leaf structure of the Dioscoreaceae with that of Smilax lies in the presence in all typical Dioscoreas of an anterior arch of vascular tissue in the petiole; and the absence of this anterior arch from the petiole of Trichopus was found to constitute the most significant point of divergence of that anomalous genus from the typical leaf structure of the family. Accordingly, it is surprising to find that in young plants of D. villosa this anterior arch of vascular tissue is present in some petioles, while entirely absent from others. In those petioles where there is no anterior arch five vascular bundles are found, a condition identical with that prevailing in the petiole of Trichopus. Where present, the anterior arch consists of a single mass of phloem accompanied by a small amount of xylem tissue.

Except in so far as the extensive mechanical sheath found in connection with each bundle in Trichopus is but poorly represented here, the anatomy of the individual bundles is similar in the two species. The vessels however are larger, and the phloem less subdivided in D. villosa.

The base of the lamina in D. villosa is marked by the presence of a small number of the characteristic dark brown extra-floral nectaries, which are known to occur in many species of Dioscorea. (1, 2.)

The upper epidermis of the leaf, devoid of stomata and characterised by the large size of its component cells, shows in both these points agreement with the leaf structure of Trichopus. (Plate XXVII Fig.1.) The lower epidermis similarly is of like structure in the two plants, both as regards the size and arrangement of the cells, and in the presence of a/
a large number of scattered and irregularly orientated stomata, together with an abundance of stalked multicellular hairs. (Plate XXVIII Fig. 2.)

The palisade tissue of the young leaves of D. villosa was not fully developed, but the mesophyll showed the presence of a large number of raphide sacs, irregularly orientated, and also numerous elongated sacs containing mucilage, which occurred principally towards the apex of the leaf. The raphide sacs (Plate XXVIII Fig. 1.), both in form and distribution, were identical with those of Trichopus.

Considerable subdivision of phloem tissue takes place in the larger vascular bundles of the leaf, as many as seven separate phloem patches occurring in some transverse sections, but the mechanical sheath so strongly developed around each bundle in the leaf blade of Trichopus was quite unrepresented in the leaves of D. villosa examined. (Plate XXVII Fig. 2.)

Summarizing these observations on the leaf structure of D. villosa as compared with that of Trichopus, one can recognise at the outset a very close similarity in almost all anatomical details between the two plants. But beyond this one finds that even that character which has long been regarded as the most constant distinction between the leaves of the two genera - the presence of the anterior arch of vascular tissue in the petiole of Dioscorea - is not actually a constant character in D. villosa, so that a still closer resemblance may be traced between the two genera.

(C) DISCUSSION.

The entire family of the Dioscoreaceae has long been recognised as presenting features of anatomical structure which diverge widely from those prevailing throughout the great majority of Monocotyledons. Whether the curious anomalous genus Trichopus should be closely associated with Dioscorea was for a long time in doubt, but a careful study of its anatomy has tended to confirm the existence of a fairly near relationship between the two genera. Furthermore, a critical examination of the anatomy of relatively undeveloped plants of Dioscorea villosa has undoubtedly established this relationship on a firmer basis of evidence than had hitherto been available.

Queva, in a general survey of the anatomy of the family/
family, was the first to suggest that of the known species of *Dioscorea* those likely to yield features of closest similarity to *Trichopus* were *D. villosa* and *D. quinqueloba*, for he recognised in the rhizomes of these two species a plan of construction essentially similar to that occurring in the rhizome of *Trichopus*. In the present investigation it has been possible to demonstrate further anatomical features suggestive of a close affinity between *D. villosa* and *Trichopus*.

The most important anatomical evidences of relationship are generally admitted to be those based upon vascular structure, and for this reason particular stress should be laid on the fact that the young plants of *D. villosa* were found to exhibit diversity with regard to the formation of an anterior arch of vascular tissue in the petiole. The fact that this arch was present in some petioles, while absent from others, detracts greatly from the significance of this structure as representing a point of distinction between the genera *Dioscorea* and *Trichopus*.

Admittedly, in certain structural features, such as the presence of only a single internode, and the anatomical peculiarities of the scale leaves, *Trichopus* must be conceded to be an anomalous type. In the small size of the vessels and the great development of mechanical tissue in the leaf, it is also somewhat abnormal. But it is equally important to recognise that by a study of the anatomy of immature plants of *D. villosa*, which are of a size comparable with the mature plants of *Trichopus*, one is able to remove in large part the points of distinction formerly recognised to exist between the two genera in the details of anatomical structure. In the absence both of the tuberous system of the subterranean organs and of the climbing habit of the subaerial organs, due to the immaturity of the material, the similarity to *Trichopus* is indeed striking, and it is of interest that a correspondingly close parallel should be found to occur throughout the anatomy of the two plants.

