This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.
Mode of Action of a Novel Lymphocyte Inhibitory Factor of Attaching & Effacing Escherichia coli

Andrew Graham Bease

Doctor of Philosophy (Ph.D)
The University of Edinburgh
2019
Declaration

I, Andrew Graham Bease have read and understood the University of Edinburgh guidelines on plagiarism and hereby declare that this thesis is all of my own work except where indicated in the text. This work has also not been submitted for any other degree or professional qualification from any other University.

Signed…...
Abstract

Attaching and effacing *Escherichia coli* are significant diarrhoeal pathogens that can spread between humans or via animal reservoirs. An important virulence factor produced by these bacteria is the large multifunctional protein lymphostatin (LifA), which has been reported to inhibit the mitogen- and antigen-stimulated proliferation of lymphocytes as well as mediate adherence to epithelial cells. Shiga toxin-producing *E. coli* lacking lifA are significantly impaired in their ability to colonise cattle. Little is known about the mode of action of LifA, however, *in silico* analysis has identified a putative glycosyltransferase domain homologous to that of large clostridial toxins and a putative cysteine protease domain homologous to that of C58 family proteases. LifA has recently been reported to bind uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) and mutation of a DXD motif within the predicted glycosyltransferase domain abolished this binding and lymphostatin activity. In this study, I sought to identify domains of LifA required for cell binding and lymphostatin activity, probe the role of the cysteine protease motif in intracellular processing and LifA activity, and to identify potential targets and interacting partners of the protein. Domains of LifA predicted by limited proteolysis were cloned, expressed and affinity purified. Robust assays for detecting interactions between LifA, or fragments thereof, and T lymphocytes were developed but none of the domains possessed lymphostatin activity alone or in combination. LifA was found to be cleaved within T cells, which by analogy with large clostridial toxins was hypothesised to be the result of autoproteolysis mediated by the cysteine protease domain. A C1480A substitution mutant of full-length LifA was constructed by site-directed mutagenesis to disrupt the predicted catalytic triad of the cysteine protease domain. The C1480A substitution resulted in a lack of intracellular processing of LifA and impaired the ability of the protein to inhibit mitogen-stimulated proliferation of bovine T cells, without obvious changes to the biophysical properties of the protein. LifA processing was also found to require endosomal acidification using the inhibitors bafilomycin A1 and chloroquine. Shotgun mass spectrometry and protein pull-downs were used to identify potential targets of LifA activity and interacting partners. Relatively few candidate proteins were identified and these were generally not consistently observed between repeated experiments. Based on analysis of signal transduction pathways perturbed by LifA, I explored if the cellular kinase Akt may be targeted by LifA directly or indirectly. Akt is known to control T cell proliferation and to be regulated by phosphorylation and GlcNAcylation. S473 phosphorylation of Akt in mitogen-stimulated T cells was inhibited by LifA in a manner dependent on the DXD and cysteine protease motifs, but O-GlcNAcylation of Akt was not detected. This inhibition only occurred in cells treated with LifA before mitogenic stimulation. Infection of T cells with an enteropathogenic *E. coli* strain inhibited Akt phosphorylation in a manner dependent on the Type III secretion system but not LifA or a homologous LifA-like protein. Taken together, this study advances our understanding of the mode of action of a key virulence factor of pathogenic *E. coli* and, in particular, identifies a key role for a cysteine protease motif in intracellular processing of the protein and lymphostatin activity.
Lay summary

Lymphostatin (LifA) is a protein that is produced by certain strains of the bacterium *Escherichia coli* that can cause severe diarrhoea. The protein is required by the bacteria to colonise the intestines of their host and is known to interfere with the replication and activity of key cells of the immune system termed T cells in response to chemical triggers. The mode of action of LifA is not fully understood, however, it is known to bind a sugar molecule (uridine diphosphate-N-acetylglucosamine; UDP-GlcNAc) and is thought to transfer the sugar onto an unidentified target in host cells. LifA is also predicted to contain a region that may be involved in self-cleavage of the protein in a way that may be required for it to reach its target within cells. In this study, I developed robust assays to detect binding of LifA to T cells and inhibitory activity. I generated various fragments of the protein, but none of these possessed lymphostatin activity alone or in combination. I found that LifA was processed into two pieces inside host cells, which required a decrease in the pH of a compartment within host cells involved in the uptake of extracellular material called the endosome. A region predicted to be involved in self-cleavage of LifA was mutated by changing a specific amino acid in the protein. This change prevented LifA from being processed inside T cells and its ability to inhibit T cell replication, but without obvious effects on the structure of the mutated protein. I attempted to identify host cell proteins onto which LifA transfers the GlcNAc sugar and proteins that may interact with LifA, however, the results were inconsistent between repeated experiments. A cellular protein called Akt was investigated as a possible target of LifA based on evidence from independent studies. LifA was found to block the activation of Akt in T cells that had been chemically stimulated to replicate and required both the ability to bind UDP-GlcNAc and be processed in order to do this. This block of Akt activation only occurred when T cells were treated with LifA before stimulation and not after. LifA did not appear to transfer sugar onto Akt. Infecting T cells with live *E. coli* before stimulating them blocked Akt activation in a manner dependent on the syringe-like bacterial secretion system but not LifA or a similar protein termed LifA-like. Taken together, the research presented in this thesis represents a significant and original contribution to our understanding of how a key virulence factor of pathogenic *E. coli* acts.
Acknowledgements

I would like to thank the following people who have supported me in some way or another throughout this project:

Professor Mark Stevens, Dr Robin Cassady-Cain and Professor Jayne Hope for supervising this project, reviewing my thesis and all the support they have given me. Your support has been greatly appreciated these last four years and I wouldn’t have made this far without you. Also, the members of the Stevens and MMBP groups for the support and advice they have provided over the years.

Dr Liz Blackburn, Dr Martin Wear and Dr Matt Nowicki for the training and support they provided throughout my time at the Edinburgh Protein Production Facility. Lisa Imrie, Kinetic Parameter Facility, The University of Edinburgh, and Dr Dominic Kurian, Proteomics and Metabolomics Facility, The Roslin Institute, for the mass spectrometry analysis that they performed for me.

Professor Brendan Kenny, Newcastle University, for sharing information with us that helped lay the groundwork for Chapter 6 and for providing EPEC E2348/69 strains that were used in Chapter 6.

Irene McGuinnes and Dr Anna Raper for training me on the FACScalibur and Fortessa flow cytometers. Bob Fleming and Graeme Robertson, Bio-Imaging, The Roslin Institute, for advice and training on various microscopes.

My family and friends. My mum for always worrying about me (at least I know you care). My dad for picking me up from Roslin, even at stupid o’clock in the morning. My brother David and my friends Dave, Daniel and Graham for keeping my brain in a solid state through belly laughs and supplies for the effort. Lastly, I would like to thank my grandparents James and May Lawson, who are no longer with us. If not for you I might never have taken this path in life. I wish you were still here to see me complete my greatest achievement.
Contents

Declaration...i
Abstract ...iii
Lay summary...v
Acknowledgements ...vii
Contents..ix
List of figures...xvii
List of tables...xxiii
List of commonly used abbreviationsxxv

1 Introduction...1

1.1 Escherichia coli...1
 1.1.1 E. coli pathotypes ...1
 1.1.2 Attaching and effacing E. coli2
 1.1.3 Major virulence factors in A/E E. coli6
 1.1.3.1 The locus of enterocyte effacement (LEE)6
 1.1.3.2 The Type III secretion system9
 1.1.3.3 E. coli secretion/secretion of E. coli proteins11
 1.1.3.4 LEE-encoded effector proteins12
 1.1.3.5 Non-LEE-encoded (Nle) proteins14
 1.1.3.6 Intimin ..14
 1.1.3.7 Translocated intimin receptor15
 1.1.3.8 Type IV bundle-forming pili16
 1.1.3.9 Shiga toxin ...17
 1.1.4 Host immune responses to A/E E. coli and bacterial evasion of these responses ..18
 1.2.1 The innate immune response19
 1.2.1.1 The intestinal epithelial barrier19
 1.2.1.2 Phagocytes ...21
 1.2.1.3 Antigen-presenting cells22
1.2.1.4 Humoral innate immunity ... 23
1.2.1.5 Natural killer (NK) cells and γδ T cells .. 24
1.2.2 Innate immune evasion strategies by A/E E. coli 26
 1.2.2.1 Nle proteins .. 26
 1.2.2.2 Esp .. 29
 1.2.2.3 Secreted protease of C1 esterase inhibitor from EHEC (StcE) 30
1.2.3 The adaptive immune response ... 31
 1.2.3.1 B lymphocyte response .. 32
 1.2.3.2 T lymphocyte response .. 32
1.2.4 Adaptive immune evasion strategies of A/E E. coli 33
 1.2.4.1 Subtilase cytotoxin (SubAB) .. 33
 1.2.4.2 Stx .. 34
1.3 Lymphostatin ... 35
 1.3.1 The discovery of lymphostatin .. 35
 1.3.2 Homologous proteins and sequences to lymphostatin 37
 1.3.3 Secretion of lymphostatin ... 39
 1.3.4 Importance of lymphostatin as a virulence factor 40
 1.3.5 Structural motifs of lymphostatin .. 43
 1.3.5.1 The glycosyltransferase domain .. 43
 1.3.5.2 The cysteine protease domain .. 44
 1.3.6 Recent advances in understanding the mode of action of lymphostatin
 ... 46
1.4 T lymphocyte modulation by other enteric bacteria 47
 1.4.1 Superantigens .. 48
 1.4.2 Helicobacter pylori vacuolating cytotoxin A (VacA) 49
 1.4.3 Yersinia YopH, invasin and YpkA ... 50
 1.4.4 Helicobacter and Campylobacter jejuni γ-glutamyl transferase (GGT)
 ... 51
 1.4.5 Salmonella enterica serovar Typhimurium L-asparaginase II 51
 1.4.6 Shigella flexneri invasion plasmid gene D (IpgD) 52
 1.4.7 Vibrio cholerae cholera toxin (CT) and ETEC heat labile enterotoxin
 (LT) .. 53
Aims and objectives

Materials and Methods

2.1 Preparation of bovine lymphocytes and T cell enrichment ... 57
2.2 Flow cytometry .. 58
2.3 T lymphocyte proliferation assays .. 58
2.4 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 59
2.5 Western blotting ... 60
2.6 T lymphocyte protein association assays ... 61
2.7 Bacterial growth media and chemicals .. 62
2.8 Bacterial strains, plasmids and oligonucleotides ... 62
2.9 Plasmid DNA purification .. 67
2.10 Cloning .. 68
2.11 Site-directed mutagenesis of the C/H/D motif of lymphostatin 70
2.12 PCR screening of putative recombinants .. 71
 2.12.1 Screening of whole plasmids .. 71
 2.12.2 BsrDI digests of plasmids ... 72
 2.12.3 Sanger sequencing of plasmids .. 72
2.13 Pilot-scale protein expression assays ... 73
2.14 Optimisation of protein production ... 74
2.15 Purification of recombinant proteins ... 75
 2.15.1 Four-step purification ... 75
 2.15.2 IMAC optimisation .. 76
2.16 Matrix assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry of purified proteins ... 77
2.17 Dynamic light scattering (DLS) ... 77
2.18 Circular dichroism (CD) .. 78
2.19 Thermal denaturation assays (TDAs) .. 78
2.20 Fluorescent labelling of proteins .. 79
2.21 Protein transfection .. 79
2.21.1 Transfection of T cells with recombinant LifA fragments79
2.21.2 X-gal staining of transfected cells..................................80
2.21.3 Confocal microscopy ..81
2.22 Analysis of lymphostatin processing in cells.......................81
 2.22.1 Culture of J774A.1 cells..81
 2.22.2 Detection of lymphostatin cleavage in J774A.1 cells82
2.23 Treatment of T lymphocytes with inhibitors of endosome acidification...82
2.24 Detection of GlcNAcylated proteins in bovine T lymphocytes in the
 presence or absence of lymphostatin83
 2.24.1 Western blotting for detection of O-GlcNAc-modified proteins83
 2.24.2 Shotgun mass spectrometry83
 2.24.3 Glycoprotein enrichment...84
2.25 Protein pull-downs to detect LifA-interacting partners in T cells86
 2.25.1 Anti-His protein pull-downs86
 2.25.2 Silver staining ..87
 2.25.3 Liquid chromatography mass spectrometry (LC-MS) to identify
 candidate interacting partners87
 2.25.4 Immunoprecipitation of putative LifA-protein complexes88
2.26 Analysis of Akt phosphorylation89
 2.26.1 Incubation with rLifA proteins prior to mitogen stimulation89
 2.26.2 Incubation with rLifA proteins after mitogen stimulation90
 2.26.3 Infection of T cells with EPEC strains..............................91
 2.26.4 Immunoprecipitation of Akt and analysis of its post-translational
 modifications...92
3 Activity of lymphostatin fragments.......................................93
 3.1 Introduction..93
 3.2 Development of a robust assay for lymphocyte proliferation..........98
 3.3 Development of an assay to detect the association of LifA with T cells...99
 3.4 Generation of pRham-LifA-6 x His fragment clones102
 3.5 Production of LifA fragment proteins106
3.6 Protein purification

3.6.1 LifA fragment purification

3.6.2 LifA fragment co-purification

3.7 T cell proliferation assays using rLifA fragments

3.8 Protein transfection

3.8.1 X-gal staining

3.8.2 Confocal microscopy of T cells treated with rLifA fragments

3.8.3 Transfection assays

3.9 Association of LifA fragments with T cells

3.10 Association of LifA fragments with T cells in the presence of UDP-GlcNAc

3.11 Discussion

4 The role of the cysteine protease motif in processing and activity of lymphostatin

4.1 Introduction

4.2 Generation of the pRham-LifA-6 x His C1480A clone

4.3 Production of recombinant LifAC1480A protein

4.4 rLifAC1480A purification

4.5 Biophysical characterisation

4.5.1 DLS showed that rLifAC1480A was of a similar size to WT rLifA

4.5.2 CD showed that rLifAC1480A had a similar secondary structure to WT rLifA

4.5.3 TDA showed that rLifAC1480 had a similar mid-point melting temperature to WT rLifA

4.6 Analysis of the ability of rLifAC1480A to inhibit mitogen-stimulated T cell proliferation

4.7 Detection of putative autocatalytic cleavage of LifA

4.7.1 Detection of LifA cleavage in bovine T lymphocytes

4.7.2 Detection of LifA cleavage in J774A.1 murine macrophage-like cells
4.8 Impact of inhibitors of endosome acidification on predicted autocatalytic cleavage .. 159
4.8.1 Bafilomycin A1 .. 159
4.8.2 Chloroquine .. 161
4.8.3 Proliferation assays using inhibitor-treated bovine T cells 164
4.9 Discussion .. 167

5 Identifying interacting partners of lymphostatin 173
5.1 Introduction ... 173
5.2 The bovine T lymphocyte O-GlcNAc profile 178
 5.2.1 Western blotting .. 178
 5.2.2 Shotgun mass spectrometry .. 181
5.3 Protein pull-downs ... 185
 5.3.1 Identifying candidate LifA interacting partners by silver staining and liquid chromatography mass spectrometry (LC-MS) 185
 5.3.2 Shotgun mass spectrometry of pull-down eluates 189
 5.3.3 INPP5E and GPx do not appear to specifically interact with rLifA ... 192
5.4 Discussion .. 195

6 Analysis of the impact of lymphostatin on phosphorylation of the cellular protein kinase Akt .. 201
6.1 Introduction ... 201
6.2 Effect of recombinant lymphostatin on Akt Ser phosphorylation 206
 6.2.1 Pre-treatment of bovine T lymphocytes with rLifA inhibited ConA-stimulated phosphorylation of Akt Ser in a manner dependent on catalytic motifs .. 206
 6.2.2 Treatment of bovine T lymphocytes with rLifA after ConA stimulation did not suppress Akt Ser phosphorylation 209
 6.2.3 rLifA did not appear to O-GlcNAcylate Akt in bovine T lymphocytes ... 212
6.3 Effects of live EPEC on Akt phosphorylation ... 214
6.3.1 Pre-incubation of bovine T lymphocytes with EPEC inhibited
ConA-stimulated phosphorylation of Akt Ser in a T3SS-dependent
manner .. 214
6.3.2 Inhibition of Akt Ser phosphorylation in bovine T lymphocytes by
EPEC was not dependent on LifA or LifA-like protein 217
6.3.3 EPEC did not appear to O-GlcNAcylate Akt in bovine T lymphocytes
... 220
6.4 Discussion .. 222

7 Discussion ... 227
7.1 Analysis of lymphostatin structure and function ... 227
7.1.1 Structural analysis ... 227
7.1.2 Investigating the role of functional domains ... 231
7.2 Mode of action of lymphostatin on T lymphocytes 233
7.2.1 Mechanism of cell entry ... 234
7.2.2 Translocation .. 236
7.2.3 Cleavage of lymphostatin ... 239
7.2.4 Target of glycosylation .. 241
7.2.5 Cell cycle analysis ... 243
7.3 Lymphostatin homologues ... 244
7.4 Other potential activities of lymphostatin .. 246
7.5 Concluding remarks ... 247

References .. 251

Appendix 1: Composition of buffers and reagents .. 369
Appendix 2: Nucleotide sequences of the lifA fragment genes 371
Appendix 3: Peptide map of recombinant LifA fragments 377
Appendix 4: Nucleotide sequence of the lifAC1480A gene 379
Appendix 5: Electronic files .. 385
List of figures

Figure 1.1. Transmission electron micrograph of EHEC O111:H- E45035N forming attaching and effacing lesions on a bovine calf colonocyte. .. 3

Figure 1.2. Schematic of the locus of enterocyte effacement from EHEC O157:H7 showing the five polycistronic operons and the genes encoded within them (from Stevens and Frankel, 2014). .. 8

Figure 1.3. Schematic diagram of the LEE-encoded Type III secretion system showing the predicted location of proteins in attaching and effacing E. coli. 10

Figure 1.4. Schematic of EHEC adhering to an enterocyte and injecting various effector proteins into it via the Type III secretion system that affect the cytoskeleton. .. 11

Figure 1.5. Schematic of the intestinal mucosa and gut associated lymphoid tissue, which includes Peyer’s patches, mesenteric lymph nodes (MLN) and isolated lymphoid follicles ... 19

Figure 1.6. Schematic of EHEC adhering to an enterocyte and injecting various Nle proteins into it via the Type III secretion system .. 28

Figure 1.7. Predicted structure of the LifA cysteine protease domain based on the crystal structure of the PaToxC1865A cysteine protease domain from Photorhabdus asymbiotica. ... 45

Figure 1.8. Summary of the virulence factors produced by enteric bacteria that modulate T lymphocyte functions (grey boxes) and the molecules/processes that they interfere with ... 48

Figure 1.9. Schematic of the working model of lymphostatin (LifA) in gut colonisation by EPEC/EHEC ... 54

Figure 3.1. In silico predicted domains of lymphostatin from EPEC O127:H6 strain E2348/69. .. 94

Figure 3.2. Tryptic digests revealed predicted globular domains of lymphostatin... 97

Figure 3.3. Concentration-dependent inhibition of proliferation of ConA-stimulated peripheral bovine PBMCs and T lymphocytes by recombinant LifA 99
Figure 3.4. The development of an assay to detect the association of rLifA with T lymphocytes.

Figure 3.5. Association of rLifA with PBMCs/T cells.

Figure 3.6. Schematic of the full-length LifA protein and the relative positions of fragment proteins.

Figure 3.7. PCR screen of the expression clones chosen for further experiments.

Figure 3.8. E. cloni® 10G chemically competent cells produced LifA fragments when induced with 0.2 % L-rhamnose.

Figure 3.9. IMAC purification of rF1 protein using Ni²⁺-Sepharose®.

Figure 3.10. Purification of rF1 protein by size exclusion chromatography (SEC).

Figure 3.11. Coomassie stain (left) and western blot (right) of recombinant F1 purification steps.

Figure 3.12. Coomassie stain (left) and western blot (right) of recombinant LifA fragments.

Figure 3.13. SEC co-purification of rF1, rF3 and rF5.

Figure 3.14. The recombinant LifA fragments do not exhibit lymphostatin activity in isolation or in combination against bovine T lymphocytes.

Figure 3.15. β-galactosidase can be transfected into bovine T lymphocytes.

Figure 3.16. rF1 was transfected into bovine T lymphocytes.

Figure 3.17. Xfect™ Protein Transfection Reagent interfered with T cell proliferation.

Figure 3.18. rGT and rF1 associated with T cells.

Figure 3.19. The association of rGT and rF1 with T cells was not inhibited by exogenous UDP-GlcNAc.

Figure 4.1. Schematic representation of the uptake and processing of large clostridial toxins (LCTs) in host cells.

Figure 4.2. The process of creating the C1480A substitution mutant of LifA.

Figure 4.3. BsrDI digestion of amplicons from putative pRham-LifA-6 x His C1480A plasmid clones.