(D) SUMMARY.

Young plants of *Dioscorea villosa* have been examined with a view to comparing their anatomy with that of *Trichopus zeylanicus*.

The structural features of the root, rhizome, aerial stem and leaf are described, and a short comparison/
comparison made in each case with the corresponding structures in Trichopus.

The most significant feature in the anatomy of the young plants of *D. villosa* is the fact that the anterior arch of vascular tissue in the petiole is absent from some leaves, while present in others. Throughout the tissues of the plant features occur which suggest a close affinity with Trichopus.

The results are briefly discussed, and the conclusion drawn that the relatively young condition of the material studied admits of a closer resemblance being traced to Trichopus than had hitherto been recognised to exist between the latter and any known species of Dioscorea.

REFERENCES.

THE PLATES.

Note: With the exception of Plate I. all drawings were made with the aid of a camera lucida.
PLATE I.

FIG. I.- Plant of Trichopus zeylanicus, drawn from material used in the present work.

FIG. 2.- Young plant of Dioscorea villosa, drawn for comparison with Trichopus, from one of the specimens used in the present work.

(Both natural size)
PLATE II.

Trichopus zeylanicus:

FIG. 1.- Diagrammatic transverse section of crown of root, to show number of vascular bundles and relative extent of cortex. X40.

FIG. 2.- Diagrammatic transverse section of root in region of maximum thickness. X 40.

FIG. 3.- Diagrammatic transverse section of lateral root, showing limited extent of stele, with only six xylem arches. X 30.
PLATE III

Trichopus zeylanicus:

FIG. 1. - Longitudinal section of raphide sac from cortex of root. X 300.

FIG. 2. - Longitudinal section of cells from lignified pith of root. X 300.
PLATE IV.

Trichopus zeylanicus:

FIG. I.- Part of transverse section of stele of root, showing great extent of lignification of ground-tissue internal to endodermis; phloem shown in blue; at y. vessels of the xylem. X 300.

FIG. 2.- Small portion of pericycle and endodermis, showing, in blue, a passage cell of the endodermis together with a group of thin-walled pericyclic cells. X 300.
PLATE V.

Trichopus zeylanicus

FIG.1. - Diagrammatic transverse section of scale-leaf from rhizome; lignified tissue shown in black. X 80.

FIG.2. - Diagrammatic transverse section of rhizome, showing large number of vascular bundles; lignified tissue shown in black. X 80.

FIG.3. - Transverse section of single vascular bundle of rhizome; phloem shown in blue; a small group of tracheids can be seen on the extreme right of the lignified tissue. X 300.
PLATE VI.

Trichopus zeylanicus:

Successive transverse sections of rhizome, representing four stages in the enation of an aerial stem. X 40.
PLATE VII.

Trichopus zeylanicus:

Successive transverse sections of rhizome, representing a further series of four stages in the enation of an aerial stem. X 40.

(Continued from Plate VI)
PLATE VIII.

Trichopus zeylanicus:

FIG. I. - Diagrammatic transverse section of aerial stem, showing general arrangement of tissues; lignified sheath shown in black. X 80.

FIGS. 2.-3. - Diagrammatic transverse sections of aerial stem, to show variations in numbers and arrangement of vascular bundles. X 40.
Trichopus zeylanicus:

FIG. 1.- Part of transverse section of cortex of aerial stem. X 300.

FIG. 2.- Transverse section of vascular bundle of stem, showing type of construction found in bundles numbered 4-6 in text. X 300.

FIG. 3.- Transverse section of vascular bundle of stem, showing type of construction found in bundles numbered 7-12 in text. X 300.

FIG. 4.- Part of transverse section of stem, showing portion of lignified sheath and largest vascular bundle (No.1 in text). X 300.

Throughout phloem is shown in blue; large vessels seen at y.
PLATE X.

Trichopus zeylanicus:

FIGS.I-8 - Successive transverse sections through node, showing mode of transition from stem arrangement to petiole arrangement of vascular bundles; X 40.
Trichopus zeylanicus:

Successive transverse sections through node, showing first series of four stages in the enation of the reproductive shoot; bundles destined for reproductive shoot can be seen passing into centre of stem and undergoing subdivision. X 40.
PLATE XII.