Figure 4.4. Pilot protein expression assay of LifA C1480A.
Figure 4.5. Ion metal affinity chromatography (IMAC) purification of rLifAC1480A using Ni2+-Sepharose®. ... 145
Figure 4.6. Purification of rLifAC1480A by size exclusion chromatography (SEC). . 146
Figure 4.7. Purification of rLifAC1480A by anion exchange chromatography......... 147
Figure 4.8. Coomassie stain (left) and western blot (right) of purified WT rLifA and rLifAC1480A analysed by SDS-PAGE. ... 148
Figure 4.9. The size distribution by intensity and by volume of rLifAC1480A compared to WT rLifA, measured by dynamic light scattering (DLS). 150
Figure 4.10. Far UV spectrum of rLifAC1480A compared to WT rLifA. 152
Figure 4.11. Thermal denaturation assays to evaluate the mid-point melting temperature (T_m) of WT rLifA and rLifAC1480A. ... 153
Figure 4.12. Concentration titration of recombinant WT rLifA and rLifAC1480A against ConA-stimulated peripheral bovine T lymphocytes. .. 154
Figure 4.13. Cleavage of lymphostatin in T cells was dependent on the cysteine protease motif.. 156
Figure 4.14. Lymphostatin was processed by J774A.1 cells into N- and C-terminal forms of ~140 and 225 kDa respectively. ... 158
Figure 4.15. Bafilomycin A1 inhibited lymphostatin cleavage in a concentration-dependent manner (western blot). .. 160
Figure 4.16. Bafilomycin A1 inhibited lymphostatin cleavage in a concentration-dependent manner (densitometry) ... 161
Figure 4.17. Chloroquine inhibited lymphostatin cleavage in a concentration-dependent manner (western blot). .. 163
Figure 4.18. Chloroquine inhibited lymphostatin cleavage in a concentration-dependent manner (densitometry) ... 164
Figure 4.19. Concentration titration of bafilomycin A1 and chloroquine against ConA-stimulated peripheral bovine T lymphocytes. .. 166

Figure 5.1. The early TCR signalling pathway. ... 174
Figure 5.2. Overview of T cell signalling. ... 177
Figure 5.3. The O-GlcNAc profile of bovine T lymphocytes in the presence or absence of rLifA.. 179
Figure 5.4. The O-GlcNAc profile of enriched T cell lysates in the presence or absence of rLifA ... 180
Figure 5.5. Pull-down assays using rLifA immobilised on columns to capture T cell proteins (55–460 kDa) ... 187
Figure 5.6. Pull-down assays using rLifA immobilised on columns to capture T cell proteins (25–250 kDa) ... 188
Figure 5.7. Pull-down assays using rLifA immobilised on columns to capture T cell proteins (10–250 kDa) ... 189
Figure 5.8. Detection of inositol polyphosphate 5 phosphatase E (INPP5E) and glutathione peroxidase (GPx) in eluates from columns loaded with rLifA (or diluent) and used to capture T cell proteins .. 194

Figure 6.1. rLifA inhibited the phosphorylation of various kinases in bovine γδ T cells ... 203
Figure 6.2. Densitometry analysis of the phosphorylation level of proteins detected using the Proteome Profiler Human Phospho-Kinase Array Kit. 204
Figure 6.3. Overview of Akt signalling in T cells showing its downstream effects. 205
Figure 6.4. The ConA-stimulated phosphorylation of Ser of Akt in bovine T cells was inhibited by rLifA in a manner dependent on the DXD motif and C1480 (western blot) .. 208
Figure 6.5. The ConA-stimulated phosphorylation of Ser of Akt in bovine T cells was inhibited by rLifA in a manner dependent on the DXD motif and C1480 (densitometry). .. 209
Figure 6.6. rLifA did not inhibit Akt Ser phosphorylation in bovine T cells pre-stimulated with ConA (western blot) ... 211
Figure 6.7. rLifA did not inhibit Akt Ser phosphorylation in bovine T cells pre-stimulated with ConA (densitometry). ... 212
Figure 6.8. rLifA did not appear to O-GlcNAcylate Akt in bovine T lymphocytes. 213
Figure 6.9. Akt Ser phosphorylation induced by ConA was inhibited by prior incubation with live EPEC in a manner dependent on the Type III secretion system but not LifA (western blot) ... 216
Figure 6.10. Akt Ser phosphorylation induced by ConA was inhibited by prior incubation with live EPEC in a manner dependent on the Type III secretion system but not LifA (densitometry). ... 217
Figure 6.11. The inhibition of ConA-stimulated Akt Ser phosphorylation by prior incubation with live EPEC was independent of LifA and LifA-like protein (western blot). .. 219
Figure 6.12. The inhibition of ConA-stimulated Akt Ser phosphorylation by prior incubation with live EPEC was independent of LifA and LifA-like protein (densitometry). ... 220
Figure 6.13. EPEC did not appear to O-GlcNAcylate Akt in bovine T lymphocytes. .. 221

Figure 7.1. The glycosyltransferase (GT) domains of the large clostridial toxin TcdA and lymphostatin. .. 229
Figure 7.2. The predicted binding sites of the large clostridial toxin TcdA and lymphostatin GT domains, illustrating sugar substrate specificity. 230
Figure 7.3. Probability plot of transmembrane helices as predicted by TMHMM v2.0 for EPEC E2348/69 LifA. .. 238
List of tables

Table 2.1. Strains used in this study. ... 63
Table 2.2. Plasmids used in this study. ... 64
Table 2.3. Oligonucleotides used in this study. ... 65
Table 2.4. PCR programme used for amplifying lifA fragments for cloning and screening potential recombinants. ... 69
Table 2.5. PCR programme used for site-directed mutagenesis of the pRham-LifA-6 x His plasmid. ... 71

Table 3.1. The optimal expression conditions for each recombinant LifA fragment. ... 108
Table 3.2. Summary of the MALDI-TOF mass spectrometry results for the recombinant LifA fragments. .. 113

Table 5.1. Proteins and peptides detected in pellets of 1.2 x 10^7 T cells by shotgun mass spectrometry. ... 182
Table 5.2. Proteins and peptides detected in pellets of 3.6 x 10^8 T cells by shotgun mass spectrometry. ... 183
Table 5.3. Proteins and peptides detected in glycoprotein enriched T cell lysates by shotgun mass spectrometry. ... 183
Table 5.4. Proteins and peptides detected in protein pull-down eluates by shotgun mass spectrometry. ... 190
Table 5.5. Identities of proteins and peptide sequences detected in protein pull-down eluates by shotgun mass spectrometry. 191
List of commonly used abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>NH₄HCO₃ (ammonium bicarbonate)</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>A/E</td>
<td>Attaching and effacing</td>
</tr>
<tr>
<td>Akt</td>
<td>Protein kinase B (PKB)</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>APCs</td>
<td>Antigen presenting cells</td>
</tr>
<tr>
<td>BFP</td>
<td>Bundle-forming pili</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>Cam</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>CD</td>
<td>Circular dichroism</td>
</tr>
<tr>
<td>ConA</td>
<td>Concanavalin A</td>
</tr>
<tr>
<td>CP</td>
<td>Cysteine protease</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic light scattering</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulphoxide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>EAF</td>
<td>EPEC adherence factor</td>
</tr>
<tr>
<td>Efa1</td>
<td>EHEC factor for adherence 1</td>
</tr>
<tr>
<td>EHEC</td>
<td>Enterohaemorrhagic Escherichia coli</td>
</tr>
<tr>
<td>EPEC</td>
<td>Enteropathogenic E. coli</td>
</tr>
<tr>
<td>Esc</td>
<td>E. coli secretion components</td>
</tr>
<tr>
<td>Esp</td>
<td>E. coli secreted protein</td>
</tr>
<tr>
<td>FCS</td>
<td>Foetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein isothiocyanate</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>Glc</td>
<td>Glucose</td>
</tr>
<tr>
<td>GlcNAc</td>
<td>N-acetylglucosamine</td>
</tr>
<tr>
<td>GPx</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>GT</td>
<td>Glycosyltransferase</td>
</tr>
</tbody>
</table>
HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid
HRP Horseradish peroxidase
HUS Haemolytic uraemic syndrome
IL Interleukin
IP Immunoprecipitation
IMAC Ion metal affinity chromatography
INPP5E Inositol polyphosphate-5-phosphatase E (Pharbin)
Kan Kanamycin
LB Lysogeny broth
LCTs Large clostridial toxins
LDS Lithium dodecyl sulphate
LEE Locus of enterocyte effacement
LifA Lymphocyte inhibitory factor A (Lymphostatin)
Nal Nalidixic acid
Nle Non-LEE encoded
PAGE Polyacrylamide gel electrophoresis
PBMC Peripheral blood mononuclear cell
PBS Phosphate-buffered saline
PBS-T Phosphate-buffered saline and Tween 20
PCR Polymerase chain reaction
rLifA Recombinant LifA with C-terminal 6 x His tag
RDEC Rabbit diarrhoeagenic E. coli
RPMI Roswell Park Memorial Institute-1640 media
RPMI-CJ RPMI complete media for J774A.1 cells
RPMI-CT RPMI complete media for T cells
SDS Sodium dodecyl sulphate
SEC Size exclusion chromatography
Str Streptomycin
Stx Shiga toxin
T3S Type III secretion
T3SS Type III secretion system
TBS Tris-buffered saline
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBS-T</td>
<td>Tris-buffered saline and Tween 20</td>
</tr>
<tr>
<td>TDA</td>
<td>Thermal denaturation assay</td>
</tr>
<tr>
<td>Tet</td>
<td>Tetracyclin</td>
</tr>
<tr>
<td>Tir</td>
<td>Translocated intimin receptor</td>
</tr>
<tr>
<td>TRIS</td>
<td>Tris(hydroxymethyl)aminomethane</td>
</tr>
<tr>
<td>UDP</td>
<td>Uridine diphosphate</td>
</tr>
<tr>
<td>WGA</td>
<td>Wheat germ agglutinin</td>
</tr>
<tr>
<td>WT</td>
<td>Wild-type</td>
</tr>
<tr>
<td>X-gal</td>
<td>5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Escherichia coli

Escherichia coli are Gram-negative facultative anaerobes that are commonly found living in the environment (reviewed in Jang *et al.*, 2017). They also exist primarily as commensals in the lower intestines of warm-blooded animals and reptiles (reviewed in Leimbach *et al.*, 2013). Although *E. coli* are the most abundant *Enterobacteriaceae* species in the human gut microbiota (Martinson *et al.*, 2019), they account for less than 1 % of the total gut microbiota in healthy adults (Eckburg *et al.*, 2005). The proportion of *E. coli* in the gut microbiota varies depending on multiple factors however, including age, species and host health. Their presence is usually beneficial to the host as *E. coli* are capable of synthesising vitamin K$_2$ (Bentley and Meganathan, 1982) and, along with the rest of the gut microbiota, exert a protective effect against pathogenic bacteria (Hudault *et al.*, 2001). *E. coli* strains can be classified into serotypes based on the serological detection of distinct lipopolysaccharide (O), flagellar (H) and capsular (K) antigens (reviewed in Fratamico *et al.*, 2016).

Although normally harmless to their host, *E. coli* are opportunistic pathogens that, through the acquisition of mobile genetic elements, can become serious pathogens (reviewed in Gomes *et al.*, 2016). Pathogenic *E. coli* strains can be divided into two subgroups depending on the site of infection, with diarrhoeagenic *E. coli* infecting the intestines and extraintestinal *E. coli* (ExPEC) infecting sites beyond the intestines (Section 1.1.1).

1.1.1 *E. coli* pathotypes

The diarrhoeagenic *E. coli* and ExPEC subgroups can be further divided into distinct pathotypes based on their characteristics, including the possession of specific virulence factors. ExPEC consists primarily of uropathogenic *E. coli*, which infect the urinary tract, and neonatal meningitis *E. coli*, which can cross and inflame the blood-brain barrier (reviewed in Sarowska *et al.*, 2019). Other pathotypes of ExPEC
exist such as septicaemia-associated \textit{E. coli} and avian pathogenic \textit{E. coli} although these are less well defined beyond their association with clinical outcome (reviewed in Sarowska \textit{et al.}, 2019). The main diarrhoeagenic \textit{E. coli} pathotypes are enterotoxigenic \textit{E. coli} (ETEC), enteroaggregative \textit{E. coli} (EAEC), enteroinvasive \textit{E. coli} (EIEC), diffusely-adherent \textit{E. coli} (DAEC), enteropathogenic \textit{E. coli} (EPEC) and enterohaemorrhagic \textit{E. coli} (EHEC; reviewed in Gomes \textit{et al.}, 2016).

ETEC are the most common cause of traveller’s diarrhoea and are also important in the farming industry, particularly as a cause of acute enteritis and colibacillosis in young pigs and calves (reviewed in Gomes \textit{et al.}, 2016; reviewed in Luppi, 2018). They are characterised by their adherence to enterocytes via colonisation factors and the secretion of heat-labile and heat-stable toxins, which cause diarrhoea (reviewed in Mirhoseini \textit{et al.}, 2018). EAEC are the second most common cause of traveller’s diarrhoea and are characterised by the formation of biofilms on enterocytes using aggregative adherence fimbriae (Tzipori \textit{et al.}, 1992; Nataro \textit{et al.}, 1992). EIEC, which include bacteria of the genus \textit{Shigella}, are characterised by their facultative intracellular lifestyle. They achieve this by passing through microfold (M) cells via transcytosis, replicating inside macrophages in the intestinal submucosa, then invading enterocytes from their basolateral side (Wassef \textit{et al.}, 1989; Sansonetti \textit{et al.}, 1996; Zychlinsky \textit{et al.}, 1992; Mounier \textit{et al.}, 1992). DAEC are characterised by forming diffuse attachments to enterocytes using fimbrial and afimbrial adhesins (Scaletsky \textit{et al.}, 1984; reviewed in Servin, 2014).

EPEC and EHEC are collectively known as attaching and effacing (A/E) \textit{E. coli} and are described in greater detail below.

1.1.2 Attaching and effacing \textit{E. coli}

A/E lesions are characterised by intimate bacterial attachment to the surface of enterocytes on actin-rich ‘pedestals’ and the destruction of microvilli, thereby disrupting the absorption of nutrients by the gut, contributing to diarrhoea (Figure 1.1; Moon \textit{et al.}, 1983; Tzipori \textit{et al.}, 1986; Knutton \textit{et al.}, 1987). The pedestals are also assembled with other cytoskeletal proteins besides actin, such as \(\alpha\)-actinin, talin, ezrin and myosin light-chain (Finlay \textit{et al.}, 1992;
Manjarrez-Hernandez et al., 1992). Law et al. (2015) identified more than 90 proteins present in the pedestals formed by EPEC, 17 of which were in significantly higher abundance than in uninfected cells. Actin-associated proteins such as cyclophilin A may only be present due to their interactions with actin, but non-actin-associated proteins such as transgelin may have other as yet undefined roles (Law et al., 2015). A/E lesion formation in E. coli is mediated by virulence factors encoded by the locus of enterocyte effacement (LEE; Section 1.1.3.1).

![Image](image_url)

Figure 1.1. Transmission electron micrograph of EHEC O111:H- E45035N forming attaching and effacing lesions on a bovine calf colonocyte. Actin rich pedestals can be seen as electron dense regions beneath the EHEC cells. An uninfected cell to the right gives a comparison of a healthy cell surface and microvilli. Scale bar = 1 μm (from Stevens et al., 2002).
EPEC are a major cause of infantile diarrhoea in the developing world and cause both acute and chronic diarrhoea (reviewed in Gomes et al., 2016). EPEC infect the proximal small intestine (Rothbaum et al., 1982; Sherman et al., 1989) and once attached to enterocytes, they disrupt the ion balance and water absorption in the intestine by inhibiting the sodium-D-glucose co-transporter and the Na+/H+ exchanger NHE3, resulting in diarrhoea (Dean et al., 2006; Hecht et al., 2004). Sanger et al. (1996) also found that EPEC are able to use A/E pedestals as a form of motility to travel across the surface of host cells at speeds of up to 0.07 μm/second.

EPEC strains can be further divided into typical EPEC, which possess bundle-forming pili (BFP) that mediate inter-bacterial interactions and micro-colony formation on epithelial cells, and atypical EPEC, which do not (Section 1.1.3.8; reviewed in Gomes et al., 2016). Prevalent EPEC serotypes include O55:H6, O127:H6, O128:H2 and O142:H34 among others (Gomes et al., 1989; reviewed in Trabulsi et al., 2002; Kozub-Witkowski et al., 2008). The prototype EPEC strain E2348/69 was isolated in 1969 from an outbreak at a residential nursery in Taunton, UK (Taylor, 1970). It was used in this study as it can be handled at biosafety level 2 and it is the source of the lifA gene used to produce purified LifA, which is near identical to that from EHEC strains (Section 1.3). The genome of this prototype strain consists of an ~5 Mb circular chromosome, an ~97 kb EPEC adherence factor (EAF) plasmid, a small ~6 kb drug-resistant plasmid and a third ~5 kb plasmid encoding mobilization genes (Iguchi et al., 2009; Hanford et al., 2009; Nisa et al., 2013). The core genome of E2348/69 is highly conserved with laboratory strains, commensal E. coli and other pathotypes of E. coli, but is broken up by 13 prophages and eight integrative elements (Iguchi et al., 2009). Iguchi et al., (2009) also identified 424 genes that were specific to EPEC E2348/69. A nalidixic acid derivative of EPEC E2348/69 that is commonly used in laboratories was found to have several differences in its genome compared to the original strain, including three unique nonsynonymous changes (Nisa et al., 2013). An S83L substitution in gyrA confers nalidixic acid resistance (Bagel et al., 1999) and a nonsynonymous substitution in ftsK has no effect on phenotype (Nisa et al., 2013). The conversion of a stop codon to a tryptophan results in the fusion of the λ lysogenisation regulator hflD and purB, which compromises the growth rate and ability to invade epithelial
cells in this clone due to deficient purine biosynthesis (Kihara et al., 2001; Jung et al., 2010; Nisa et al., 2013). Additionally, this clone has lost the ~6 kb plasmid and is therefore no longer resistant to streptomycin (Nisa et al., 2013).

EHEC causes acute enteritis, that may involve haemorrhagic colitis and severe systemic sequelae, and ruminants are a key reservoir (Riley et al., 1983; Beutin et al., 1993). Outbreaks in both the developing and developed world have been caused by cattle due to faecally contaminated food or water (reviewed in Ho et al., 2013). EHEC primarily infect the lymphoid follicle-dense mucosa at the terminal rectum of cattle (Naylor et al., 2003). EHEC infection is the leading antecedent to haemolytic uraemic syndrome (HUS) in humans in many countries (reviewed in Ho et al., 2013). HUS is characterised by damage to vascular endothelial cells in kidney glomeruli and haemolytic anaemia and is caused by the production of one or more Shiga toxins (Stx; Karmali et al., 1983b; O'Brien et al., 1983; Johnson et al., 1983; Karmali et al., 1983a). The pathogenesis of EHEC is similar to that of EPEC with the exception of the production of Stx, which acts as a cytotoxin by depurinating 28S ribosomal RNA to arrest translation in a manner similar to ricin (Section 1.1.3.9; Endo et al., 1988). The dominant serotype associated with human infections in many countries is O157:H7, however, infection with non-O157 EHEC (in particular of serogroups O26, O45, O103, O111 and O121) is a significant problem that is often under-estimated by national surveillance and diagnostic laboratories (Brooks et al., 2005; Kozub-Witkowski et al., 2008). EHEC O157:H7 infection in cattle is widely reported to be asymptomatic, but Nart et al. (2008b) found that infection with this strain does in fact cause histopathological changes in the terminal rectal tissue of cattle and a slight but significant neutrophilic response. The chromosome of the prototype EHEC O157:H7 strain EDL933 has a similar backbone sequence to E. coli K-12 except for a 422 kb inversion, which spans the replication terminus (Perna et al., 2001). This backbone sequence is interrupted by 177 O-islands found in E. coli O157:H7 but not laboratory-adapted E. coli K-12, many of which encode known virulence proteins (Perna et al., 2001). There are also 18 prophages throughout the chromosome and various single nucleotide polymorphisms create proteins that are identical in size and function to E. coli K-12 homologues but overall only 25 % of proteins are identical (Perna et al., 2001). EHEC O157:H7 also contains the pO157
plasmid, which encodes various virulence factors (Burland et al., 1998; Makino et al., 1998). Numerous studies have suggested that EHEC O157:H7 has evolved from EPEC O55:H7 in a stepwise manner (Whittam et al., 1993; Wick et al., 2005; Zhou et al., 2010; Kyle et al., 2012).

1.1.3 Major virulence factors in A/E E. coli

EPEC and EHEC produce several key virulence factors that aid their colonisation of human and animal hosts, many of which are required for the formation of A/E lesions. Effector proteins from EPEC and EHEC were discovered before and after the genomes of prototype strains were sequenced. A variety of methods have been used to identify ‘effector’ proteins from A/E E. coli including mutagenesis, loss/gain of function mutants, sequencing and homology with known effector proteins from other bacteria.

1.1.3.1 The locus of enterocyte effacement (LEE)

The LEE is a pathogenicity island comprising over 40 contiguous genes, which encode virulence factors that aid colonisation of a host, many of which are required for attachment and effacement (reviewed in Stevens and Frankel, 2014). It is a ≥ 35 kb locus that is conserved amongst EPEC and EHEC as well as other A/E pathogens including certain strains of rabbit diarrhoeagenic E. coli (RDEC), E. albertii (previously thought to be Hafnia alvei) and the mouse pathogen Citrobacter rodentium (McDaniel et al., 1995; Deng et al., 2001; Huys et al., 2003). The GC content of the LEE of EPEC E2348/69 is only 38.36 % (Elliott et al., 1998) compared with 50.8 % across the E. coli K-12 genome (Blattner et al., 1997), which is typical of pathogenicity islands (Hacker et al., 1997). The LEE of E2348/69 was the first to be characterised and consists of 41 open reading frames arranged into five polycistronic operons (Figure 1.2; Elliott et al., 1998), three of which are involved in the production of proteins required for the assembly of a Type III secretion system (T3SS; reviewed in Gaytán et al., 2016) that functions in a manner akin to a molecular syringe (Section 1.1.3.2).
The LEE contains the *E. coli* secretion (*esc*)/secretion of *E. coli* proteins (*sep*) genes and genes that encode intimin, *E. coli* secreted proteins (Esps), translocated intimin receptor (Tir), as well as chaperones and regulatory genes (Elliott *et al.*, 1998). The 3′ end of the LEE in EPEC is homologous to genes from *Shigella sonnei* (Donnenberg *et al.*, 1997), however, the DNA sequences surrounding the LEE vary since it is inserted into different positions depending on the serotype and strain of bacteria (Ogura *et al.*, 2009). These variable flanking sequences along with the low GC content suggests that *E. coli* and other A/E pathogens acquired the LEE from other species (e.g. by Hfr transfer during conjugation), or that it once existed as a mobile genetic element (Donnenberg *et al.*, 1997). The LEE from EHEC O157:H7 contains 54 open reading frames, 13 of which belong to a prophage located at the *selC* end of the locus (Perna *et al.*, 1998).

The regulation of the LEE is complex, with different regulatory systems specific to different operons (reviewed in Mellies and Lorenzen, 2014). The production of LEE proteins is tightly regulated by temperature and growth phase, with optimal expression occurring at 37 °C in the early logarithmic phase of growth (Rosenshine *et al.*, 1996). Regulatory systems of the LEE include silencing by histone-like nucleoid-structuring protein, the LEE-encoded regulatory cascade, post-transcriptional regulation and control by phage- or plasmid-encoded regulators (reviewed in Mellies and Lorenzen, 2014). The function of each LEE-encoded gene in virulence, A/E lesion formation and T3SS activity has been systematically investigated in both EPEC E2348/69 and *C. rodentium* (Cepeda-Molero *et al.*, 2017; Deng *et al.*, 2004).
Figure 1.2. Schematic of the locus of enterocyte effacement from EHEC O157:H7 showing the five polycistronic operons and the genes encoded within them (from Stevens and Frankel, 2014).
1.1.3.2 The Type III secretion system

T3SSs are widely used by a range of Gram-negative pathogens of animals and plants (reviewed in Deng et al., 2017). There are at least five other well characterised secretion systems in Gram-negative bacteria (reviewed in Costa et al., 2015) but the T3SS is particularly important for the purpose of this study. The T3SS in A/E E. coli is encoded by the LEE and is composed of Esc/Sep proteins as well as EspA, B and D (Elliott et al., 1998). It was discovered by Jarvis et al. (1995), who found that certain LEE-encoded proteins exhibited homology to proteins encoding T3SSs in other bacteria. T3SSs include flagella (reviewed in Deng et al., 2017) but for the purpose of this study, it is the translocation-associated T3SS that is being referred to. T3SSs belonging to this category can inject effector proteins directly into a host cell (Figures 1.3 and 1.4; reviewed in Stevens and Frankel, 2014). The effector proteins can be encoded both within the LEE and elsewhere in the chromosome, and significant effort has been expended to define the full repertoire of effectors (Tobe et al., 2006). The LEE-encoded T3SS consists of a region that spans both membranes of the bacterial cell, which is connected via EscF to the EspA filament and the translocon, which is composed of EspB and D (reviewed in Slater et al., 2018; Warawa et al., 1999).

The proteins SepL and D regulate the order of protein secretion through the T3SS, with mutations leading to hypersecretion of effector proteins rather than translocon components (Kresse et al., 2000; O’Connell et al., 2004; Wang et al., 2008). EspZ halts effector translocation from inside the host cell, possibly by interacting with EspD (Berger et al., 2012; Creasey et al., 2003). The secretion of effector proteins via the T3SS is contact-dependent in some bacteria such as Yersinia (Rosqvist et al., 1994) but contact between the T3SS and host cells is not required for the secretion of effector proteins in E. coli (Kenny et al., 1997a). Various inhibitors of the T3SS have been identified, many of which are part of a family of salicylidene acylhydrazides that inhibit the transcription of T3SS encoding genes (Gauthier et al., 2005; Rasko et al., 2008; Tree et al., 2009). This is in contrast to T3SS inhibitors that work against Shigella by interfering with T3SS protein assembly (Veenendaal et al., 2009). Vaccines including the LEE-encoded proteins EspA, intimin and Tir as well
as the H7 flagellin have been shown to significantly reduce the shedding of EHEC O157:H7 in cattle faeces (McNeilly et al., 2010), consistent with a key role for this system in intestinal colonisation of cattle revealed by genome-wide and targeted mutagenesis (Dziva et al., 2004; Naylor et al., 2005; Vlisidou et al., 2006; Eckert et al. 2011).

Figure 1.3. Schematic diagram of the LEE-encoded Type III secretion system showing the predicted location of proteins in attaching and effacing *E. coli*. Effector proteins are translocated through the needle complex spanning the inner and outer membranes, then through a translocon comprising the EspA filament, EspB and EspD, into the host cell cytoplasm (from Stevens and Frankel, 2014).
Figure 1.4. Schematic of EHEC adhering to an enterocyte and injecting various effector proteins into it via the Type III secretion system that affect the cytoskeleton. (A) The Tir:Nck pathway dependent on phosphorylation of the residue equivalent to Tyr^{474} of EPEC O127:H6 Tir, which is not present in EHEC O157:H7 (see Section 1.1.3.7; from Stevens and Frankel, 2014).

1.1.3.3 E. coli secretion/secretion of E. coli proteins

The Esc and Sep proteins are part of the same family but some Seps were renamed as Escs after Elliott et al. (1998) sequenced the LEE from EPEC E2348/69 in order to conform with the naming convention of homologous Yersinia proteins. Esc/Sep proteins comprise the E. coli T3SS and are essential for the translocation of
effector proteins (Jarvis et al., 1995; reviewed in Stevens and Frankel, 2014). EscN is the most relevant of these proteins in terms of this study as EPEC strains lacking the escN gene (Garmendia et al., 2004; Cepeda-Molero et al., 2017) are used as T3SS-deficient controls. EscN is an ATPase that provides the energy for the secretion of effector proteins and the energy output of the protein increases when it oligomerises (Jarvis et al., 1995; Andrade et al., 2007). Two other proteins in this family that are important for the formation of A/E lesions are SepL and SepD, which act as gatekeeper proteins (Wang et al., 2008). These proteins form a complex in the bacterial inner membrane and SepL binds to Tir to prevent effector proteins from being secreted before translocator proteins such as EspA (Kresse et al., 2000; O’Connell et al., 2004; Wang et al., 2008).

1.1.3.4 LEE-encoded effector proteins

The Esp series of proteins consists of a large number of proteins, the functions of some of which have been extensively studied (reviewed in Stevens and Frankel, 2014). EspA forms a hollow filamentous extension of the T3SS needle complex (Ebel et al., 1998; Knutton et al., 1998) that bridges the bacterial and host cells and allows the translocation of effector proteins such as Tir and EspB into the host cell (Kenny et al., 1997b; Wolff et al., 1998). EspA polymerises in a helical manner to form a channel that effector proteins can be secreted through (Daniell et al., 2003; Crepin et al., 2005). A/E E. coli lack these EspA filaments during intimate adhesion but the mechanism behind this is unknown (reviewed in Stevens and Frankel, 2014). EspB functions as both a component of the T3SS and an effector protein (Warawa et al., 1999; Taylor et al., 1998). It associates with EspD to form a pore in the host cell plasma membrane at the end of the EspA filament (Kresse et al., 1999; Warawa et al., 1999; Wachter et al., 1999) but EspB is also injected into host cells by the T3SS (Wolff et al., 1998). As an effector protein it binds to myosin and inhibits the interaction of myosin with actin, resulting in microvillus effacement (Iizumi et al., 2007).

Studies using deletion mutants and clones of the LEE established that the LEE region alone is necessary and sufficient for A/E lesion formation by EPEC.
E2348/69, but not by EHEC EDL933 (McDaniel and Kaper, 1997; Pósfai et al., 1997). This is partly explained by the requirement for a non-LEE-encoded protein for pedestal formation by EHEC O157 termed EspFu (Campellone et al., 2004). Also known as Tir-cytoskeleton coupling protein (TccP), it binds to the insulin receptor tyrosine kinase substrate (IRTKS)/insulin receptor substrate p53 (IRSp53) complex and neural Wiskott-Aldrich syndrome protein (N-WASP), resulting in the formation of A/E lesions (Campellone et al., 2004; Garmendia et al., 2004; Brady et al., 2007; reviewed Stevens and Frankel, 2014). The homologous protein EspF has a wide range of functions including the disruption of mitochondrial function, cytoskeletal manipulation and the induction of apoptosis (Section 1.2.2.2; reviewed in Stevens and Frankel). EspG interacts with tubulin to deplete the microtubule cytoskeleton, which disrupts epithelial paracellular permeability and tight junction integrity (Matsuzawa et al., 2004; Shaw et al., 2005; Matsuzawa et al., 2005). It also disrupts tight junction integrity by targeting the tight junction protein tricellulin (Morampudi et al., 2016). EspG inhibits protein secretion by interacting with ADP-ribosylation factor, p21-activated kinases (PAKs), the Golgi matrix protein GM130 and Rab1 GTPases, which blocks endoplasmic reticulum (ER)-to-Golgi trafficking (Selyunin et al., 2011; Germane and Spiller, 2011; Clements et al., 2011; Dong et al., 2012). The interaction of EspG with PAKs has recently been reported to be required for pedestal formation (Singh et al., 2019). There are many other proteins in the Esp family but those described above are the major proteins, with the exception of EspF, that are required for A/E lesion formation. Some Esp proteins modulate innate immune responses and are described in greater detail in Section 1.2.2.2.

Mitochondrial-associated protein (Map) has a number of functions. Map targets host cell mitochondria and alters their morphology, resulting in apoptosis (Kenny and Jepson, 2000; Papatheodorou et al., 2006). Map also activates Cdc42, which results in the transient formation of filopodia (Kenny et al., 2002; Berger et al., 2009; Huang et al., 2009). Lastly, Map contributes to diarrhoea by disrupting tight junction integrity and inhibiting the sodium-D-glucose co-transporter in conjunction with EspF and Tir (Dean and Kenny, 2004; Ma et al., 2006; Dean et al., 2006).
1.1.3.5 Non-LEE-encoded (Nle) proteins

Extensive studies have been performed to map the full T3S effector repertoire of EPEC and EHEC, including the use of bioinformatics, proteomics, translocation assays and systematic knock-outs (Tobe et al., 2006; Iguchi et al., 2009; Cepeda-Molero et al., 2017). EPEC E2348/69 has been predicted to produce 21 effector proteins, while the EHEC O157:H7 strain RIMD 0509952 was found to produce 39 effector proteins (Iguchi et al., 2009; Tobe et al., 2006). In addition to the LEE-encoded effector proteins, the Nle proteins are also secreted effector proteins, but are encoded outwith the LEE (reviewed in Stevens and Frankel, 2014). NleA disrupts tight junction integrity between enterocytes by inhibiting protein trafficking via COPII-dependent pathways, resulting in a breakdown of the intestinal epithelial barrier and causing diarrhoea (Thanabalasuriar et al., 2010). NleG acts in a similar manner to RING-like E3 ubiquitin ligases from eukaryotic cells and induces the degradation of HK2, which is known to inhibit apoptosis (Wu et al., 2010; Valleau et al., 2018). Many Nle proteins, including NleA, are involved in modulating the host immune response and are described in greater detail in Section 1.2.2.1. Cell cycle inhibiting factor (Cif) is also encoded outwith the LEE but is not present or functional in all EPEC and EHEC strains (Marchès et al., 2003; Loukiadis et al., 2008). Cif causes cell cycle arrest in the G1/S and G2/M phases by deamidating ubiquitin or the ubiquitin-like protein NEDD8, which blocks the activation of the cell cycle (Marchès et al., 2003; reviewed in Taieb et al., 2011). Cif has also been reported to induce delayed apoptosis of IEC-6 cells, but the mechanism behind this process is unclear (Samba-Louaka et al., 2009).

1.1.3.6 Intimin

Intimin is a 94 kDa protein (Yu and Kaper, 1992) that is encoded by the E. coli attaching and effacing (eae) gene (Jerse et al., 1990) and has an 83 % amino acid homology between EPEC and EHEC strains (Yu and Kaper, 1992). The protein also has sequence homology with the invasin proteins in Yersinia pseudotuberculosis and Y. enterocolitica with the lowest homology at the N- and C-terminal ends (Jerse et
al., 1990; Yu and Kaper, 1992). The C-terminal end of intimin has been shown to bind to the surface of HeLa cells (Frankel et al., 1994; Deibel et al., 2001) and it has been suggested that the N-terminal end masks the C-terminus to prevent non-specific binding to host cells (Deibel et al., 2001).

Intimin is located in the bacterial outer membrane and primarily targets Tir, which is injected by the T3SS into host cells and located on their surface (Section 1.1.3.7; Kenny et al., 1997b; Rosenshine et al., 1992; DeVinnney et al., 1999). Intimin is able to bind to the surface of epithelial cells independently of Tir by binding to host cell β1-integrins and cell surface-localised nucleolin (Frankel et al., 1996; Sinclair and O’Brien, 2002). Intimin binds Tir preferentially but it is possible that nucleolin acts as a target for adhesion before Tir is translocated into host cells (Sinclair and O’Brien, 2004). Intimin and Tir are both critical for intestinal colonisation by A/E pathogens, as shown for example by testing isogenic deletion mutants of *E. coli* O157:H7 in calves (Vlisidou et al., 2006).

1.1.3.7 Translocated intimin receptor

As mentioned above, Tir is required for intimin binding to host cells and the formation of A/E lesions (Kenny et al., 1997b; Rosenshine et al., 1992; DeVinnney et al., 1999). It was independently described as EspE in EHEC O26:H strain 413/89-1 and is translocated into host cells via the T3SS (Deibel et al., 1998; Kenny et al., 1997b). In EPEC O127:H6, actin assembly requires phosphorylation of Tyr\(^{474}\) in Tir (Kenny, 1999), which results in the recruitment of the host cell proteins Nck, N-WASP and actin-related protein 2/actin-related protein 3 (Arp2/3; Gruenheid et al., 2001). The proteins CrkII and Grb2 are recruited in EPEC infection but not in EHEC infection (Goosney et al., 2001).

In EHEC O157:H7 strains, the phosphorylation of Tir is not required because these strains lack Tyr\(^{474}\) (DeVinney et al., 1999; DeVinney et al., 2001). Instead these strains utilise a 12 amino acid motif containing an Asn-Pro-Tyr sequence that recruits the proteins IRTKS, IRSp53, EspF\(_U\), N-WASP and Arp2/3 in a manner independent of Nck (Brady et al., 2007; reviewed in Stevens and Frankel, 2014). The tyrosine in the amino acid motif can be phosphorylated in EPEC strains to initiate
Nck-independent pedestal formation but at a much lower efficiency than in EHEC (Campellone and Leong, 2005).

1.1.3.8 Type IV bundle-forming pili

Bundle-forming pili (BFP) are produced by typical EPEC and are part of the Type IV pili family, which are expressed by several bacterial pathogens (Girón et al., 1991; reviewed in Strom and Lory, 1993). They are encoded on an ~97 kb EAF plasmid (Girón et al., 1991; Nataro et al., 1987) by a cluster of 14 bfp genes, several of which are homologous to genes required for Type IV pilus production in other Gram-negative bacteria (Sohel et al., 1996; Stone et al., 1996). BfpA is the major subunit of BFP (Donnenberg et al., 1992) and is produced as a preprotein before being cleaved into a functional form by BfpP (Zhang et al., 1994). The proteins BfpD and F bind nucleotides and act as ATPases to control pilin export and assembly (Sohel et al., 1996; Stone et al., 1996).

BFP expression is controlled by the EAF plasmid-encoded regulatory proteins BfpT, V and W as well as the chromosome-encoded protein DsbA (Tobe et al., 1996; Zhang and Donnenberg, 1996). DsbA stabilises BFP by catalysing the formation of disulphide bonds (Zhang and Donnenberg, 1996). Environmental signals also control BFP expression, with expression occurring optimally between 35 and 37 °C during the exponential growth phase, in the presence of calcium (Puente et al., 1996). Puente et al. (1996) also found that ammonium suppresses the expression of BFP.

BFP are important virulence factors for the colonisation of hosts, including humans, by EPEC (Bieber et al., 1998) and are required for adhesion to epithelial cells and the formation and dispersal of micro-colonies (Girón et al., 1991 Knutton et al., 1999; Cleary et al., 2004). BFP bind to N-acetyllactosamine moieties on the surface of host enterocytes (Hyland et al., 2008) and also act in conjunction with E. coli common pili during micro-colony formation (Saldaña et al., 2009).
1.1.3.9 Shiga toxin

The Stx family of cytotoxins is composed of two major groups, Stx1 and Stx2, which are produced in various combinations by EHEC (reviewed in Krause et al., 2018). Stx2, however, is more common in cases of haemorrhagic colitis and HUS (Ostroff et al., 1989; Boerlin et al., 1999; Frank et al., 2011). Stx1 is identical to Stx from *Shigella dysenteriae* serotype I and is highly conserved whereas Stx2 exhibits sequence variation and is separated into a series of subtypes (reviewed in Lee and Tesh, 2019). The *stx* genes are encoded by lysogenic lambdoid bacteriophages, which are integrated into the bacterial chromosome (O’Brien et al., 1984; Johansen et al., 2001). Stx2 production is induced by activation of the phage lytic cycle, for example, in response to DNA damage via the bacterial SOS response (Neely and Friedman, 1998). The regulation of Stx production is complex and growth phase dependent, with many different extrinsic factors affecting gene expression including antibiotics, reactive oxygen species, iron concentration, temperature and quorum sensing (reviewed in Pacheco and Sperandio, 2012).

Stx is an AB₅ toxin consisting of an A subunit, which in turn is made from an A₁ and A₂ peptide, that is non-covalently bound to a pentameric ring of B subunits (Stein et al., 1992; Fraser et al., 1994). The Stx toxins are not secreted but are released as a result of phage-mediated lysis and via outer membrane vesicles (Toshima et al., 2007; Kolling and Matthews, 1999; Bielaszewska et al., 2017). The capacity of certain antibiotics to induce Stx production means that antibiotic use can be contraindicated in the treatment of EHEC infections as it risks increasing the severity of Stx-mediated pathology (Zhang et al., 2000). In humans, the B subunit pentamer binds to the Gb₃ variant of the glycolipid receptor globotriaosylceramide that is present on the surface of Paneth cells in the intestine and kidney endothelial cells (Jacewicz et al., 1987; Lindberg et al., 1987). Stx2e, which is typically associated with porcine oedema disease, uses the Gb₄ variant of this receptor (Pierard et al., 1991). Cattle lack the vascular Gb₃ receptor meaning that EHEC infection in cattle is largely asymptomatic (Pruimboom-Brees et al., 2000). There is evidence to suggest that Gb₃ can be found on crypt epithelial cells in cattle, however, Stx does not appear to be cytotoxic in these cells as it is localised in lysosomes (Hoey et al.,
2003). Nevertheless, differences in the Stx types expressed by EHEC may underlie strain-specific differences in colonisation and host responses in cattle (Corbishley et al., 2014).

Once Stx binds to its receptor, it is endocytosed by both clathrin-dependent and independent mechanisms (Sandvig et al., 1989; Römer et al., 2007), and a protease sensitive loop connecting the A₁ and A₂ subunits is cleaved by the enzyme furin (Garred et al., 1995; Lea et al., 1999). The A subunits remain connected by a disulphide bond (Lea et al., 1999). Stx bypasses the late endocytic pathway to undergo retrograde transportation to the trans-Golgi network and then to the ER (Sandvig et al., 1992; Mallard et al., 1998). The remaining disulphide bond is reduced in the ER and the A₁ subunit is translocated into the cytoplasm of the host cell (Tam and Lingwood, 2007). Once in the cytoplasm, the A₁ subunit exhibits N-glycosidase activity and removes an adenine nucleotide from the 28S rRNA of host cell ribosomes, resulting in the inhibition of proteins synthesis and cell death (Endo et al., 1988).

Stx enters human Gb₃-negative intestinal cells via macropinocytosis (Malyukova et al., 2009) and is translocated through the cells into the bloodstream in order to reach the kidneys (Acheson et al., 1996). Stx is also capable of retrograde transportation in these cells but does not inhibit protein synthesis (Schüller et al., 2004). Instead it modulates NF-κB activation and suppresses the host immune response (Gobert et al., 2007). The effects of Stx on the host immune response are described in Section 1.2.4.2.

1.2 Host immune responses to A/E E. coli and bacterial evasion of these responses

Bacteria in the gut interact with the host immune system at the intestinal mucosa and gut associated lymphoid tissue (Figure 1.5). A/E E. coli have evolved a number of strategies for subverting both the innate and adaptive immune responses, which are described in greater detail in Sections 1.2.1–1.2.4.
Figure 1.5. Schematic of the intestinal mucosa and gut associated lymphoid tissue, which includes Peyer’s patches, mesenteric lymph nodes (MLN) and isolated lymphoid follicles. IEL – intraepithelial lymphocyte (from Cassady-Cain et al., 2018).

1.2.1 The innate immune response

1.2.1.1 The intestinal epithelial barrier

The innate immune response is the first line of defence against infection with A/E E. coli and intestinal epithelial cells play a crucial role in the innate immune responses against these bacteria. Not only do they form a protective barrier to prevent infection via the secretion of mucus and antimicrobial proteins but they also
participate in regulating both the innate and adaptive immune responses (reviewed in Peterson and Artis, 2014; reviewed in Santos and Finlay, 2015). Goblet cells secrete mucins. The most abundant of these, MUC2, forms a fixed inner mucus layer in the colon that is impenetrable to most microbes (Johansson et al., 2008). Goblet cells also produce factors such as intestinal trefoil factor (ITF) and resistin-like-molecule-β (RELMβ) that regulate the mucus barrier (reviewed in Peterson and Artis, 2014). ITF cross-links mucins to increase the structural stability of mucus and also promotes epithelial cell repair, migration and resistance to apoptosis (reviewed in Peterson and Artis, 2014; Dignass et al., 1994; Taupin et al., 2000). RELMβ promotes the expression of pro-inflammatory cytokines and major histocompatibility complex (MHC) class II in macrophages and regulates interferon (IFN)-γ expression in CD4+ T lymphocytes, although RELMβ may only be produced in response to nematode infections (Nair et al., 2008; Artis et al., 2004). Epithelial cells in the gastrointestinal tract also have a rapid turnover rate relative to other epithelial cells, which removes cells that have been infected/colonised by pathogens (reviewed in Kim et al., 2010).

A plethora of antimicrobial proteins are secreted by epithelial cells in the small intestine, some of which are expressed by enterocytes, while others, such as α-defensins and lysozyme, are expressed by specialised Paneth cells (reviewed in Gallo and Hooper, 2012). Antimicrobial proteins target essential features of bacterial physiology, for example by disrupting membranes, hydrolysing peptidoglycan, and chelating metals (reviewed in Gallo and Hooper, 2012). Lipocalin 2 is an antimicrobial protein that is broadly expressed by epithelial cell types and has been shown to protect against E. coli infection by sequestrating iron-laden siderophores (Flo et al., 2004). Intestinal epithelial cells also transport and secrete IgA antibodies produced in the lamina propria (reviewed in Johansen and Kaetzel, 2012).

M cells, located at Peyer’s patches and lymphoid follicles, and goblet cells are capable of transporting microbes and their products to antigen-presenting cells (APCs) in the lamina propria (reviewed in Mabbott et al., 2013; reviewed in McDole et al., 2012). Intestinal epithelial cells can themselves detect bacterial products via pattern recognition receptors (PRRs), which trigger the activation of the pro-inflammatory NF-κB and mitogen-activated protein kinase (MAPK) signalling
pathways, resulting in the expression of pro-inflammatory cytokines (reviewed in Santos and Finlay, 2015). *In vitro* studies have shown that expression of the cytokine interleukin (IL)-8, which recruits neutrophils to the site of infection to phagocytose and destroy the bacteria, is up-regulated in cells infected with EPEC and EHEC (Berin *et al*., 2002; Savkovic *et al*., 1996).

1.2.1.2 Phagocytes

Neutrophils and macrophages are drawn to the site of infection by chemoattractants, such as IL-8, where they phagocytose and destroy invading microbes (reviewed in Lim *et al*., 2017). Like epithelial cells, phagocytes detect bacterial products via PRRs, which include Toll-like and NOD-like receptors (reviewed in Brubaker *et al*., 2015; reviewed in Amarante-Mendes *et al*., 2018). PRRs recognise highly conserved bacterial features such as lipopolysaccharide (LPS), flagellin, muramyl dipeptide and the γ-D-glucose-mDAP motif of peptidoglycan (reviewed in Brubaker *et al*., 2015). Cis-phagocytosis involves the direct recognition of bacterial products, such as the recognition of LPS by macrophage class A scavenger receptors (Peiser *et al*., 2000). Trans-phagocytosis involves the detection of bacteria opsonised with the complement component iC3b or IgG antibodies, which are recognised by the CR3 complement receptor and FCγ immunoglobulin receptor respectively (Anderson *et al*., 1990; Ross *et al*., 1992).