Trichopus zeylanicus:

Successive transverse sections through node, showing a further series of three stages in the enation of the reproductive shoot. X 40.

(Continued from Plate XI)
PLATE XIII.

Trichopus zeylanicus:

FIG. I.- Transverse section of petiole, (diagrammatic); mechanical tissue shown in black. X 40.

FIG. 2.- Diagrammatic transverse section of petiole in region of pulvinar swelling; mechanical tissue shown in black. X 40.
PLATE XIV.

Trichopus zeylanicus:

FIG. 1.-Small part of transverse section of petiole, showing greatly enlarged epidermal cells in region of anterior groove. X 300.

FIG. 2.- Part of transverse section of mid region of petiole, showing posterior vascular bundle; phloem shown in blue; at v. large vessels of xylem. X 300.
Trichopus zeylanicus:

FIG. 1.- Diagrammatic transverse section of leaf, showing outline of midrib and part of lamina, relative extent of mechanical tissue (shown in black), and comparative size of upper and lower epidermis. X 40.

FIG. 2.- Single capitate hair attached to lower epidermis of leaf. X 300.
Trichopus zeylanicus:

Transverse section of midrib of leaf, showing distribution of chlorophyllous tissue, extent of lignified sheath, and disposition of phloem and xylem; phloem shown in blue; at v., vessels of xylem. X 300.
Trichopus zeylanicus:

FIG. 1.- Part of transverse section of lamina of leaf, showing details of upper and lower epidermis, and palisade and spongy mesophyll; at r. a raphide sac has been cut through. X 300.

FIG. 2.- Surface view of cells from lower epidermis of leaf, with stomata. X 300.
Trichopus zeylanicus:

FIG. I. - Diagrammatic transverse section of reproductive shoot, showing relative position of component parts; (explanation in text). X 40.

FIG. 2. - Transverse section of old peduncle; the cortex has become worn away, and the phloem has disintegrated, leaving empty spaces in the place which it occupied in the vascular bundles. X 300.
Dioscorea villosa:

FIG. 1.- Diagrammatic transverse section of young root, showing three xylem arches and three phloem masses. X 80.

FIG. 2.- Diagrammatic transverse section of young stem, showing general arrangement of tissues; mechanical tissue shown in black. X 80.
Dioscorea villosa:

FIG.1.- Diagrammatic transverse section of young rhizome, showing narrow cortex, and small, scattered vascular bundles in pith. X 40.

FIG.2.- Diagrammatic transverse section of apical region of rhizome, showing arrangement of immature stem(st.I-3) and leaf(lf.I-3) structures. X 80.
Dioscorea villosa:

FIG. I.- Transverse section of single vascular bundle of rhizome; tracheidal and phloem tissue can be seen in the upper part of the drawing; cells surrounding bundle are filled with starch grains. X 300.

FIG. 2.- Part of transverse section of cortex of stem, showing lignified sheath surrounding stele. X 300.
Dioscorea villosa:

FIG. 1.- Transverse section of one of smallest vascular bundles of stem; phloem shown in blue; at \(v. \), single vessel; \(\times 300 \).

FIG. 2.- Transverse section of one of large vascular bundles of stem; phloem shown in blue; at \(v. \), large vessels are seen; \(\times 300 \).
Dioscorea villosa:

Successive transverse sections through a node, showing first four stages in the enation of the petiole and axillary branch; diagrammatic, the mechanical tissue being shown in black. X 80.
Dioscorea villosa:

Successive transverse sections through a node, showing three further stages in the enation of the petiole and axillary branch; diagrammatic, the mechanical tissue being shown in black. X 80.

(Continued from Plate XXIII.)
PLATE XXV.

Dioscorea villosa:

FIG.1.- Diagrammatic transverse section in mid region of petiole; mechanical tissue shown in black. X 80.

FIG.2.- Diagrammatic transverse section of pulvinar swelling, showing five vascular bundles and complete absence of mechanical tissue. X 80.
Dioscorea villosa:

FIG. 1.- Part of transverse section of expanded portion of lamina of leaf, showing details of upper and lower epidermis, and comparatively undifferentiated mesophyll tissue; two stomata are seen in section. X 300.

FIG. 2.- Transverse section of midrib of leaf; phloem shown in blue; at v., principal vessels. X 300.
Dioscorea villosa:

FIG.1.- Part of transverse section of lamina of leaf, showing raphide sac cut longitudinally. X 300.

FIG.2.- Surface view of part of lower epidermis of leaf, showing stomata scattered and irregularly orientated. X 300.