In neutrophils, the pH of the phagosome rapidly increases during the first 5–15 minutes after engulfment as NADPH oxidase 2 (NOX2) transfers electrons from the cytosol into the lumen of phagosomes to generate superoxide, which is converted into hydrogen peroxide by superoxide dismutase (Segal *et al*., 1981; Cech and Lehrer, 1984; Gabig *et al*., 1978). The fusion of azurophil granules with the phagosome releases myeloperoxidase, which catalyses the transformation of hydrogen peroxide into various reactive oxygen species (ROS) with potent antimicrobial activity, including hypochlorous acid, hydroxyl radical and singlet oxygen (reviewed in Prokopowicz *et al*., 2012). Neutrophils also synthesise nitric oxide, which diffuses into the phagosome. Nitric oxide itself has antimicrobial properties, which are increased when it reacts with superoxide to form reactive
nitrogen species (reviewed in Manda-Handzlik and Demkow, 2015). The rise in pH also facilitates the fusion of azurophil and gelatinase granules containing proteases, antimicrobial proteins and bactericidal/permeability-increasing proteins (Reeves et al., 2002; reviewed in van Kessel et al., 2014). After the initial pH increase, the phagosome is acidified owing to the action of vacuolar proton-translocating ATPases (V-ATPases; Jankowski et al., 2002).

Phagocytosed bacteria are also destroyed by macrophages using a range of proteases and glycosidases delivered by lysosomes, as well as V-ATPase-induced phagosome acidification (reviewed in Hirayama et al., 2018). ROS production plays a less significant role in the killing of phagocytosed bacteria in macrophages than it does in neutrophils as ROS production occurs mainly at the plasma membrane in macrophages (Berton et al., 1982; Yamaguchi and Kaneda, 1988).

1.2.1.3 Antigen-presenting cells

Macrophages and dendritic cells can be found in the intestinal lamina propria where they receive antigens in a number of ways. Antigens can be delivered from the gut lumen via transcytosis by M cells, goblet cell-associated antigen passages and through paracellular leak, whereby antigens are permitted to the lamina propria through pores in epithelial cell tight junctions (reviewed in Knoop et al., 2013; reviewed in Allaire et al., 2018). Macrophages and dendritic cells can also directly sample the lumen using transepithelial dendrites during inflammation and acquire antigens from other macrophages (reviewed in Knoop et al., 2013; reviewed in Peterson and Artis, 2014; reviewed in Bekiari et al., 2014).

APCs phagocytose bacteria to degrade them and present antigens in the context of the major histocompatibility complex to adaptive immune cells (reviewed in Santos and Finlay, 2015). In dendritic cells, antigens are processed rather than completely degraded using various cathepsins and asparagine endopeptidase (Lennon-Duménil et al., 2002; Mohamadzadeh et al., 2004; Manoury et al., 1998). The degradation of antigens is controlled by protease inhibitors and low levels of NOX2 and V-ATPases maintain a neutral pH in the phagosome (Trombetta et al., 2003; Savina et al., 2006).
Processed antigens are then loaded on both MHC class I and II molecules in dendritic cells where they are presented to CD8$^+$ and CD4$^+$ T cells respectively (reviewed in Blum et al., 2013). Antigens are loaded onto MHC class II molecules in the phagosome while others are exported to the cytosol, further processed by the proteasome and sent to the ER for loading onto MHC class I molecules (reviewed in Blum et al., 2013). Macrophages present antigens on MHC class II molecules but require stimulation with IFN-γ or RELMβ in order to express MHC class II (McCormack et al., 1992; Nair et al., 2008). IFN-γ has also been shown to upregulate the expression of cathepsin S, a protease involved in MHC class II processing, in macrophages (van’s Gravesande et al., 2002).

1.2.1.4 Humoral innate immunity

Humoral innate immunity is comprised of the complement and contact cascades, naturally occurring antibodies and pentraxins (reviewed in Shishido et al., 2012). The complement system consists of blood plasma and membrane-expressed proteins and can be activated by either the classical, alternative or mannose binding lectin pathways (reviewed in Merle et al., 2015a). These pathways converge at the point of C3 cleavage, generating C3b, which leads to the cleavage of C5. C5b generated from the cleavage of C5 recruits complement components C6–9 to form membrane attack complexes in the membranes of pathogens, which results in direct killing by osmotic stress (reviewed in Merle et al., 2015b). C3b bound to the surface of a pathogen can also be cleaved into iC3b, which opsonises the pathogen and aids phagocytosis (Cunnion et al., 2004; Section 1.2.1.2).

The contact system consists of factor XII (FXII), plasma prekallikrein (PPK) and high molecular weight kininogen (HK) and is involved in the activation of the intrinsic coagulation pathway, the complement system, inflammation and the production of antimicrobial peptides (reviewed in Oehmcke-Hecht and Köhler, 2018). Contact factors bind to a number of molecules on the surface of pathogens including the curli fibres expressed by certain E. coli strains (reviewed in Oehmcke-Hecht and Köhler, 2018; Nasr et al., 1996; Herwald et al., 1998). FXII cleaves PPK into plasma kallikrein (PK), which in turn cleaves HK into bradykinin
and a variety of HK-derived antimicrobial peptides (Nordahl et al., 2005; Frick et al., 2006; Sonesson et al., 2011). Bradykinin and the cleavage product HKa stimulate the expression of pro-inflammatory cytokines (Tiffany and Burch, 1989; Pan et al., 1996; reviewed in Lalmanach et al., 2010; Khan et al., 2006) and bradykinin can also directly activate macrophages and dendritic cells as well as control neutrophil migration (Sato et al., 1996; Aliberti et al., 2003; Paegelow et al., 2002). FXII and PK can also trigger inflammation by inducing pro-inflammatory cytokine expression in macrophages and by causing the aggregation and degranulation of neutrophils (Vorlova et al., 2017; Wachtfogel et al., 1983; Wachtfogel et al., 1986). Furthermore, FXII and PK can activate the classical and alternative complement pathways respectively (Ghebrehiwet et al., 1981; DiScipio, 1982; Irmscher et al., 2018).

Naturally occurring IgM, IgA and IgG antibodies are produced by B1 B lymphocytes in the absence of antigen stimulation and recognise a variety of pathogens, but with low affinity due to restricted epitope specificity (reviewed in Shishido et al., 2012). Pentraxins are a family of multimeric soluble pattern recognition receptors with a conserved C-terminal domain and consist of three major members – C-reactive protein, serum-amyloid P component (SAP) and pentraxin 3 (reviewed in Ma and Garred, 2018). Like naturally occurring antibodies, pentraxins bind to multiple pathogens as well as intrinsic antigens (reviewed in Du Clos, 2013). Pentraxins act as opsonins as they are recognised by FCγ immunoglobulin receptors (Mold et al., 2001; Mold et al., 2002; Moalli et al., 2010). Human SAP has been shown bind to and neutralise recombinant Stx2 in vitro and protect mice from lethal toxicity caused by recombinant Stx2 in vivo, however, it is unclear why SAP does not protect humans against HUS (Kimura et al., 2001; Armstrong et al., 2006; Dettmar et al., 2014). Pentraxins are also capable of activating and regulating the various pathways of the complement system (reviewed in Ma and Garred, 2018).

1.2.1.5 Natural killer (NK) cells and γδ T cells

NK cells and γδ T cells are classically thought of as innate lymphoid cells but have been shown to possess a form of memory (reviewed in Pahl et al., 2018;
Sheridan et al., 2013) and therefore bridge the gap between the innate and adaptive immune systems. Human NK cells are characterised as CD3\(^{-}\)CD56\(^{+}\) lymphocytes (Lanier et al., 1989; Zocchi et al., 1989; Nagler et al., 1989), however, bovine NK cells lack CD56 and are characterised by the expression of CD335 (Storset et al., 2004). Human NK cells can be subdivided into CD56\(^{\text{dim}}\) cells, which account for the majority of NK cells in the peripheral blood (reviewed in Mandal and Viswanathan, 2015), and CD56\(^{\text{bright}}\) cells, which are localised in secondary lymphoid tissue (Fehniger et al., 2003). These cell subsets are involved in cytotoxic killing and cytokine production respectively (reviewed in Mandal and Viswanathan, 2015).

NK cell function is controlled by a number of activatory and inhibitory receptors (reviewed in Mandal and Viswanathan, 2015). The recognition of self-MHC class I is a major inhibitor of NK cell activity, allowing NK cells to target infected or cancerous cells where MHC expression has been downregulated (Kärre et al., 1986). NK cells induce apoptosis in target cells by releasing perforin and granzyme, similar to cytotoxic T cells (Kägi et al., 1994; Shresta et al., 1995). NK cells are generally thought to protect against intracellular pathogens and cancer cells, however, they have been shown to protect mice from infection with the A/E pathogen *C. rodentium* (Hall et al., 2013). NK cells were shown to prevent dissemination of the bacteria to extracolonic tissues via the recruitment of other immune cells and by direct cytotoxic killing of the bacteria (Hall et al., 2013). Wöchtl et al. (2017) reported a slight increase in the number of NK cells in the blood of gnotobiotic piglets infected with EHEC O157:H7 but the relevance of these during infection was unclear.

\(\gamma\delta\) T cells differ from CD4\(^{+}\) and CD8\(^{+}\) T lymphocytes in that they possess a \(\gamma\delta\) T cell receptor (TCR) rather than an \(\alpha\beta\) TCR (reviewed in Alcover et al., 2018). \(\gamma\delta\) T cells have a broad range of functions including the secretion of IFN-\(\gamma\), cytotoxic killing and antigen presentation (reviewed in Law and et al., 2017). As APCs, human and zebra fish \(\gamma\delta\) T cells have been shown to be capable of professional phagocytosis (Wu et al., 2009; Wan et al., 2017). \(\gamma\delta\) T cells are found mainly in mucosal tissues where they protect against infection and promote epithelial cell layer integrity (Mackay and Hein, 1989; Bandeira et al., 1990; Chen et al., 2002a; reviewed in McCarthy and Eberl, 2018). In cattle they also account for 60–80 % of the
circulating lymphocytes in calves, which decreases to 5–15% with age, and are the major regulatory T cell subset in bovine peripheral blood (Mackay and Hein, 1989; Davis et al., 1996; Guzman et al., 2014). Studies in mice reported that γδ T cells produce IL-17 in response to intraperitoneal infection with laboratory adapted E. coli, resulting in the recruitment of neutrophils (Shibata et al., 2007). Schaut et al. (2019) also reported that the intramuscular vaccination of cattle with inactivated Stx-negative EHEC O157:H7 resulted in the proliferation of γδ T cells, which produced IFN-γ and IL-4.

1.2.2 Innate immune evasion strategies by A/E E. coli

Many effector proteins produced by A/E E. coli that modulate the innate immune system target three main functions: NF-κB signalling, to inhibit the expression of pro-inflammatory cytokines; phagocytosis, to prevent clearing of the bacteria; and apoptosis, to impede the rapid turnover of intestinal epithelial cells, which normally removes colonising bacteria. Studies of these effectors are often caveated however, as effectors are generally overexpressed, used singly and may not reflect their role during infection.

1.2.2.1 Nle proteins

Non-LEE encoded effectors modulate the immune response in intestinal epithelial cells in a number of ways (Figure 1.6). NleA prevents the de-ubiquitination of the inflammasome (protein complex involved in pro-inflammatory cytokine signalling) protein NLRP3 and therefore inhibits the secretion of IL-1β (Yen et al., 2015). NleB is a glycosyltransferase that targets host cell death-domain-containing proteins including FADD, TRADD and RIPK1. It has been shown to N-glycosylate Arg^{117} of FADD and Arg^{235} of TRADD, which disrupts NF-κB signalling and prevents the expression of pro-inflammatory cytokines and apoptosis (Li et al., 2013b; Pearson et al., 2013). Gao et al. (2013) reported that NleB O-glycosylates glyceraldehyde 3-phosphate dehydrogenase (GAPDH). This was confirmed by El
Qaidi *et al.* (2017), who found that NleB glycosylates GAPDH at residues Arg^{197} and Arg^{200}, which are required to stimulate TRAF2 ubiquitination.

NleC, E and H also interfere with NF-κB signalling in different ways. NleC is a zinc metalloprotease that degrades the NF-κB members p50, p65 and c-Rel, which results in the inhibition of IL-8 secretion (Pearson *et al.*, 2011). NleC has also been shown to act synergistically with NleE (Pearson *et al.*, 2011). NleE methylates conserved cysteines in the Np14 zinc finger domains of the host proteins TAB2 and 3, which prevents the downstream degradation of the NF-κB inhibitor IκB (Zhang *et al.*, 2012; Nadler *et al.*, 2010). NleH interferes with NF-κB signalling in multiple ways. It inhibits the phosphorylation of the NF-κB transcriptional complex ribosomal protein S3, preventing its translocation to the nucleus (Gao *et al.*, 2009; Wan *et al.*, 2011), and suppresses the ubiquitination and subsequent degradation of IκB (Royan *et al.*, 2010). NleH also inhibits apoptosis by binding the protein Bax inhibitor-1 (Hemrajani *et al.*, 2009).
Figure 1.6. Schematic of EHEC adhering to an enterocyte and injecting various Nle proteins into it via the Type III secretion system. A number of Nle proteins inhibit the expression and secretion of pro-inflammatory cytokines. Inhibition of protein secretion by EspG also blocks cytokine secretion. NleD, F and H prevent apoptosis of the host cell induced by Map and EspF (from Stevens and Frankel, 2014).

NleD is another zinc metalloprotease that cleaves the host proteins JNK and p38 MAPK to inhibit both apoptosis and pro-inflammatory cytokine expression via activator protein 1 (AP-1) activation (Baruch et al., 2011; Creuzburg et al., 2017). It has been shown to differentiate between the host substrates as a conserved arginine residue is required for the cleavage of p38 but not that of JNK (Creuzburg et al., 2017).
NleF prevents apoptosis of infected cells by binding to caspases-4, 8 and 9, which it inhibits by inserting its C-terminus into the caspase active site (Blasche et al., 2013). It should be noted that the role of many of these proteins was determined using cell culture models with high multiplicity of infections, which does not reflect their relevance during infection.

1.2.2.2 Esps

As described in Section 1.1.3.4, EspB inhibits the interaction of myosin with actin, which has been shown to inhibit the phagocytosis of EPEC E2348/69 by murine bone marrow-derived macrophages (Iizumi et al., 2007). EspB also suppresses NF-κB activation (Hauf and Chakraborty, 2003), although it is unclear if this reflects a direct role or the requirement for EspB in injection of other effectors. EspZ inhibits apoptosis of epithelial cells early in infection by interacting with CD98, which mediates cell survival (Shames et al., 2010), and the translocase of inner mitochondrial membrane 17b, which prevents the release of cytochrome c from mitochondria (Shames et al., 2011; Roxas et al., 2012). EspL is a cysteine protease that cleaves within the receptor-interacting protein homotypic interaction motifs of the proteins RIPK1, RIPK3, TRIF and ZBP1/DAI to inhibit necroptosis and inflammation (Pearson et al., 2017).

EspF, H, and J are involved in the inhibition of phagocytosis (Stevens and Frankel, 2014). EspF has been shown to inhibit phosphoinositide 3-kinase (PI3K)-dependent phagocytosis by macrophages and translocation by M cells (Celli et al., 2001; Quitard et al., 2006; Martinez-Argudo et al., 2007). EspF interacts with sorting nexin 9, actin, profilin and annexin A6 (Marchès et al., 2006; Alto et al., 2007; Peralta-Ramírez et al., 2008; Hua et al., 2017), suggesting that it inhibits phagocytosis by disrupting the actin cytoskeleton. Annexin A6 has been implicated in cell survival, proliferation, migration and inflammation (Grewal et al., 2016), suggesting a possible wider role for EspF in modulating the host immune response. EspH competes with Rho to bind the DH-PH domain of Rho guanine nucleotide exchange factors, preventing the activation of Rho and remodelling of the actin cytoskeleton (Dong et al., 2010). EspJ inhibits trans-phagocytosis by simultaneously
amidating and ADP-ribosylating members of the Src kinase family (Marchès et al., 2008; Young et al., 2014; Pollard et al., 2018).

1.2.2.3 Secreted protease of C1 esterase inhibitor from EHEC (StcE)

StcE is a Type II secreted zinc metalloprotease encoded on the pO157 plasmid of EHEC O157:H7 (Lathem et al., 2002). It cleaves the serum protein C1-esterase inhibitor (C1-INH), which is an anti-inflammatory serine protease and major regulator of the classical complement pathway (Lathem et al., 2002; Caliezi et al., 2000). StcE has been shown to increase the activity of C1-INH by localising it to the surface of erythrocytes, protecting bacterial cells against complement-mediated lysis, but cleavage of C1-INH is not required for this activity (Lathem et al., 2004). Grys et al. (2006) reported that recombinant StcE did not cleave the mucins MUC2 or MUC5AC in vitro. However, it was subsequently found that EHEC cleaved MUC2 in human colonic biopsy samples in a StcE-dependent manner (Hews et al., 2017), suggesting that a co-factor is required for this cleavage. StcE also cleaves other O-glycosylated mucin-type proteins such as MUC7 and glycoprotein 340, contributing to the intimate adherence of EHEC O157:H7 to host epithelial cells (Grys et al., 2005 and 2006; Hews et al., 2017).

StcE has also been found to cleave the mucin-type glycoproteins CD43 and CD45, which are found on most haematopoietic cells (Szabady et al., 2009; reviewed in Rheinländer et al., 2018; Fukuda and Carlsson, 1986; Borche et al., 1987). Cleavage of CD43 and CD45 has been shown to increase the respiratory burst in neutrophils but the biological significance of this remains unknown (Szabady et al., 2009). CD43 has anti-adhesive properties and is relocalised to the trailing end uropod of migrating neutrophils to release them from the extracellular matrix (Seveau et al., 2000). The cleavage of CD43 by StcE increases adhesion at the leading edge of neutrophils, thus increasing adhesion to the extracellular matrix and impairing neutrophil migration (Szabady et al., 2009). Proteolytically inactive StcE was also found to increase adhesion by relocalising CD43 to the uropod and blocking its anti-adhesive function (Szabady et al., 2009). CD45 has also been reported to be important for cell adhesion and chemotaxis in neutrophils (Shivtiel et al., 2008;
Harvath et al., 1991), suggesting that cleavage by StcE may affect these functions (Szabady et al., 2009). It was also recently found that StcE cleaves CD55 on epithelial cells (Furniss et al., 2018). CD55 is responsible for the release of neutrophils from the apical surface of intestinal epithelial cells (Lawrence et al., 2003) and cleavage of CD55 by StcE resulted in increased adhesion of neutrophils to Caco-2 monolayers (Furniss et al., 2018). Given that StcE has also been shown to cause aggregation of human T lymphocyte cell lines (Lathem et al., 2002), the cleavage of CD43 and CD45 may be responsible for this. CD45 also activates Src family kinases, which is an important step in TCR signal transduction (reviewed in Rheinländer et al., 2018), indicating a possible role for StcE in modulating the adaptive immune response.

1.2.3 The adaptive immune response

The adaptive immune system is composed of B and T lymphocytes, which possess immunological memory (reviewed in Marshall et al., 2018). B cells recognise antigens directly via the B cell receptor (an immunoglobulin molecule), which drives them to differentiate into memory B cells or antibody producing plasma cells. B cells can also be driven to proliferate by cytokines and can act as APCs (reviewed in Hoffman et al., 2016). T cells require secondary stimulation from APCs in addition to the recognition of MHC-antigen complexes via the TCR (reviewed in Marshall et al., 2018). CD8+ T cells are cytotoxic and act to destroy infected or cancerous cells, in a similar manner to NK cells (reviewed in Zhang and Bevan, 2011). CD4+ T cells produce cytokines and can act as APCs. CD4+ T cells can be further categorised into four main subsets: T helper (Th) 1 cells, which are involved in the elimination of intracellular pathogens; Th2 cells, which mount an immune response to extracellular parasites; Th17 cells, which mount an immune response to extracellular bacteria and fungi; and regulatory T cells, which negatively regulate immune responses (reviewed in Luckheeram et al., 2012).
1.2.3.1 B lymphocyte response

The production of antibodies by B cells forms one part of the adaptive immune response against A/E E. coli. Children infected with EPEC have been shown to produce high levels of IgG against EspA and B, intimin and BfpA, which are all important for bacterial adherence (Martinez et al., 1999). People infected with EHEC have also been shown to produce serum antibodies against EspA and B, intimin and Tir (Li et al., 2000). The production of IgA antibodies against various bacterial components including O157 LPS, H7 flagellin and the outer membrane protein OmpC was observed in the rectal mucosa of cattle infected with EHEC O157:H7 (Nart et al., 2008a). Such antibodies may aid clearance of infection as vaccination with the proteins EspA, intimin and Tir significantly reduced the shedding of EHEC O157:H7 in the faeces of cattle (McNeilly et al., 2010). Serum IgG raised by vaccinating calves with intiminC280, the C-terminal fraction of intimin-γ, EspB and a fusion protein of Stx2 B subunit and Brucella lumazine synthase was able to neutralise Stx2 toxicity, inhibit T3SS-induced erythrocyte lysis and prevent the adherence of EHEC O157:H7 to epithelial cells *in vitro* (Martorelli et al., 2017). DNA vaccines against LomW and the C-terminus of EscC have also been reported to stimulate IgA and IgG responses that are associated with the protection of mice against EHEC O157:H7 infection (Tapia et al., 2016; García-Angulo et al., 2014). There have been many other vaccine studies that have assessed the antibody responses of cattle and mice to EHEC antigens, however, few studies have used passive transfer of antibodies or Ig- deficient animals to prove the role of such antibodies in protective immunity (reviewed in García-Angulo et al., 2013). It should also be noted that EHEC infection studies in mice should be interpreted with care as EHEC strains do not effectively form A/E lesions in mice (Mundy et al., 2006; Girard et al., 2008; Eaton et al., 2017).

1.2.3.2 T lymphocyte response

The T cell response against EPEC and EHEC is less well defined than that of B cells but studies have shown a role for T cells in A/E E. coli infection. Mice
depleted in CD4+ T cells failed to eradicate the murine A/E pathogen *C. rodentium* and had a diminished IgA and IgG response to EspA (Simmons *et al.*, 2003). RAG1 knock-out mice, which cannot produce T or B cells, also failed to clear *C. rodentium* infection, suggesting a role for these cell types in clearance (Vallance *et al.*, 2002). Corbishley *et al.* (2014) found that T lymphocytes have a role in the bovine immune response to EHEC O157:H7. It was observed that CD4+ T cells skew the immune response towards a Th1 response, which involves intracellular killing, early in the infection. This skew towards a Th1 response has also been observed in mice infected with *C. rodentium* and occurs in an intimin-dependent manner (Higgins *et al.*, 1999a; Higgins *et al.*, 1999b). Moreover, EPEC intimin has been reported to bind CD4+ T cells via β1-integrins and co-stimulate these cells from murine Peyer’s patches, mesenteric lymph node and caecal follicles (Frankel *et al.*, 1996; Gonçalves *et al.*, 2003). Intimin also co-stimulated proliferation of splenic CD4+ T cells but not lamina propria CD4+ T cells, which did not bind to intimin as strongly as T cells from other locations (Gonçalves *et al.*, 2003). Schaut *et al.* (2019) reported that bovine CD4+ T cells proliferated and produced IFN-γ in response to intramuscular vaccination with inactivated EHEC O157:H7. Corbishley *et al.* (2014) also found that Type III secreted proteins triggered proliferation in CD8+ and γδ T cells *ex vivo* but that these cell types had reduced numbers in terminal rectal biopsies and so the role of these cells in infection is unclear.

1.2.4 Adaptive immune evasion strategies of A/E *E. coli*

1.2.4.1 Subtilase cytotoxin (SubAB)

SubAB is an AB5 toxin found in some A/E *E. coli*, but also LEE-negative Stx-producing strains (reviewed in Krause *et al.*, 2018). The A subunit of the toxin is a serine protease that cleaves the ER chaperone BiP, activating the ER stress-induced unfolded protein response that triggers apoptosis (reviewed in Paton and Paton, 2010). Other effects of SubAB include the inhibition of protein synthesis and cell cycle arrest in the G1 phase (reviewed in Paton and Paton, 2010). The pathology caused by SubAB is similar to that caused by Stx (Wang *et al.*, 2007). However,
Subcytotoxic concentrations of SubAB have been reported to inhibit NF-κB activation in murine macrophages (Harama et al., 2009).

SubAB has been shown to bind to murine macrophages, neutrophils and lymphocytes and induce apoptosis in these cell types (Wang et al., 2011). The apoptosis rates of CD4^+ T cells and B220^+ B cells in murine blood were found to be significantly different from the basal rate up to 6 hours after SubAB injection (Wang et al., 2011). SubAB has also been shown to inhibit antibody secretion in murine B cells (Hu et al., 2009). BiP is required for the assembly of immunoglobulin heavy and light chains in the ER (Bole et al., 1986; Knittler and Haas, 1992). The SubAB-cleaved C-terminal fragment of BiP strongly binds to newly synthesised light chains and prevents their assembly with heavy chains, causing the unassembled immunoglobulins to be retained in the ER (Hu et al., 2009).

1.2.4.2 Stx

Stx modulates both the innate and adaptive immune responses. As described previously, Stx inhibits NF-κB activation in human Gb3-negative epithelial cells (Gobert et al., 2007). Stx has also been shown to target bovine peripheral blood lymphocytes and intraepithelial lymphocytes, which display Gb3 receptors (Menge et al., 1999; Menge et al., 2003; Menge et al., 2004a). It directly inhibits the proliferation of mitogen-stimulated bovine T and B cells (Menge et al., 1999; Stamm et al., 2002; Menge et al., 2003), as well as bovine leukemia virus infected lymphocytes (Ferens and Hovde, 2000), without inducing cell death. Menge et al. (2004b) also found that EHEC O103:H2 producing Stx1 significantly reduced the number of CD8α^+ T cells in bovine ligated ileal loops within 12 hours of infection in a Stx1-dependent manner, albeit differences in proliferative capacity, natural killer cell activity or the cytokine mRNA profile of isolated cells did not differ significantly. Studies in calves demonstrated that animals infected with Stx-producing EHEC strains did not mount an effective cellular immune response after re-infection (Hoffman et al., 2006). Stx delays the onset of a cellular immune response rather than downregulating it (Stamm et al., 2002; Hoffman et al., 2006) and appears to target T cells in particular in vivo (Hoffman et al., 2006). As well as
inhibiting adaptive immune responses in cattle, Stx has been shown to induce the expression of pro-inflammatory cytokines in human and murine macrophages, which is thought to contribute to pathology (Tesh et al., 1994; Leyva-Illades et al., 2012; Brandelli et al., 2015; Lee et al., 2016; reviewed in Lee and Tesh, 2019). Although studies have shown that Stx is not essential for the colonisation of sheep, mice and infant rabbits, these did not consider the nature of immune responses during such infections (Ritchie et al., 2003; Woodward et al., 2003; Robinson et al., 2006).

1.3 Lymphostatin

1.3.1 The discovery of lymphostatin

In 1995 Klapproth et al. discovered that lysates of certain EPEC strains were capable of dose-dependent inhibition of cytokine expression by human peripheral blood mononuclear cells (PBMCs), but that laboratory-adapted E. coli K-12 strains, other E. coli pathotypes and whole EPEC lacked this ability. Lysates of EHEC O157:H7 strain EDL933 were found to inhibit cytokine expression but were not tested in a dose-dependent manner. Only one EPEC strain tested, O119:H6 0659-79, did not have inhibitory activity against PBMCs, which may be due to known variation in EPEC strains (Levine and Edelman, 1984). Klapproth et al. (1995) determined that inhibitory activity was caused by a protein or proteins encoded on the bacterial chromosome. They also found, using lysates of an E. coli K-12 strain transformed with an EPEC cosmid (pIV-8-A), that these lysates inhibited cytokine expression in human peripheral blood lymphocytes irrespective of the mechanism of lymphocyte activation. These cosmid clone lysates could also inhibit the mitogen-stimulated proliferation of lymphocytes. The inhibition observed in these experiments was reportedly not due to cellular toxicity.

In 1996, further experiments by Klapproth et al. found that lysates of E. coli K-12 containing the EPEC pIV-8-A cosmid clone exhibited dose-dependent inhibition of IL-2 expression against human PBMCs and lamina propria mononuclear cells (LPMCs). The inhibition of cytokine synthesis was non-selective and the inhibition of lymphocyte proliferation was not caused by the inhibition of
IL-2 receptor expression. CD25 (α-chain of the IL-2 receptor) expression, which rapidly increases after T cell activation, was not inhibited in CD45RO+ cells (activated T cells) by lysates of *E. coli* K-12 containing pIV-8-A. It was found that the inhibitory effect of EPEC E2348/69 lysates was similar in mitogen-stimulated PBMCs and LPMCs. The culture supernatants of EPEC were also found to inhibit IL-2 and IL-5 expression in mitogen-stimulated PBMCs. Lastly, Klapproth *et al.* (1996) found that EPEC and cosmid clone lysates could inhibit cytokine expression in human lymphocytes activated by products of non-pathogenic *E. coli*.

Malstrom and James (1998) observed that EPEC E2348/69 lysates inhibited IL-2 expression in murine splenic cells stimulated with 12-myristate 13-acetate and phytohaemagglutinin without causing apoptosis. EPEC lysates inhibited multiple cytokines but increased the production of IL-10, which itself inhibits inflammatory cytokine expression. However, the inhibitory activity of EPEC lysates was independent of IL-10 and the regulatory cytokine TGF-β. Macrophages were also not required for the increased production of IL-10. IL-2 expression was inhibited by EPEC lysates in mitogen-stimulated Jurkat cells (an immortalised human T cell line) as well as small intestinal intraepithelial and Peyer’s patches lymphocytes. Pre-exposure of murine splenic cells to EPEC lysates resulted in decreased IL-2 and increased IL-10 expression when the cells were both mitogen- and antigen-stimulated. Malstrom and James (1998) also found that lysates of EHEC EDL933, RDEC-1 and *C. rodentium* had inhibitory activity against murine splenic lymphocytes and that this activity was not related to EspB, which was examined due its requirement for signal transduction in host cells and the activation of NF-κB transcription factors (Foubister *et al.*, 1994; Savkovic *et al.*, 1997).

In 2000 Klapproth *et al.* discovered the protein responsible for the inhibitory activity described above, which they named lymphostatin or lymphocyte inhibitory factor A (LifA) due its ability to specifically inhibit lymphocyte proliferation and cytokine expression. DNA sequencing of the pIV-8-A cosmid revealed the *lifA* gene to be 9,669 bp encoding a predicted 365,950 Da protein – the largest protein so far described in *E. coli*. Mutation of the *lifA* gene from EPEC E2348/69 abolished the inhibitory activity of bacterial lysates against human PBMCs but did not affect the
ability of the strain to nucleate actin under sites of attachment in a fluorescent actin staining test, a proxy for A/E lesion formation (Klapproth et al., 2000).

1.3.2 Homologous proteins and sequences to lymphostatin

In the same year as LifA was first described, Nicholls et al. (2000) discovered a protein in EHEC O111:H- strain E45035 that increased the adhesion of bacteria to Chinese hamster ovary (CHO) cells in vitro and named it EHEC factor for adherence 1 (Efa1). Efa1 was identical in size to LifA and was predicted to be 99.9 % identical to LifA at a nucleotide level and 99 % identical at an amino acid level (Nicholls et al., 2000), with only a single amino acid difference between the two proteins. As such, LifA and Efa1 are considered to be the same protein and their names are used interchangeably in the literature.

LifA and homologous proteins have been found in EPEC, EHEC, RDEC, E. albertii, C. rodentium and various Chlamydia species (reviewed in Klapproth, 2010). An NCBI Blast search reveals that EPEC E2348/69 possesses a LifA homologue termed LifA-like protein, which is also present in EPEC O111:H- strain B171-8 and is predicted to be ~298 kDa in size. The LifA-like protein from EPEC E2348/69 shares 34 % identity and 54 % similarity with amino acids (aa) 244–716 of LifA, and 28 % identity and 48 % similarity with aa 707–2356 of LifA. The LifA-like protein from EPEC B171-8 shares 31 % identity and 51 % similarity with aa 62–716, and 27 % identity and 47 % similarity with aa 728–2555 of LifA. EPEC B171-8 LifA-like protein is also larger than the E2348/69 variant at ~339 kDa. The LifA-like protein, along with LifA, has recently been implicated in having an accessory role in the formation of actin pedestals and A/E lesions that is masked by other T3S effector proteins (Cepeda-Molero et al., 2017).

The prototype EHEC O157:H7 strain EDL933 does not produce LifA but rather encodes two homologous proteins termed Efa1’ and ToxB. Efa1’ is a truncated version of LifA that is encoded on open reading frames z4332 and z4333 on O-island 122 of the chromosome of strain EDL933 (Hayashi et al., 2001; Perna et al., 2001). Efa1’ shares 99 % identity and 99 % similarity with aa 1–433 of LifA and is identical to aa 437–711 of LifA (Hayashi et al., 2001; Perna et al., 2001). It is unclear if only
the 433 amino acid protein is made or if a 710 amino acid protein can be made via ribosome frameshifting. ToxB is of a similar predicted size to LifA and is encoded on the EHEC O157:H7 large plasmid pO157 (Burland et al., 1998; Makino et al., 1998). ToxB shares 30% identity and 48% similarity with aa 48–3204 of LifA (Burland et al., 1998; Makino et al., 1998). ToxB sequences have also been found in non-O157 EHEC strains and EPEC (for example, Badea et al., 2003; Tozzoli et al., 2005). Stevens et al. (2004) reported that the LifA homologues Efa1’ and ToxB influenced the adherence of EHEC O157:H7 to HeLa cells but were not required for the colonisation of cattle or sheep. They also reported that mutations in the efa1’ and toxB genes reduced the production and secretion of proteins encoded by the LEE4 operon but did not affect the activity of the LEE1, 4 and 5 operon promoters. This is consistent with observations by Tatsuno et al. (2001) that suggest that ToxB affects expression and secretion of LEE-encoded proteins at a post-transcriptional level. Abu-Median et al. (2006) also performed experiments with efa1’ and toxB mutants and reported that these proteins did not appear to confer lymphostatin-like activity against mitogen-stimulated peripheral blood lymphocytes, however, the assay relied on crude bacterial lysates and is relatively insensitive. Recent experiments by Cassady-Cain et al. (2017) have since shown that recombinant ToxB does inhibit the mitogen-stimulated proliferation of bovine T cells in a dose dependent manner, similar to LifA.

In Chlamydia, C. psittaci contains a single lifA homologue, C. muridarum possesses three copies and C. trachomatis contains a pseudogene with frameshift mutations (Xie et al., 2003). LifA homologues from Chlamydia species share ~34–37% identity with EPEC E2348/69 LifA. Belland et al. (2001) have shown that LifA homologues from C. trachomatis act as cytotoxins and suggested that it is possible that the immunomodulatory ability of LifA homologues may allow Chlamydia species to cause persistent infections. The Stevens laboratory has recently shown that a LifA homologue from C. pecorum, which shares ~36% identity with LifA, inhibits the mitogen-stimulated proliferation of bovine T cells in a dose-dependent manner. This involved cloning, expression and affinity purification of the protein and inhibitory activity is not the result of cytotoxicity (Stevens Laboratory unpublished data).
1.3.3 Secretion of lymphostatin

Little work has been carried out towards understanding the mechanism of secretion of LifA. Deng et al. (2012) reported that LifA appeared to be secreted by the LEE-encoded T3SS based on quantitative proteomic (SILAC) analysis of proteins secreted by EPEC O127:H6 strain E2348/69 and an isogenic LEE mutant. This involved mapping peptides across the protein and detecting them using mass spectrometry. Reporter assays using the N-terminal 50–100 amino acids of LifA fused to TEM-1/β-lactamase showed that this sequence of LifA was capable of directing the translocation of the TEM1 fusion protein into HeLa cells, which was detected by a change in fluorescence of a β-lactamase substrate. Due to the limitations of the cloning vector that was used, only the N-terminal 50–100 amino acids of LifA were used instead of the full-length protein. This was suitable for examining Type III secretion as Charpentier and Oswald (2004) found that as little as 20 amino acids from the N-terminus of various T3S proteins are sufficient to mediate translocation through the T3SS. LifA was detected in the culture supernatant, but only when using a hypersecreting strain (Deng et al., 2012). The secretion of full-length LifA via the T3SS was recently confirmed by western blots of Type III secretion-induced EPEC E2348/69 culture supernatants and polyclonal LifA-specific antiserum (Bease, 2015). Efa1 was first identified by Tn5phoA mutagenesis, whereby an in-frame fusion of the gene encoding alkaline phosphatase to the first 533 amino acids of Efa1 was created (Nicholls et al., 2000). Alkaline phosphatase is only active in the bacterial periplasm and extracellularly, and the fact that the fusion was active against the chromogenic substrate 5-Bromo-4-chloro-3-indolyl phosphate indicates that at least part of the protein is located beyond the cytoplasmic membrane (Nicholls et al., 2000).

The mechanism of LifA secretion is important for understanding how it acts on host cells. Studies by Klapproth et al. (1995, 1996 and 2000), Malstrom and James (1998) and Stevens et al. (2002) have all shown that bacterial lysates containing LifA have inhibitory activity against lymphocytes and mononuclear cells, indicating that injection is unlikely to be needed for lymphostatin activity. Moreover, activity can be transferred to laboratory-adapted E. coli K-12 containing cloned LifA
even though it lacks the T3SS. Purified recombinant LifA has also been found to inhibit the mitogen-stimulated proliferation of lymphocytes (Bease, 2015; Cassady-Cain et al., 2016; Cassady-Cain et al., 2017), suggesting that T3SS-mediated injection into host cells is not required for LifA to function. It is unclear exactly how LifA is delivered to its target cells but possible mechanisms include: direct injection via the T3SS into intraepithelial lymphocytes; secretion into the gut lumen where it endocytosed by intraepithelial lymphocytes or crosses the epithelial cell layer via transcytosis or paracellular leak to reach gut associated lymphoid tissue; delivery across the epithelial cell layer into the circulation to act on lymphocytes before they reach the site of infection; and delivery via bacterial outer membrane vesicles, similar to Stx.

1.3.4 Importance of lymphostatin as a virulence factor

LifA has been shown to be an important virulence factor in A/E pathogens (Stevens et al., 2002; Badea et al., 2003; Klapproth et al., 2005; Deacon et al., 2010). Stevens et al. (2002) found that deleting the lifA gene in EHEC O5:H- strain S102-9 caused a 19-fold reduction in adherence to HeLa cells. A reduction in adherence was not observed in EPEC E2348/69 but this may have been due to the expression of BFP and elevated expression of the T3SS in this strain. Lysates of both EPEC E2348/69 and EHEC S102-9 were found to inhibit the mitogen-stimulated proliferation of bovine PBMCs, although the inhibition caused by EHEC may have been due to other toxins such as Stx. Stx is capable of inhibiting the proliferation of lymphocytes (Menge et al., 1999) and deleting the lifA gene did not relieve the inhibitory effect of the EHEC lysate. Deleting the lifA gene in EHEC S102-9 and E45035N significantly reduced the magnitude of faecal excretion of the bacteria in calves and adherence of the bacteria to the intestinal epithelium. It was also found that EHEC S102-9 ΔlifA mutants were reduced in their ability to produce and secrete EspA and Tir, but were still able to nucleate actin at sites of attachment. This suggests that the loss of LifA could have affected gut colonisation via indirect effects on Type III secretion, which is known to be vital for colonisation of the bovine gut by EHEC O157:H7 (Dziva et al., 2004; Naylor et al., 2005; Eckert et al., 2011). The
presence of *lifA* in atypical EPEC strains has also been strongly associated with diarrhoea and higher bacterial loads in the faeces of humans (Afset *et al.*, 2006; Narimatsu *et al.*, 2010; Slinger *et al.*, 2017).

Badea *et al.* (2003) reported that LifA was necessary for the *in vitro* adherence of rabbit EPEC to epithelial cells. The rabbit EPEC strain used lacked BFP, which may have masked the effects of LifA. Rabbit EPEC with mutated *lifA* had reduced adherence to CHO and HeLa cells and polyclonal antibodies against LifA also reduced adherence. The mutation of the *lifA* gene did not disrupt EspA secretion, indicating that pleotropic effects of *lifA* mutation on the expression of LEE-encoded proteins may be strain-specific. It is noteworthy that *lifA* has been reported to be encoded immediately 3′ of the *LEE4* operon in the opposite direction in some strains (Ogura *et al.*, 2009).

Klapproth *et al.* (2005) found that mutating the *lifA* gene in *C. rodentium* did not reduce the ability of the bacteria to colonise the colon of mice but did result in reduced pathology and accelerated clearance of the bacteria. In these experiments Klapproth *et al.* (2005) mutated putative glycosyltransferase and cysteine protease domains within LifA as well as a domain between these two that does not encode any known activity. However, later it was discovered that the mutations created stop codons at the site of the in-frame deletions, which resulted in the truncation of the LifA protein (Deacon *et al.*, 2010). This means that the results were invalid in relation to the effects of the specific domains but still showed that the protein as a whole is required for colonic hyperplasia in mice.

Deacon *et al.* (2010) also investigated the importance of the putative glycosyltransferase and cysteine protease domains by substituting specific motifs within these domains in EHEC O26:H- strain 193. The strain used was incapable of producing Stx1 in order to prevent it from masking the effects of LifA. It was found that *lifA* null mutants had significantly reduced ability to colonise cattle but mutants of the putative glycosyltransferase and cysteine protease domains did not (Deacon *et al.*, 2010). No effect of the *lifA* mutation on expression of EspA was observed in EHEC O26:H-. In contrast to Stevens *et al.* (2002), this shows that LifA has a direct role in gut colonisation independently of effects on EspA. LifA was not necessary to induce enteritis in bovine ligated ileal loops (Deacon *et al.*, 2010). In contrast to
previous experiments, *lifA* null and motif mutants did not have significantly reduced adherence to HeLa cells or ability to inhibit the mitogen-stimulated proliferation of bovine lymphocytes. However, when the motif substitutions were transferred to the chromosome of EPEC E2348/69 it was observed that the ability to inhibit mitogen-stimulated proliferation of lymphocytes was significantly reduced in the motif mutants compared with the parental EPEC E2348/69 strain.

Vaccines using subunits of LifA from EHEC E45035 and the *z4332* gene product generated an antibody response against these proteins but did not protect calves from infection with EHEC strains EDL933 or 193 of serogroups O157 or O26, respectively (van Diemen *et al*., 2007). However, immunisation of calves in this study with the cell binding domain of intimin subtypes β or γ also did not protect against infection despite inducing an antibody response. Subsequent studies using intimin vaccines have reported protection against infection (Martorelli *et al*., 2017), suggesting that the lack of protection observed by van Diemen *et al*. (2007) may be due to the experimental design, which involved inoculation with a high dose that may have overwhelmed immune responses. It is also possible that the LifA protein used in the vaccine was not properly folded or exposed pertinent epitopes required for an efficient response. In contrast to van Diemen *et al*. (2007), Riquelme-Neira *et al*. (2016) reported that vaccinating mice with DNA encoding Efa1’ conferred protective immunity against EHEC O157:H7 colonisation, while also generating specific serum antibodies against the protein, and increasing the proliferative response of T cells against EHEC proteins and heat-killed bacteria. The plasmid containing the *efa1’* gene was reported to express FLAG-tagged recombinant protein, however, western blots of the protein were not published and therefore it remains unclear whether Efa1’ is the product of both open reading frames *z4332* and *z4333* (Riquelme-Neira *et al*., 2016).
1.3.5 Structural motifs of lymphostatin

1.3.5.1 The glycosyltransferase domain

The N-terminal portion of LifA is ~40% homologous over the first 470 amino acids to the catalytic domains of large clostridial toxins (LCTs), including TcdA and B from *Clostridium difficile*, the lethal and haemorrhagic toxins (TcsL and TcsH) from *C. sordellii*, α-toxin (TcnA) from *C. novyi* and TpeL from *C. perfringens* (Klapproth *et al.*, 2000; Nicholls *et al.*, 2000; Busch *et al.*, 1998; Amimoto *et al.*, 2007). This homologous region in LifA encompasses a catalytic DXD motif that is necessary for sugar binding in LCTs (Klapproth *et al.*, 2000; Nicholls *et al.*, 2000; Busch *et al.*, 1998). The LCTs are known glycosyltransferases (Triadafilopoulos *et al.*, 1987), most of which bind uridine diphosphate-glucose (UDP-Glc; Just *et al.*, 1995b and 1995c; Schirmer and Aktories, 2004). TcnA and TpeL can bind UDP-Glc but their primary substrate is uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc; Selzer *et al.*, 1996; Schirmer and Aktories, 2004; Nagahama *et al.*, 2011; Guttenberg *et al.*, 2012). LCTs are known to act as cytotoxins by hydrolysing UDP-sugars and transferring the sugar moieties onto Rho GTPases, thereby inhibiting Rho GTPase activity and causing the collapse of the actin cytoskeleton (Just *et al.*, 1995a, 1995b and 1995c; Selzer *et al.*, 1996). However, LifA has never been shown to act in this manner or cause direct cytotoxicity, for example by assays for the release of lactate dehydrogenase or analysis of cell permeability by trypan blue exclusion (Klapproth *et al.*, 1995 and 2000; Malstrom and James, 1998; Nicholls *et al.*, 2000; Stevens *et al.*, 2002; Bease, 2015; Cassady-Cain *et al.*, 2016).

As described previously, an initial attempt to mutate the glycosyltransferase (GT) domain of LifA in *C. rodentium* by Klapproth *et al.* (2005) produced a truncated protein. Babbin *et al.* (2009) corrected the mutation and implicated the GT domain in causing the redistribution of ZO-1 and occludin from enterocyte tight junctions, compromising the intestinal epithelial cell barrier and suppressing Cdc42 activity. However, this study did not investigate claims by Klapproth *et al.* (2005) that the GT domain is required for the effective colonisation of mice by *C. rodentium*, induction of colonic hyperplasia or inhibition of lymphocyte function.
Deacon et al. (2010) substituted the DXD motif of LifA in EHEC 193 for a triple alanine sequence and found that it did not affect the ability of the bacteria to colonise calves or to adhere to epithelial cells. When this substitution was transferred to the chromosome of EPEC E2348/69, there was a significant reduction in the ability of bacterial lysates to inhibit mitogen-stimulated T cell proliferation.

Recently, recombinant LifA was found to bind UDP-GlcNAc but not UDP-Glc (Bease, 2015; Cassady-Cain et al., 2016). Purified LifA containing a DXD-AAA substitution was found to be structurally similar to the wild-type protein, but its ability to bind UDP-GlcNAc and inhibit T cell proliferation was abolished (Bease, 2015; Cassady-Cain et al., 2016). This suggests that LifA acts as a glycosyltransferase but the target(s) of this activity in host cells remains unknown. The GT domain was predicted to contain a Mn$^{2+}$ ion as incubating recombinant LifA with MnCl$_2$ increased the thermal stability of the protein (Cassady-Cain et al., 2016). The DXD motif is absent from the truncated version of LifA found in many E. coli O157:H7 strains (z4332) and this may explain the lack of phenotype of efa1’d deletion mutants in assays of mitogen-activated lymphocyte proliferation (Abu-Median et al., 2006). Given that glycoproteins modified with GlcNAc are required for cell-cell and cell-matrix interactions in Drosophila (Sakaidani et al., 2011), and that E. coli are known to bind mannose and N-acetyllactosamine moieties on host cell surfaces via Type I fimbriae (Ofek et al., 1977) and BFP (Hyland et al., 2008) respectively, this raises the possibility that GlcNAc binding by LifA may be linked to its reported role as an adhesin.

1.3.5.2 The cysteine protease domain

In addition to the GT domain, LifA also contains a C58 cysteine protease (CP) domain and is a member of the YopT-like cysteine protease superfamily (Shao et al., 2002). YopT is a virulence factor from Yersinia that cleaves host cell Rho GTPases, resulting in the collapse of the actin cytoskeleton (Shao et al., 2002). As stated above, LifA does not appear to act as a direct cytotoxin, which suggests another role for the CP domain of LifA. The CP domain of another C58 protease, AvrPphB from Pseudomonas syringae, cleaves the host protein PBS1 but is also
required for the autocatalytic cleavage of AvrPphB (Shao et al., 2002 and 2003a). Therefore, a possible role for CP domain of LifA may be to mediate autoproteolysis. Shao et al. (2002) found that C58 proteases require a C/H/D catalytic triad for proteolysis and this triad is also found in the sequences of LifA and ToxB. C58 proteases have little homology beyond the C/H/D catalytic triad and the sequence that most closely matches the LifA CP domain outwith the various LifA homologues is the CP domain of PaTox from *Photorhabdus asymbiotica* (Jank et al., 2013; Bogdanović et al., 2018). A predicted structural model of the LifA CP domain was produced by Dr Liz Blackburn (Edinburgh Protein Production Facility (EPPF), Centre for Translational & Chemical Biology, University of Edinburgh) by alignment of the LifA sequence with the crystal structure of a C1865A PaTox CP domain mutant (Bogdanović et al., 2018; Figure 1.7).

Figure 1.7. Predicted structure of the LifA cysteine protease domain based on the crystal structure of the PaToxC^{1865A} cysteine protease domain from *Photorhabdus asymbiotica*. The predicted catalytic cysteine, histidine and aspartic acid residues can be identified by their respective sulphur (yellow), nitrogen (blue) and oxygen (red) atoms (created by Dr Liz Blackburn, EPPF).
LCTs also have CP domains that, like AvrPphB, are required for autocatalytic cleavage (Pfeifer et al., 2003; Egerer et al., 2007; Guttenberg et al., 2011 and 2012). Although the CP domains of LCTs are not homologous to the C58 proteases, given the N-terminal homology between LifA and LCTs, this lends further weight to the hypothesis that the CP domain of LifA is required for autoproteolysis.

As with previous experiments concerning the GT domain, the first CP domain mutants made by Klapproth et al. (2005) were invalid. Babbin et al. (2009) corrected the mutation and implicated the CP domain in causing the redistribution of β-catenin and E-cadherin at enterocyte apical junctions, and the activation of RhoA, but again did not investigate its role in gut colonisation or inhibition of lymphocyte function. Deacon et al. (2010) deleted a 369 bp section of the EHEC O26:H- strain 193 lifA gene that encompassed the C/H/D motif, which was marked with a triple alanine sequence. In a similar manner to the DXD motif, the CP domain was found not to be required for the intestinal colonisation of calves by this strain but was required for lymphostatin activity in EPEC E2348/69. In contrast to Babbin et al. (2009), Deacon et al. (2010) did not detect the activation of Rho by any of the wild-type or ΔlifA bacterial strains. Unlike the DXD motif mutant, the CP domain mutant had over 100 amino acids removed from the sequence and so it is possible that the results observed by Deacon et al. (2010) are the consequence of structural abnormalities in the mutant protein rather than mutation of the specific motif.

1.3.6 Recent advances in understanding the mode of action of lymphostatin

LifA clones are unstable and under-represented in cosmid libraries (Klapproth et al., 2000; Janka et al., 2002). Nicholls et al. (2000) reported that they were unable to assemble the full-length lifA/efa1 gene from cloned N- and C-terminal fragments and that the protein may be toxic to the E. coli cell. Recent work by Cassady-Cain et al. (2016) has enabled the further study of LifA. Through the use of tightly inducible expression vectors, it has been possible to create a stable plasmid encoding recombinant LifA with a 6 x His tag. This recombinant LifA has been purified and biophysically characterised. It is capable of inhibiting the concanavalin A (ConA)- and antigen-stimulated proliferation of bovine T cells and IL-4-stimulated B cells in
a dose-dependent manner (Cassady-Cain et al., 2016 and 2017). The recombinant protein inhibited proliferation in all major T cell subsets in bovine peripheral blood as well as the expression of IL-2, 4, 10, 17A and IFN-γ. Cassady-Cain et al. (2017) also found that T cell proliferation was inhibited up to 18 hours after transient exposure to LifA and that, although LifA inhibits ConA-stimulated proliferation, T cells treated with lymphostatin proliferated normally when stimulated with PMA and ionomycin. A rabbit polyclonal antibody has also been produced against this recombinant LifA, allowing for the sensitive detection of the protein by western blotting (Cassady-Cain and Bease, unpublished observations). A robust system for expression, purification and functional characterisation of LifA also allowed for the investigation of the glycosyltransferase activity of LifA (Bease, 2015; Cassady-Cain et al., 2016).

1.4 T lymphocyte modulation by other enteric bacteria

A number of virulence factors employed by enteric pathogens to interfere with T cell processes have now been described. These tend to act on host cells in one of three ways: modulation of lymphocyte activation and proliferation; interference in lymphocyte chemotaxis; and the induction of apoptosis (Figure 1.8; reviewed in Cassady-Cain et al., 2018).
Figure 1.8. Summary of the virulence factors produced by enteric bacteria that modulate T lymphocyte functions (grey boxes) and the molecules/processes that they interfere with. sAg – superantigens; CT – cholera toxin; LT – ETEC heat labile toxin; STM3106 – S. Typhimurium L-asparaginase II; GGT – Helicobacter and C. jejuni γ-glutamyl transferase; YopH – Yersinia outer protein H; VacA – H. pylori vacuolating cytotoxin A; IpgD – S. flexneri invasion plasmid gene D (from Cassady-Cain et al., 2018).

1.4.1 Superantigens

Superantigens cross-link MHC class II molecules from APCs with the Vβ-chain of the TCR, resulting in non-specific T cell activation (reviewed in Krakauer, 2013). This leads to the CD95-mediated death of T cells and the residual activated T cells become functionally unresponsive, thereby suppressing an effective
T cell response (reviewed in Krakauer et al., 2016). Superantigens are capable of activating a large number of T cells even at low concentrations (Choi, et al., 1989; reviewed in Krakauer et al., 2016). Superantigens have been best characterised in Staphylococcus aureus, which produce a number of superantigens (reviewed in McKay, 2001), but are also produced by Yersinia enterocolitica and Y. pseudotuberculosis (Stuart and Goodward, 1992; Abe et al., 1993). The superantigen Y. pseudotuberculosis-derived mitogen A (YPMa) is associated with strains that cause Far Eastern scarlet-like fever and has been shown to increase the virulence of Y. pseudotuberculosis in mice (Fukushima et al., 2001; reviewed in Amphlett, 2016; Carnoy et al., 2000). YPMa has also been reported to cause the release of perforin and granzyme from CD4+ T cells in the spleen and liver of mice, resulting in hepatotoxicity (Goubard et al., 2015).

1.4.2 Helicobacter pylori vacuolating cytotoxin A (VacA)

VacA has been shown in multiple studies to inhibit the proliferation of T cells as well as exerting effects on a variety of other cell types including epithelial cells, neutrophils and macrophages (Boncristiano et al., 2003; Gebert et al., 2003; Sundrud et al., 2004; reviewed in Utsch and Haas, 2016). VacA is expressed as a 140 kDa protein, which is cleaved into an 88 kDa form and secreted via the Type V secretion pathway (reviewed in Foegeding et al., 2016). The 88 kDa toxin is composed of two domains that are both required for cell entry (Torres et al., 2005). The exact mechanism of cell entry is unclear but CD18 has been identified as a receptor for VacA on T cells (Sewald et al., 2008). Endocytosis is mediated by protein kinase C (PKC) and requires the activation of T cells (Sewald et al., 2010). Once inside the host cell, VacA inhibits the activation and nuclear translocation of the transcription factor NF-AT and has also been shown to block calcium flux, which is important for T cell signalling (Boncristiano et al., 2003; Gebert et al., 2003; Kern et al., 2015). The inhibition of NF-AT prevents IL-2 expression in Jurkat cells but not to as great an extent in primary human CD4+ T cells, suggesting that the inhibition of proliferation is IL-2 independent (Boncristiano et al., 2003; Gebert et al., 2003; Sundrud et al., 2004). The initial colonisation of mice was reported to be impaired in
a ΔvacA *H. pylori* mutant but the bacterial load and intestinal inflammation developed to the same level as the wild-type strain once the infection became established (Salama *et al*., 2001). However, since murine T cells do not express the appropriate receptor for VacA (Sewald *et al*., 2008), this observation was likely to be independent of the effects of VacA on lymphocyte proliferation.

1.4.3 *Yersinia* YopH, invasin and YpkA

YopH is a Type III secreted tyrosine phosphatase produced by *Yersinia* species including *Y. enterocolitica* and *Y. pseudotuberculosis* (Cornelis *et al*., 1989; Guan and Dixon, 1990; Cornelis *et al*., 1998). YopH inhibits the proliferation and expression of IL-2 by T cells and has also been shown to suppress the activation of B cells stimulated via the B cell receptor (Yao *et al*., 1999; Sauvonnet *et al*., 2002). In T cells, YopH has been shown to dephosphorylate Lck, Fyb and the p85 subunit of PI3K, as well as interact with numerous signalling proteins, which are likely used to localise YopH to the proximity of its targets (Alonso *et al*., 2004; de la Puerta *et al*., 2009). Since Lck is located upstream of most tyrosine phosphorylation events in the signalling cascade of T cells, dephosphorylation of only a few Lck molecules is predicted to have a significant impact on signalling (Alonso *et al*., 2004). How YopH inhibits B cell activation is unknown but given that Lck has been reported to be involved in B cell activation (Talab *et al*., 2013; Zhou *et al*., 2018), the mechanism may be similar to that in T cells. YopH has also been reported to cause the breakdown of mitochondria in T cells, resulting in apoptosis, but little is known about the mechanism of this activity (Bruckner *et al*., 2005). YopH-deficient *Y. enterocolitica* was previously found to have a marked reduction in its ability to colonise mice after oral infection (Trülzsch *et al*., 2004). This attenuation was confirmed for intravenous infection with *Y. enterocolitica* and intranasal infections with *Y. pseudotuberculosis* (Trülzsch *et al*., 2004; Fisher *et al*., 2007).

Much less is known about the roles of invasin and YpkA. Invasin, which is homologous to intimin from A/E pathogens, induces T cell migration and is thought to cause lymphocytes to disseminate from sites of infection (Leo *et al*., 2015; Arencibia *et al*., 1997). YpkA, also known as YopO, is thought to modulate the
cytoskeleton by interacting with actin and Rho GTPases but has also been shown to induce apoptosis in Jurkat cells via disruption of the mitochondrial membrane potential (Park et al., 2007).

1.4.4 Helicobacter and Campylobacter jejuni γ-glutamyl transferase (GGT)

Upon activation, T cells undergo metabolic reprogramming that requires the uptake of extracellular amino acids, one of which is glutamine (reviewed in Patel and Powell, 2017; reviewed in MacIver et al., 2013). GGTs are threonine N-terminal nucleophile hydrolases that degrade glutathione and related compounds (Suzuki et al., 1986). Bacterial and mammalian homologues are highly conserved and in particular, GGT from Helicobacter species and C. jejuni exhibit a high degree of similarity (Rossi et al., 2012). GGT from H. pylori has been shown to inhibit both the CD3/CD28- and PMA/ionomycin-stimulated proliferation of human T cells, causing G1 cell cycle arrest and the inhibition of c-Myc and c-Raf signalling (Schmees et al., 2007). c-Myc and IRF4 are downregulated in T cells as GGT deprives the extracellular space of glutamine, which is required for these signalling pathways (Wüstner et al., 2015). GGT from H. suis has also been found to inhibit the proliferation of Jurkat cells as well as CD3/CD28-stimulated murine T cells and anti-IgM-stimulated B cells (Zhang et al., 2013a). It is also essential for the gastric colonisation of mice by H. pylori (Chevalier et al., 1999).

GGT is known to play an important role in the colonisation of the avian gut by C. jejuni (Barnes et al., 2007) but little is known about its effects on T cells. Floch et al. (2014), however, demonstrated that C. jejuni GGT inhibited the proliferation of human T cells in vitro, causing cell cycle arrest in the G0/G1 phase.

1.4.5 Salmonella enterica serovar Typhimurium L-asparaginase II

Another amino acid that is required for T cell metabolic reprogramming is asparagine (Torres et al., 2016). Originally, S. Typhimurium was shown to inhibit the CD3/CD8- and PMA/ionomycin-stimulated proliferation of murine T cells in a contact-dependent manner (van der Velden et al., 2005). Expression of the β-chain of
the TCR was also downregulated in T cells infected with *S. Typhimurium*, which was thought to explain the inhibition of proliferation (van der Velden *et al.*, 2008). L-asparaginase II, encoded by the gene *STM3106* (*ansB*), was later found to be the cause of suppressed T cell proliferation and TCR-β expression, and *S. Typhimurium* Δ*ansB* mutants exhibited attenuated virulence in mice (Kullas *et al.*, 2012). L-asparaginase II is an asparagine hydrolase that catabolises asparagine, depriving T cells of this amino acid and suppressing mTOR signalling, which regulates metabolic reprogramming (Torres *et al.*, 2016; McLaughlin *et al.*, 2016). In contrast to experiments with mice, a screen of *S. Typhimurium* transposon insertion mutants in pigs, calves and chickens did not find L-asparaginase II to be required for intestinal colonisation (Chaudhuri *et al.*, 2013).

1.4.6 *Shigella flexneri* invasion plasmid gene D (IpgD)

Another strategy employed by enteric pathogens to modulate the host T cell response is to interfere with lymphocyte chemotaxis. Konradt *et al.* (2011) found that *S. flexneri* were capable of invading PMA-stimulated CD4+ T cells and suppressing their response to the chemoattractant CXCL12 without affecting expression of the CXCL12 receptor CXCR4. It was found that the T3S protein IpgD, which promotes uptake into and survival within epithelial cells (reviewed in Parsot, 2009), hydrolysed intracellular phosphatidylinositol 4, 5-bisphosphate (PIP₂), causing dephosphorylation of the proteins ezrin, radixin and moesin (Konradt *et al.*, 2011). This in turn prevents T cells from becoming polarised in response to chemoattractants. *In vivo* experiments confirmed that *S. flexneri* invade CD4+ T cells in murine mesenteric lymph nodes and impairs their migration (Salgado-Pabón *et al.*, 2013). Only activated T cells are invaded by *S. flexneri* (Konradt *et al.*, 2011), however, recent studies have shown that CD4+ and CD8+ T cells, as well as B cells, are largely targeted by the T3SS of extracellular bacteria (Pinaud *et al.*, 2017). Additionally, it was found that lamina propria lymphocytes were targeted, suggesting the bacteria affect the chemotaxis of lymphocytes responding to the infection without the prior requirement of invasion (Pinaud *et al.*, 2017).
1.4.7 *Vibrio cholerae* cholera toxin (CT) and ETEC heat labile enterotoxin (LT)

CT and LT are structurally related toxins that cause diarrhoea and eliminate T cells by inducing apoptosis (Gill *et al.*, 1981; reviewed in Spangler, 1992). CT and LT are Type II secreted AB5 toxins, of which both subunits are required for toxicity (Sandkvist *et al.*, 1997; Tauschek *et al.*, 2002; reviewed in Spangler, 1992). The B subunit ring binds the ganglioside GM1 on epithelial cells and once inside the cell, the A subunit ADP ribosylates adenylate cyclase, leading to diarrhoea (reviewed in Baldauf *et al.*, 2015). The B subunit of CT has been shown to induce apoptosis in murine T cells *in vitro* independently of the A subunit and preferentially targets the CD8+ subpopulation (Yankelevich *et al.*, 1996). CT-induced apoptosis of murine T cells was confirmed by Arce *et al.* (2005), but the preferential targeting of the CD8+ subpopulation was not observed. In this same study, CT was found to inhibit the proliferation of CD4+ T cells without inducing apoptosis.

Arce *et al.* (2005) also found that LTIIa induced apoptosis in CD8+ T cells and proposed that this may be caused by the toxin cross-linking the ganglioside receptor. When injected into mice, LT caused an increase in circulating corticosterone, which in turn induced apoptosis in immature T and B cell populations (Tamayo *et al.*, 2005). The route of administration of the toxin was reported to affect the induction of apoptosis and it was also found that the enzymatic function of LT was required for this process (Tamayo *et al.*, 2005). Further studies revealed that LT induces apoptosis by different mechanisms in mature and immature lymphocytes (Tamayo *et al.*, 2009).
1.5 **Aims and objectives**

A working model of lymphostatin in colonisation is illustrated in Figure 1.9, showing the three functions that have been attributed to the protein.

Figure 1.9. Schematic of the working model of lymphostatin (LifA) in gut colonisation by EPEC/EHEC. 1. LifA acts on T lymphocytes to inhibit proliferation and the production of pro-inflammatory cytokines (Klapproth *et al.*, 2000). It may be injected directly into intraepithelial lymphocytes or secreted into the gut lumen where it is taken up by lymphocytes or transported across the epithelium to gut associated lymphoid tissue or circulating blood. 2. LifA is injected into enterocytes/colonocytes via the Type III secretion system (T3SS) where it is reported to have an accessory role in the formation of actin pedestals (Cepeda-Molero *et al.*, 2017). 3. LifA influences bacterial adhesion either by direct binding between bacterial and host cells (normal arrow) or via indirect effects on Type III secretion (dashed arrow; Nicholls *et al.*, 2000), and has been reported to disrupt apical junction complexes (Babbin *et al.*, 2009).
There are a number of outstanding questions regarding the role of lymphostatin in colonisation, which include:

- Which domains/motifs are required for the three activities attributed to LifA?
- To what extent are these activities the cause of attenuation of lifA mutants?
- Is the impact of LifA on adherence direct?
- Can the role of LifA in colonisation be explained by its impact on T cells, given the time at which lymphocytes respond during an infection?

Given that little is understood about the molecular mechanisms underlying lymphostatin activity, this study sought to determine which portions of the protein are required for activity, to investigate the role of the putative cysteine protease domain and to identify possible targets of the predicted glycosyltransferase activity of LifA. The overall objectives of this study were to:

1. Identify functional domains of LifA by:
 a) Cloning and purifying recombinant fragments of LifA based on putative domains previously identified by limited tryptic proteolysis.
 b) Determining whether these fragments can inhibit mitogen-stimulated T cell proliferation.
 c) Identifying which fragments, if any, are required for T lymphocyte binding.

2. Probe the role of a predicted C/H/D motif within the putative cysteine protease domain of LifA by:
 a) Creating a C1480A mutant and purifying the mutant protein.
 b) Biophysically characterising the mutant protein and comparing it with wild-type LifA protein.
 c) Comparing the ability of the C1480A mutant LifA protein to inhibit the ConA-stimulated proliferation of bovine T lymphocytes with the wild-type protein.
d) Determining whether LifA is processed in bovine T cells and if so, whether the C/H/D motif is required for this event.

3. Identify putative interacting partners of LifA by:
 a) Using shotgun mass spectrometry to identify peptides that have increased by the mass of GlcNAc from LifA-treated T cells and are thus candidate targets of glycosylation.
 b) Using protein pull-down assays and mass spectrometry to identify proteins that may interact with LifA.
 c) Investigating the impact of LifA on post-translational modifications of the key cellular kinase Akt.
2 Materials and Methods

2.1 Preparation of bovine lymphocytes and T cell enrichment

Peripheral venous blood (50–200 mL) was collected into heparinised bags from 12–18-month old Holstein-Friesian calves in accordance with the requirements of the Animals (Scientific Procedures) Act 1986 under project licence P803DD07A. Blood was centrifuged at 1200 x g for 15 minutes with no brake and the lymphocyte interfaces were removed, pooled into two centrifuge tubes, and made up to 30 mL with phosphate-buffered saline (PBS). Each 30 mL was overlaid onto 20 mL Ficoll-Paque Plus density medium (GE Healthcare Life Sciences) and centrifuged at 1200 x g for 25 minutes with no brake. The lymphocyte cells at the interface were removed and pooled for each donor and made up to 50 mL with PBS and centrifuged at 1200 x g for 10 minutes. Where the cells were contaminated with erythrocytes, the pellet was resuspended in 1 mL of red blood cell lysis buffer (see Appendix 1) and then made up to 50 mL with RPMI-1640 medium (Gibco) with 10 % (v/v) foetal calf serum (FCS; Gibco), 20 mM HEPES (Sigma-Aldrich), 1mM sodium pyruvate (Gibco), 2 mM L-glutamine (Gibco) and 100 μg/mL penicillin/streptomycin (Sigma-Aldrich; RPMI-CT). The cells were washed twice in RPMI-CT and resuspended in 2 mL RPMI-CT. The cells were then counted by trypan blue exclusion (0.4 % (w/v) trypan blue; HyClone) using disposable haemocytometer grids (Kova International).

To enrich for T cells, nylon wool fiber columns (Polysciences Inc.) were used owing to differences in the ability of leukocytes to adhere to the nylon wool matrix, where T cells are relatively non-adherent but B cells and antigen-presenting cells are retained (Eisen et al., 1972; reviewed in Hathcock, 2001). Columns were conditioned by adding 10 mL RPMI-CT, tapping to remove air bubbles, and draining the medium. The column was washed twice with RPMI-CT, tapping to remove air bubbles, and draining the medium. The column was washed twice with RPMI-CT, filled with 5 mL RPMI-CT, sealed and incubated at 37 °C, 5 % CO₂ for 1 hour. The medium was drained from the column, cells were applied at a density of 1 x 10⁸ cells/mL and run into the column. The column was sealed and incubated at 37 °C, 5 % CO₂ for 1 hour. The non-adherent T cells were eluted from the column, which was then washed twice.
with RPMI-CT to enhance recovery of the cells. The cells were counted as described above and the concentration was adjusted for the appropriate experiment.

2.2 Flow cytometry

Samples of 0.2 x 10^7 cells were taken before and after T cell enrichment, centrifuged at 425 x g for 10 minutes and washed in FCS buffer (PBS with 2 % (v/v) FCS). Cells were fixed by incubating them with 4 % (w/v) paraformaldehyde (PFA) on ice for 30 minutes before being resuspended in FCS buffer and stored at 4 °C until required.

Samples were split into two aliquots, one of which was incubated with 2 µg/mL monoclonal MM1A IgG1 anti-CD3 antibody specific to T cells (Monoclonal Antibody Center, Washington State University) for 1 hour on ice then washed three times with FCS buffer. Both aliquots were then incubated with 4 µg/mL monoclonal fluorescein isothiocyanate (FITC)-conjugated goat anti-mouse IgG1 (Invitrogen) for 1 hour on ice before a final three washes with FCS buffer. Cells were resuspended in 300 µL of FCS buffer and the purity of T cells in each sample was measured using FACScalibur and Fortessa X20 cytometers (both from BD Biosciences) with gates for live cells, single cells and T cells. A minimum of 10,000 events were sampled. Data was analysed using FlowJo® v10 software (FlowJo, LLC). T cells typically accounted for 50–60 % of the pre-enriched cell population and 70–90 % of the post-enriched cell population.

2.3 T lymphocyte proliferation assays

Wells of a 96 well plate were seeded in triplicate with 2 x 10^5 cells in 50 µL RPMI-CT. Proteins at the final concentrations specified in figures were added to the appropriate wells in triplicate in 25 µL. The buffers that the proteins were dissolved in (see Appendix 1) were used as controls. Concanavalin A (ConA; Sigma-Aldrich) at a stock concentration of 4 µg/mL was added to the cells in a volume of 25 µL RPMI-CT to make a final concentration of 1 µg/mL. A background control was set up using 100 µL RPMI-CT. Cells alone and cells with ConA, made up to 100 µL
with RPMI-CT, were used as negative and positive controls respectively. Empty wells were filled with PBS to reduce evaporation of the media during incubation.

The plates were incubated at 37 °C, 5 % CO2 for 3 days and, at 16 hours before the end of the assay, 20 μL CellTitre 96 AQueous One Solution (Promega) was added to each well. This reagent contained a tetrazolium compound and electron coupling reagent such that in the presence of proliferating cells a formazan compound was formed that could be measured by colorimetry. Absorbance was read at 492 nm using a Multiskan Ascent Spectrophotometer (Thermo Scientific). Ratios of the absorbance value for each titration against the positive control (proliferation indices) were calculated using averaged experimental (E), maximum proliferation (Mp) and background (B) absorbance values with the following formula:

\[
Proliferation \text{ index} = \frac{(E - B)}{(Mp - B)}
\]

Proliferation index values were plotted against the concentration of protein or type of protein added with standard deviations using Microsoft Excel 2013. The mean of three technical replicates from each blood donor was used to calculate the mean and standard deviation from at least three independent studies. The effective dose at which 50 % inhibition of ConA-stimulated proliferation was observed (ED50) for certain experiments was calculated using R with the drc package (Ritz et al., 2015). The standard error of the mean was calculated for each ED50 using Minitab 17. Mann-Whitney tests were used to determine statistically significant differences between the ED50 values using Minitab 17. P values ≤ 0.05 were taken to be statistically significant.

2.4 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)

Proteins were analysed by SDS-PAGE using the Novex (Life Technologies) gel system. Where the detection of full-length LifA was required, 3–8 % Tris-Acetate gels (Novex) were used. For analysis of proteins < 100 kDa, 4–12 % Tris-Glycine gels (Novex) were used. The Tris-Acetate and Tris-Glycine gels were run with 1 x Tris-Acetate SDS running buffer (Novex), with 0.25 % (v/v) antioxidant
(Invitrogen) in the buffer that was in contact with the anode of the gel tank, and 1 x Tris-Glycine SDS running buffer (Novex) respectively. HiMark pre-stained protein standards (Invitrogen) and Precision Plus Protein pre-stained standards (Bio-Rad) were used with the Tris-Acetate and Tris-Glycine gels respectively. The gels were typically run at 180 V until the dye front had left the bottom of the gel. Gels were analysed by staining with Coomassie stain (Bio-Rad), according to the manufacturer’s instructions, or by western blotting. Where the gels were stained, the images were captured using a Gel Doc EZ system (Bio-Rad).

2.5 Western blotting

Proteins were transferred to polyvinylidene fluoride (PVDF) membranes (Amersham Hybond) for western blotting. The gels were soaked in 2 x transfer buffer (Novex) with 0.04 % (w/v) SDS (Sigma-Aldrich) for 15 minutes while PVDF membranes were washed in methanol then distilled water before being soaked and gently rocked in 1 x transfer buffer with 10 % (v/v) methanol (Fisher Scientific) and 0.1 % (v/v) antioxidant (Novex) for 15 minutes. To get efficient transfer of large proteins (> 100 kDa), gels were transferred using a wet transfer at 25 V for 75 minutes, using a Mini Blot Module (Life Technologies). For enhanced chemiluminescence (ECL) detection, which relies on production of a chemiluminescent product by horseradish peroxidase (HRP)-conjugated secondary antibodies, membranes were blocked in Tris-buffered saline/0.1 % (v/v) Tween® 20 (TBS-T; VWR International) and 5 % (w/v) bovine serum albumin (BSA; Merck Millipore) for 1 hour on a rocking platform, then rinsed briefly with TBS-T and washed for 15 minutes, followed by an additional two washes of 5 minutes. For blots using fluorophore conjugated antibodies, membranes were treated as described for ECL blots but the TBS-T/5 % BSA block was replaced with Odyssey® Blocking Buffer in TBS (LI-COR Biosciences). Membranes were incubated at 4 °C overnight with antibodies as indicated at the appropriate dilutions.

ECL blots were washed with TBS-T as above but for fluorescent blots the final wash was performed with PBS/0.1 % Tween® 20 (PBS-T). Membranes were incubated at room temperature for 1 hour with secondary antibodies as indicated at
the appropriate dilutions. ECL and fluorescent blots were washed with TBS-T and PBS-T respectively as above. ECL blots were dried and developed using SuperSignal West Pico Chemiluminescent Substrate (Thermo Scientific) following the manufacturer’s instructions and exposed to Amersham Hyperfilm for various times to achieve clear images. Films were developed using an SRX-101A film processor (Konica Minolta). Blots using fluorophore-conjugated antibodies were scanned using a LI-COR Odyssey blot imager and images were analysed in Image Studio Lite v5.2 (both from LI-COR Biosciences).

2.6 T lymphocyte protein association assays

Enriched T cells were serum starved at a density of 8 x 10^6 cells/mL in serum-free RPMI medium with 25 mM HEPES (Sigma-Aldrich) at 37 °C, 5 % CO_2 for 1 hour. Cells were divided into 1.5 mL aliquots in microcentrifuge tubes and proteins were added to the cells at a final equimolar concentration of 5.45 nM, equivalent to 2 µg/mL of wild-type (WT) recombinant LifA (rLifA), before the samples were incubated at 37 °C for the indicated times. Buffer treated cells were used as negative controls and protein in medium without cells was used a control to ensure that protein was not binding to the microcentrifuge tubes.

Samples were centrifuged at 17,949 x g, 4 °C for 1 minute to collect the T cells and the supernatant was discarded. Samples were centrifuged for a further 15 seconds to collect and aspirate residual supernatant. Cells were resuspended in 100 µL of ice-cold PBS and transferred to clean microcentrifuge tubes then centrifuged as described above. This process was repeated a second time. Cells were lysed with 90 µL of NP-40 lysis buffer (see Appendix 1) and incubated on ice for 30 minutes. Lysates were centrifuged at 17,949 x g, 4 °C for 10 minutes and the supernatants were transferred into clean microcentrifuge tubes for further processing. Protein samples (supernatants) were denatured by the addition of an appropriate volume of 1 x sample reducing agent and 1 x lithium dodecyl sulphate (LDS) sample buffer (both from Novex) and heated at 70 °C for 10 minutes. Samples were stored at -20 °C until analysis. Before analysis, samples were mixed and heated at 70 °C for 2 minutes then centrifuged briefly to sediment insoluble material. Western blots used
rabbit polyclonal anti-LifA antibody (Stevens Laboratory, Clone 45) at a dilution of 1/20,000, which was detected using HRP-conjugated goat anti-rabbit secondary antibody (Bio-Rad), applied at a dilution of 1/10,000 in TBS-T/2 % (w/v) skimmed milk powder (Chem Cruz).

2.7 Bacterial growth media and chemicals

Bacterial strains were cultured in suspension using lysogeny broth (LB) or on LB agar plates (Sigma-Aldrich) and supplemented with antibiotics as indicated. Antibiotics were used at the following final concentrations: Kanamycin (Kan), 30 µg/mL; Ampicillin (Amp), 25 µg/mL; Nalidixic acid (Nal), 20 µg/mL. Where indicated, cultures were supplemented with 0.5 % (w/v) D-glucose. Glycerol stocks for bacteria were prepared from fresh liquid cultures and supplemented with glycerol at a final concentration of 15 % (v/v). To induce Type III secretion, bacteria were grown in Dulbecco’s Modified Eagle Medium supplemented with 4.5 g/L D-glucose, L-glutamine and sodium bicarbonate (DMEM; Sigma-Aldrich; Kenny et al., 1997a).

2.8 Bacterial strains, plasmids and oligonucleotides

The strains and plasmids used in this study are listed in Tables 2.1 and 2.2 respectively. The pRham-LifA-6 x His plasmid encodes the lifA gene, which is controlled by a rhamnose-inducible and glucose-repressible promoter (Cassady-Cain et al., 2016). The pRham empty vector was used as a negative control. The oligonucleotides used for cloning, site-directed mutagenesis and double-stranded sequencing are shown in Table 2.3. EPEC E2348/69 clones from Taylor (1970) and Cepeda-Molero et al. (2017) were provided and PCR validated by Professor Brendan Kenny, The Institute for Cell and Molecular Biosciences, Newcastle University.
Table 2.1. Strains used in this study. Properties of strains used are shown with references.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Description</th>
<th>Antibiotic resistance</th>
<th>Reference/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli E2348/69<sup>a</sup></td>
<td>EPEC O127:H6 ΔpE2348-2 gyrA, ftsK, ϕhID-purB.</td>
<td>Nal<sup>R</sup></td>
<td>Levine et al. (1978); Levine et al. (1985)</td>
</tr>
<tr>
<td>E. coli E2348/69 ΔlifA</td>
<td>E2348/69<sup>a</sup> with a complete deletion of lifA.</td>
<td>Nal<sup>R</sup></td>
<td>Stevens et al. (2002)</td>
</tr>
<tr>
<td>E. coli E2348/69 ΔescN::Kan<sup>k</sup></td>
<td>E2348/69<sup>a</sup> with a deletion of escN, encoding an ATPase of the LEE-encoded T3SS, and the insertion of a Kan resistance cassette.</td>
<td>Kan<sup>R</sup></td>
<td>Garmendia et al. (2004)</td>
</tr>
<tr>
<td>E. coli E2348/69<sup>b</sup></td>
<td>Wild-type EPEC O127:H6 strain.</td>
<td>Str<sup>R</sup></td>
<td>Taylor (1970); Prof. Brendan Kenny</td>
</tr>
<tr>
<td>E. coli E2348/69 ΔlifA</td>
<td>Derivative of the E2348/69<sup>b</sup> strain from B. Kenny with a deletion of lifA.</td>
<td>Str<sup>R</sup></td>
<td>Cepeda-Molero et al. (2017); Prof. Brendan Kenny</td>
</tr>
<tr>
<td>E. coli E2348/69 ΔlifA-like</td>
<td>Derivative of the E2348/69<sup>b</sup> strain from B. Kenny with a deletion of the lifA-like gene.</td>
<td>Str<sup>R</sup></td>
<td>Cepeda-Molero et al. (2017); Prof. Brendan Kenny</td>
</tr>
<tr>
<td>E. coli E2348/69 ΔlifA ΔlifA-like</td>
<td>Derivative of the E2348/69<sup>b</sup> strain from B. Kenny with deletions of both lifA and lifA-like genes.</td>
<td>Str<sup>R</sup></td>
<td>Cepeda-Molero et al. (2017); Prof. Brendan Kenny</td>
</tr>
<tr>
<td>E. coli E2348/69 ΔescN</td>
<td>Derivative of the E2348/69<sup>b</sup> strain from B. Kenny with a deletion of escN.</td>
<td>Str<sup>R</sup></td>
<td>Cepeda-Molero et al. (2017); Prof. Brendan Kenny</td>
</tr>
<tr>
<td>E. coli® 10G</td>
<td>Chemically-competent cells for transformation and protein expression. F<sup>+</sup> mcrA Δ(mrr-hsdRMS-mcrBC) endA1 recA1 ϕ80lacZΔM15 lacX74 araD139 Δ(ara, leu)7697 galU galK rpsL<sup>L</sup> (Str<sup>R</sup>) nupG λ- tonA</td>
<td>Str<sup>R</sup></td>
<td>Lucigen</td>
</tr>
<tr>
<td>XL 10-Gold Ultracompetent cells</td>
<td>Chemically-competent cells for transformation. Tet<sup>R</sup> Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac Ite<sup>L</sup> [F<sup>+</sup> proAB lac<sup>b</sup>ZΔM15 Tn10 (Tet<sup>R</sup>) Amy Cam<sup>R</sup>]</td>
<td>Tet<sup>R</sup>, Cam<sup>R</sup></td>
<td>Agilent Technologies</td>
</tr>
</tbody>
</table>

^a is a Nal resistant clone derived from the original EPEC E2348/69 clone ^b.
Table 2.2. Plasmids used in this study. Properties of plasmids used are shown with references.

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Description</th>
<th>Antibiotic resistance</th>
<th>Reference/source</th>
</tr>
</thead>
<tbody>
<tr>
<td>pRham-LifA-6 x His</td>
<td>Encodes LifA tagged at the C-terminus with 6 x His under a rhamnose-inducible promoter.</td>
<td>KanR</td>
<td>Cassady-Cain et al. (2016)</td>
</tr>
<tr>
<td>pRham empty</td>
<td>Re-ligated pRham vector backbone.</td>
<td>KanR</td>
<td>Cassady-Cain et al. (2016)</td>
</tr>
<tr>
<td>pRham-LifA-6 x His DXD-AAA</td>
<td>As pRham-LifA-6 x His but with a DXD-AAA substitution in the glycosyltransferase domain.</td>
<td>KanR</td>
<td>Bease (2015); Cassady-Cain et al. (2016)</td>
</tr>
<tr>
<td>pRham-LifA-6 x His F1</td>
<td>Encodes F1 fragment of LifA (aa 1–1620) with C-terminal 6 x His tag under a rhamnose-inducible promoter.</td>
<td>KanR</td>
<td>Made in this study</td>
</tr>
<tr>
<td>pRham-LifA-6 x His F3</td>
<td>Encodes F3 fragment of LifA (aa 2111–2900) with C-terminal 6 x His tag under a rhamnose-inducible promoter.</td>
<td>KanR</td>
<td>Made in this study</td>
</tr>
<tr>
<td>pRham-LifA-6 x His F5</td>
<td>Encodes F5 fragment of LifA (aa 2901–3223) with C-terminal 6 x His tag under a rhamnose-inducible promoter.</td>
<td>KanR</td>
<td>Made in this study</td>
</tr>
<tr>
<td>pRham-LifA-6 x His GT</td>
<td>Encodes GT domain of LifA (aa 221–1033) with N-terminal 6 x His tag under a rhamnose-inducible promoter.</td>
<td>KanR</td>
<td>Made in this study</td>
</tr>
<tr>
<td>pRham-LifA-6 x His C1480A</td>
<td>As pRham-LifA-6 x His but with a C1480A substitution in the cysteine protease domain.</td>
<td>KanR</td>
<td>Made in this study</td>
</tr>
<tr>
<td>pWhitescript</td>
<td>Mutagenesis control. Allows for colour screening.</td>
<td>AmpR</td>
<td>Agilent Technologies</td>
</tr>
<tr>
<td>pUC18</td>
<td>Transformation control. Allows for colour screening.</td>
<td>AmpR</td>
<td>Agilent Technologies</td>
</tr>
</tbody>
</table>
Table 2.3. Oligonucleotides used in this study.

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’ to 3’)</th>
<th>Purpose</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>LifA F1 CT forward</td>
<td>GAAGGAGATATACATA TGAGACTGCCAGAGAA AGTTCTT</td>
<td>Cloning of the F1 fragment of LifA with C-terminal 6 x His tag</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA F1 CT reverse</td>
<td>GTGATGGTGTTGATGTGATGAT GTAATGTCATAGCC TCAAT</td>
<td>As LifA F1 CT forward</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA F3 NT forward</td>
<td>CATCATCACACCATCA CCGGGACTGCGAATCT GCTGAG</td>
<td>Cloning of the F3 fragment of LifA with N-terminal 6 x His tag</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA F3 NT reverse</td>
<td>GTGGCGCGCCGCTCTATT ATCCATCTGTTTTTTTTT TCAT</td>
<td>As LifA F3 NT forward</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA F3 CT forward</td>
<td>GAAGGAGATATACATA TGAGACTGCCAGAGAA AGTTCTT</td>
<td>Cloning of the F3 fragment of LifA with C-terminal 6 x His tag</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA F3 CT reverse</td>
<td>GTGATGGTGTTGATGTGATGAT GTAATGTCATAGCC TCAAT</td>
<td>As LifA F3 CT forward</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA F5 NT forward</td>
<td>CATCATCACACCATCA CCGGGACTGCGAATCT GCTGAG</td>
<td>Cloning of the F5 fragment of LifA with N-terminal 6 x His tag</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA F5 NT reverse</td>
<td>GTGGCGCGCCGCTCTATT ATCCATCTGTTTTTTTTT TCAT</td>
<td>As LifA F5 NT forward</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA F5 CT forward</td>
<td>GAAGGAGATATACATA TGAGACTGCCAGAGAA AGTTCTT</td>
<td>Cloning of the F5 fragment of LifA with C-terminal 6 x His tag</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA F5 CT reverse</td>
<td>GTGATGGTGTTGATGTGATGAT GTAATGTCATAGCC TCAAT</td>
<td>As LifA F5 CT forward</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA GT NT forward</td>
<td>CATCATCACACCATCA CCGGGACTGCGAATCT GCTGAG</td>
<td>Cloning of the GT domain of LifA with N-terminal 6 x His tag</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA GT NT reverse</td>
<td>GTGGCGCGCCGCTCTATT ATCCATCTGTTTTTTTTT TCAT</td>
<td>As LifA GT NT forward</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA GT CT forward</td>
<td>GAAGGAGATATACATA TGAGACTGCCAGAGAA AGTTCTT</td>
<td>Cloning of the GT domain of LifA with C-terminal 6 x His tag</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA GT CT reverse</td>
<td>GTGATGGTGTTGATGTGATGAT GTAATGTCATAGCC TCAAT</td>
<td>As LifA GT CT forward</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Primer (cont.)</td>
<td>Sequence (5’ to 3’)</td>
<td>Purpose</td>
<td>Source</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>LifA-C1480A-1</td>
<td>CTATGGTAAACCCAAGA AGGACCGGCAATGGGA TTAGCCTTACTTTIATT</td>
<td>For site-directed C1480A substitution</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA-C1480A-2</td>
<td>TAAATAAAGTAAGGCT AATCCCCATGGCGGTCC TTCTTGGGTACCAATA G</td>
<td>As LifA-C1480A-1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>pRham forward</td>
<td>GAAGGAGATATACATA TGAGACTGCCAGAGAA AGTTCTT</td>
<td>Replication of pRham plasmids and sequencing of inserts in the pRham vector</td>
<td>Lucigen</td>
</tr>
<tr>
<td>pETite reverse</td>
<td>GTGATGGTGGTGATAGT GGTTAAAAAAGGTTGTCACATT</td>
<td>As pRham forward</td>
<td>Lucigen</td>
</tr>
<tr>
<td>LifA FL For1</td>
<td>GCAGGAAGATAGCTG GTAAC</td>
<td>Forward primer for sequencing of the lifA genes</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For2</td>
<td>GTTCCCACTGAAAGCAT TT</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For3</td>
<td>GGTGAAACCGCATTTTC AAT</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For4</td>
<td>CGTGAGCTCAATGGATT CATG</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For5</td>
<td>CCTGTCAAAGATGTTTC AAAC</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For6</td>
<td>GACTCTGAAAACCTGG GAAG</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For7</td>
<td>CGGACTAGGAATAACT GGTG</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For8</td>
<td>GGATTACCAACTTATGG CG</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For9</td>
<td>CCAACGAATCGCTACTCA</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For10</td>
<td>CTGTCCCGCAGTTCTG AC</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For11</td>
<td>CCGGAAACCTCTCGCGC AGC</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For12</td>
<td>CAGTCTCCTCTCTCTTT GC</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For13</td>
<td>CCGAAAGTGGTCCCAGCT CACC</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For14</td>
<td>CAGGCTGTTATCCCGAA AG</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For15</td>
<td>GGTCATACACCAACGGTA AAC</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For16</td>
<td>GAACAGCCAGGTATCG GCAG</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>Primer (cont.)</td>
<td>Sequence (5’ to 3’)</td>
<td>Purpose</td>
<td>Source</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>LifA FL For17</td>
<td>CTTATCCGAAATCCCTAG</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL For18</td>
<td>GCGGCTACCAAGTGATTTAC</td>
<td>As LifA FL For1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev1</td>
<td>GGAATAGAGCTGCCCTGATG</td>
<td>Reverse primer for sequencing of the lifA genes</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev2</td>
<td>GCCAGATTACAGAACGCATC</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev3</td>
<td>CAGATACAGACGTGAGTAGG</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev4</td>
<td>GCCAGTATGATTTTGTCGG</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev5</td>
<td>CAAACTCAGCTCAAAGGCGAC</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev6</td>
<td>CTCTCAGGGGAAGTACTGTG</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev7</td>
<td>CAGCCATTGTGTAGCCGTTC</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev8</td>
<td>GTACTGTCTTCGTGCCCCTG</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev9</td>
<td>CATCACCCTGAGACGCAGAG</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev10</td>
<td>GCCGTCTATTGAGTAGCCGG</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev11</td>
<td>GGTTGCGACGTGCAATAGTTG</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev12</td>
<td>CGATCAAGAGTCTATCGTA</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev13</td>
<td>CGCAAGAACGCTTTTATAGGG</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev14</td>
<td>CTGATATCTGGAGGGTCTC</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev15</td>
<td>CCATCAGATATGGCAGACG</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
<tr>
<td>LifA FL Rev16</td>
<td>GTAGCATAAAGCTCTCTGAG</td>
<td>As LifA FL Rev1</td>
<td>Sigma-Aldrich</td>
</tr>
</tbody>
</table>

2.9 Plasmid DNA purification

Plasmid DNA was prepared from small-scale stationary phase bacterial cultures (5–10 mL; Miniprep) or larger-scale cultures (50–100 mL; Midiprep) using alkaline lysis followed by affinity purification of plasmid DNA. To perform a
Miniprep, 3 mL from overnight cultures were each added to two 1.5 mL microcentrifuge tubes and centrifuged at 17,949 x g for 10 minutes. DNA from the pellets was purified using a QIAprep Spin Miniprep Kit (Qiagen) following the manufacturer’s instructions. One QIAprep spin column was used for each 3 mL culture and columns were left to dry for 10 minutes. The DNA was eluted in 30 µL of nuclease-free distilled water (nH₂O), which was left to stand for 5 minutes before being centrifuged for 1 minute.

To perform a Midiprep, 50 mL overnight cultures were centrifuged at 6000 x g, 4 °C for 15 minutes. Plasmid DNA from the pellets was purified using a QIAprep Spin Midiprep Kit with filter cartridges (Qiagen) following the manufacturer’s instructions and the final DNA pellet was dissolved in 50 µL of nH₂O.

The DNA concentrations were measured by the A₂₆₀/A₂₈₀ ratio using a NanoDrop (ND-1000) Spectrophotometer (Thermo Scientific), which displays concentrations in ng/µL.

2.10 Cloning

Expression constructs for the LifA fragments were created using an Expresso® Rhamnose Cloning and Expression System kit (Lucigen) following the manufacturer’s instructions. Primers were designed according to the manufacturer’s instructions for both N- and C-terminal 6 x His tagged variants of the proteins (see Table 2.3), with the exception of F1, which we predicted may undergo N-terminal processing in E. coli. Polymerase chain reaction (PCR) was used to amplify the desired fragments of lifA, using the sequence-validated pRham-LifA-6 x His plasmid containing full-length lifA from E2348/69 as a template (Cassady-Cain et al., 2016). Three 100 µL PCR reactions were performed for each fragment, with 100 ng of pRham-LifA-6 x His template being mixed with 1 x PCR master mix. The master mix contained 1 x HF buffer (Thermo Scientific), 10 µM of forward and reverse primers for the appropriate fragments (see Table 2.3), 10 mM dNTPs, 2 U/µL long range Phusion Hot Start II High-Fidelity Polymerase (Thermo Scientific) and nH₂O to make up the 100 µL reaction volume. Separate no-template negative control and
parent plasmid DNA pRham-LifA-6 x His positive control reactions were also included. The PCR parameters are listed in Table 2.4. The PCR products were analysed on a 0.8 % (w/v) agarose (Invitrogen) gel against a 1 kb DNA ladder (Promega). Gels were run at 120 V for 20 minutes, stained with SYBR® Safe (Invitrogen) and imaged using a FluorChem® HD2 chemiluminescent imager (Alpha Innotech).

Table 2.4. PCR programme used for amplifying lifA fragments for cloning and screening potential recombinants.

<table>
<thead>
<tr>
<th>Segment</th>
<th>No. of cycles</th>
<th>Temperature (°C)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>98</td>
<td>10 seconds</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>98</td>
<td>10 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
<td>15 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72</td>
<td>10 minutes</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>72</td>
<td>10 minutes</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>∞</td>
</tr>
</tbody>
</table>

Amplicons for each fragment were excised and split into two microcentrifuge tubes with ~300 mg of gel in each. The DNA was extracted from the gel by silica-membrane-based purification using a QIAquick® Gel Extraction Kit (Qiagen) following the manufacturer’s instructions and the final DNA pellet was dissolved in 30 µL of nH₂O.

E. coli® 10G chemically-competent cells were thawed on ice and prepared according to the manufacturer’s instructions. Reactions for lifA amplicons mixed with pRham were added to separate aliquots of cells. Quantities of 50 ng of N-His Positive Control A Insert and 25 ng of C-His Positive Control B Insert were added to aliquots of cells and the corresponding pRham N-His or pRham C-His vector to determine the transformation efficiency. Vector alone was used as a negative control. The transformation reactions were gently swirled and incubated on ice for 30 minutes, followed by heat shock at 42 °C for 30 seconds and incubation on ice for 2 minutes. The cells were suspended in the Recovery Medium provided with the kit and incubated at 37 °C for 1 hour with shaking at 225–250 rpm to allow recovery and expression of plasmid-mediated antibiotic resistance. Transformed cells were
then spread onto LB/Kan agar with 0.5 % (w/v) glucose and incubated at 37 °C overnight. Cloning is ligation-independent and recombination of the vector and lifA amplicons occurs within the host cell. Candidate recombinants were screened for the desired inserts as described in Section 2.12.

2.11 Site-directed mutagenesis of the C/H/D motif of lymphostatin

Mutagenesis of the C/H/D motif was performed using a QuikChange II XL Site-Directed Mutagenesis Kit (Agilent Technologies) following the manufacturer’s instructions with some modifications. The primers LifA-C1480A-1 (forward) and LifA-C1480A-2 (reverse; see Table 2.3) were designed using the QuikChange Primer Design Program (www.agilent.com/genomics/qcpd), with the aim of replacing the predicted catalytic cysteine at amino acid position 1480 of E2348/69 lifA with an alanine residue using a codon that would simultaneously create a BsrDI restriction site. PCR was performed using 10 ng of the pRham-LifA-6 x His plasmid as a template, 1 x reaction buffer, 125 ng of each of the forward and reverse primers, 2 % (v/v) dNTP mix, 6 % (v/v) QuikSolution reagent and nH₂O to make up to 50 µl reaction volume. PfUUltra High-Fidelity DNA polymerase was added to the reaction mixture at 2.5 U/µL. PCR was used to introduce the alanine residue by complete replication of the plasmid, followed by digestion of the parent plasmid using 10 U/µL DpnI, which digests methylated template DNA but not DNA generated in the PCR reaction. A commercial pWhitescript plasmid was used as a positive mutagenesis control, using primers (sequence not disclosed by manufacturer) that repair a mutation in the β-galactosidase gene, which can be detected by blue-white screening using a chromogenic β-galactosidase substrate. The PCR parameters used are listed in Table 2.5.
Table 2.5. PCR programme used for site-directed mutagenesis of the pRham-LifA-6 x His plasmid.

<table>
<thead>
<tr>
<th>Segment</th>
<th>No. of cycles</th>
<th>Temperature (°C)</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>95</td>
<td>1 minute</td>
</tr>
<tr>
<td></td>
<td></td>
<td>95</td>
<td>50 seconds</td>
</tr>
<tr>
<td></td>
<td></td>
<td>68</td>
<td>50 seconds</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>68</td>
<td>13 minutes (1 minute/kb of plasmid)</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>68</td>
<td>7 minutes</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>15</td>
<td>∞</td>
</tr>
</tbody>
</table>

XL 10-Gold Ultracompetent cells were thawed on ice and prepared according to the manufacturer’s instructions. The DpnI-treated DNA samples were added to separate aliquots of cells. A quantity of 0.01 ng of pUC18 plasmid was added to an aliquot of cells to determine the transformation efficiency. The transformation reactions were gently swirled and incubated on ice for 30 minutes to ensure maximum transformation efficiency, heat shocked at 42 °C for 30 seconds and then incubated on ice for 2 minutes. The cells were suspended in NZY+ broth (see Appendix 1), which was used as a recovery medium before plating, and incubated at 37 °C for 1 hour with shaking at 225–250 rpm. The cells transformed with the mutant plasmid were spread onto LB/Kan agar with 0.5 % (w/v) glucose and cells transformed with the pWhitescript and pUC18 plasmids were spread onto LB/Amp agar. The LB/Amp plates also had 250 μL of 80 μg/mL X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside; Promega) and 250 μL of 20 mM IPTG (isopropyl β-D-1-thiogalactopyranoside; Sigma-Aldrich) spread onto the agar before the cells were added to allow for blue-white screening. The plates were incubated at 37 °C for > 16 hours.

2.12 PCR screening of putative recombinants

2.12.1 Screening of whole plasmids

Putative clones of the lifA fragments and the cysteine protease mutant were initially screened by PCR to verify that they contained the appropriate inserts.
Glycerol stocks were made from each of the cultures, which were stored at -80 °C for further use and 2 µL of each culture was lysed in 198 µL of nH₂O. The lysed cells were mixed with 1 x PCR master mix, which contained 1 x HF buffer, 10 µM pRham forward primer, 10 µM pETite reverse primer (see Table 2.3), 10 mM dNTPs and 2 U/µL Phusion polymerase to make up 20 µL reaction volume. PCR and agarose gel screening were performed as described previously for cloning.

2.12.2 BsrDI digests of plasmids

PCR was used to amplify a region of putative pRham-LifA-6 x His C1480A plasmids containing the cysteine protease domain using primers LifA FL For3 and LifA FL Rev8 (see Table 2.3). BsrDI was used to distinguish between mutated lifA, which contains an additional BsrDI restriction site at the location of the C1480A substitution, and false positives, which contain only two naturally-occurring BsrDI restriction sites between the chosen primer sites. Amplicons were mixed with 1 x BsrDI master mix, which contained 1 x NEBuffer™ 2.1 (50 mM NaCl, 10 mM Tris-HCl, pH 7.9, 10 mM MgCl₂, 100 µg/mL BSA) and 0.5 U/µL BsrDI (both from New England BioLabs® Inc.). A negative and positive control of nH₂O and pRham-LifA-6 x His plasmid, amplified with primers LifA FL For3 and LifA FL Rev8, were also treated with BsrDI. The DNA was digested at 65 °C for 1 hour and the digestion products were analysed on a 0.8 % (w/v) agarose gel against a 1 kb DNA ladder. Gels were run as previously described. Clones positive for the mutation were archived and plasmid DNA was prepared as described in Section 2.12.3 for sequencing.

2.12.3 Sanger sequencing of plasmids

Plasmids containing fragments of lifA or the predicted C1480A substitution were verified by conventional Sanger sequencing by GATC Biotech, Source BioScience and Edinburgh Genomics. The LifA forward primers FL For1–18, the reverse primers FL Rev1–16, the pRham forward primer and the pETTite reverse
primer were used to sequence the plasmids, as appropriate to the insert (see Table 2.3).

The sequences were assembled using Lasergene SeqMan Pro (DNASTAR). Briefly, the sequence was clipped using SeqMan Pro to remove any areas of low sequence quality. The complete sequences were constructed by creating contigs of overlapping sequences in SeqMan Pro and differences in the original sequences were resolved by comparison of overlapping sequences with reference to sequencing chromatograms if needed. The complete sequences were compared with the wild-type *E. coli* E2348/69 genome using NCBI Blast (Iguchi *et al.*, 2009; reviewed in Madden, 2013) to identify any unintended mutations that may have been introduced to the sequence.

2.13 Pilot-scale protein expression assays

Protein was overexpressed in *E. clonit*® 10G cells transformed with pRham-based plasmids encoding fragments of *lifA*, and XL 10-Gold Ultracompetent cells transformed with the pRham-LifA-6 x His C1480A plasmid. *E. clonit*® 10G with the pRham empty plasmid was used as a negative control. Fresh 10 mL LB subcultures were made from overnight cultures inoculated with single colonies. The subcultures were incubated at 30 °C until they reached an absorbance at 600 nm (A$_{600}$) between 0.5 and 0.6. Samples of uninduced cultures were collected and held on ice, then 0.2 % (w/v) L-rhamnose was added to cultures to induce protein production. At 3 hours post-induction, the induced and uninduced samples were centrifuged at 17,949 x g, 4 °C for 10 minutes and the pellets were lysed with 100 µL of BugBuster MasterMix (Novagen). The lysates were mixed at room temperature for 10 minutes then centrifuged again at 17,949 x g, 4 °C for 10 minutes. The supernatants were collected and the insoluble pellet was resuspended in 100 µL of BugBuster for analysis by SDS-PAGE.

Protein concentration was quantified using the Direct Detect system (Merck Millipore) according to the manufacturer’s instructions using BugBuster as the buffer control. The samples were then denatured in sample reducing agent and LDS sample
buffer as described in Section 2.6. Samples were stored at -20 °C and centrifuged briefly as described previously before SDS-PAGE analysis.

2.14 Optimisation of protein production

Overnight cultures of *E. cloni*® 10G transformed with the various plasmids, grown in LB/Kan broth were separately diluted 10-fold in either LB/Kan or 2 x tryptone/yeast extract (2xTY)/Kan broth and grown at 37 °C to an A_{600} of 0.5. Cultures were either grown normally or stimulated to overproduce chaperones by heat/cold shock. Heat/cold shock cultures were grown to an A_{600} of 0.2, incubated in a 42 °C water bath for 15 minutes then left to recover at room temperature for 20 minutes. These cultures were then incubated in ice water for 15 minutes then left to recover again at room temperature for 20 minutes before resuming growth at 37 °C to an A_{600} of 0.5.

Cultures were cooled to the appropriate induction temperature and induced with the addition of 0.2 % (w/v) L-rhamnose when the A_{600} reached 0.6. The cultures were incubated at either 20 or 30 °C and A_{600} measurements were taken 1, 2, 3 and 4 hours after induction. Aliquots of 1 mL of culture were taken at each time point. The aliquots were centrifuged at 12,500 x g in a benchtop centrifuge for 10 minutes, the supernatant was discarded and the pellets were stored at -20 °C until ready for further processing. The pellets were dissolved in 6 µL of BugBuster for every 0.01 A_{600} unit measured. A volume of 5 µL from each lysate was mixed with 5 µL of 10 x sample reducing agent and 5 µL of 4 x LDS sample buffer then boiled at 100 °C for 2 minutes and run on a 4–12 % Tris-Glycine gel (Bio-Rad) at 250 V for 22 minutes as described in Section 2.4.

Once optimal conditions for induction were defined, large-scale protein production was carried out by first inoculating 3 x 25 mL LB/Kan overnight cultures with a single colony of the appropriate strain. From these overnight cultures, 5 mL was added to each of 12 x 500 mL LB or 2xTY and grown at 30 °C for 3 hours with 0.2 % (w/v) L-rhamnose. The cultures were centrifuged at 6000 x g, 4 °C for 20 minutes, the supernatant was discarded, and the pellets were flash frozen in liquid nitrogen and stored at -80 °C until required for protein purification.
2.15 Purification of recombinant proteins

2.15.1 Four-step purification

Recombinant proteins were purified to varying degrees using a four-step process using ion metal affinity chromatography (IMAC), size exclusion chromatography (SEC), anion exchange chromatography and a desalt column on a fast protein liquid chromatography (FPLC) unit (ÄKTA Explorer 10 UV900 and ÄKTA pure LC systems; GE Healthcare Life Sciences ÄKTA). All buffers used throughout the purification process were filtered and degassed to remove particulate matter (see Appendix 1). The presence of the proteins in samples throughout the purification process was monitored using SDS-PAGE and UV absorbance at 280 nm. The production and purification of the recombinant glycosyltransferase domain (rGT) was performed by Dr Liz Blackburn, Edinburgh Protein Production Facility (EPPF), Centre for Translational and Chemical Biology, University of Edinburgh.

Initially, the protein lysate was subjected to HiTrap nickel-Sepharose® IMAC column chromatography (GE Healthcare Life Sciences). Cell pellets from Section 2.14 were thawed, resuspended in IMAC lysis buffer (IMAC buffer A (see Appendix 1) with 500 mM 3-(1-pyridinio)-1-propansulphonate, 1 protease inhibitor tablet/1 L of cell culture, 0.1 mg/mL benzamidine and 0.1 % (v/v) phenylmethanesulphonylfluoride to prevent protein degradation) and lysed further by cell disruption under pressure (25 kpsi; Constant Cell Disruption Systems). The lysates were centrifuged at 50,000 x g, 4 °C for 1 hour and filtered using a 0.22 μm filter then run over the nickel-Sepharose® column at a flow rate of 1 mL/minute, followed by a wash of 22 column volumes (cv) of 4 % IMAC buffer B (see Appendix 1), equivalent to 20 mM imidazole. The recombinant proteins were eluted with 3 cv of 100 % IMAC buffer B containing 500 mM imidazole and collected in 1 mL fractions.

The fractions of the IMAC filtrates that contained recombinant protein were pooled and applied to a HiLoad 16/600 Superdex 200pg (rF5), Superdex 200pg 10/300 GL (rGT and rF3), Superose 6pg 10/300 GL (rF1) or Superose 6pg XK16/600 SEC column (WT rLifA and rLifA^{C1480A}; all columns from GE Healthcare
Life Sciences), for size exclusion chromatography as appropriate to the protein to be purified, using SEC buffer. The purest IMAC fractions, determined by SDS-PAGE, were run through the column first, followed by the less pure fractions.

The fractions of the SEC filtrates that contained recombinant protein, determined by SDS-PAGE, were run through a HiPrep 26/10 desalt column (GE Healthcare Life Sciences) in a 50 mM NaCl low-salt buffer to remove excess salt that may interfere with binding to the anion exchange chromatography column.

The desalt fractions containing recombinant protein, determined by UV absorbance at 280 nm, were applied to a Mono Q 5/50 GL anion exchange column (GE Healthcare Life Sciences) to separate proteins based on their net charge. The concentration of NaCl in the column was increased from 0 to 500 mM over 30 cv, then sharply to 1 M. The purest fractions of each protein were pooled. Protein concentration was quantified using a NanoDrop Lite Spectrophotometer (Thermo Scientific). Protein for biophysical experiments was stored at 4 °C until required and protein for cellular assays had glycerol added up to 20 % (v/v) then was flash frozen and stored at -80 °C until required. WT rLifA and rLifAC1480A were desalted into either assay buffer or CD buffer (see Appendix 1) before use in the biophysical characterisation experiments.

2.15.2 IMAC optimisation

IMAC was performed in batch to find the optimal conditions for capturing recombinant F1 protein (rF1). HiTrap free resin (GE Healthcare Life Sciences) was charged with either nickel, cobalt, copper or zinc and equilibrated with IMAC buffers A and B with a pH of either 7 or 8. A volume of 1 mL of lysate was added to each resin batch and incubated on ice for 10 minutes. Samples were centrifuged at 500 x g, 4 °C for 5 minutes then washed twice with 4 % IMAC buffer B. Protein was eluted by washing the resin three times with 100 % IMAC buffer B. Samples of unbound lysate, wash steps and elution steps were analysed by SDS-PAGE.
2.16 Matrix assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry of purified proteins

A quantity of 2 µg of purified protein was run on a gel in triplicate. Protein species of interest were excised, flash frozen and stored at -80 °C until required. Samples were thawed and incubated at room temperature in 200 mM NH₄HCO₃ (ABC; Sigma-Aldrich) with 50 % (v/v) acetonitrile (ACN; Fisher Scientific) for 30 minutes to remove SDS. This was repeated a further two times. Samples were incubated at 32 °C in 20 mM dithiothreitol (DTT), 200 mM ABC, 50 % ACN for 1 hour to reduce the protein then washed three times with 200 mM ABC, 50 % ACN. Cysteine residues were alkylated by incubating the samples in 50 mM iodacetamide (Sigma-Aldrich), 200 mM ABC, 50 % ACN at room temperature for 20 minutes in the dark. Samples were washed three times with 20 mM ABC, 50 % ACN then centrifuged at 12,500 x g in a benchtop centrifuge for 2 minutes. Gel pieces were covered with ACN until they turned white then the ACN was decanted and the gel pieces were air dried. Gel pieces were rehydrated in 20 µg/mL Trypsin Gold (Promega) at 4 °C then incubated at 32 °C for 16–24 hours to digest the protein. Before mass spectrometry, samples were sonicated for 1 minute then spotted onto a MALDI plate and covered with an α-cyano-4-hydroxycinnamic acid matrix (see Appendix 1). Peptide fragments were identified by an ultrafleXtreme™ MALDI-TOF mass spectrometer (Bruker). The spectral data were processed using Data Explorer software (Applied Biosystems) and peptide mass lists were searched against the Mascot NCBIprot database (Matrix Science). The parameters used in each search were: taxonomy – *Escherichia coli*; missed cut = 1; fixed cysteine carbamidomethylation modification; variable methionine oxidation modification; and a peptide mass tolerance of 20 ppm.

2.17 Dynamic light scattering (DLS)

DLS was used to determine the size distribution and extent of aggregation of purified proteins. Assay buffer with 1.1 µM of either WT rLifA or rLifA^{C1480A} was passed through a 0.22 µm Ultrafree-MC filter (Merck Millipore) and centrifuged at
12,000 x g, 4 °C for 15 minutes. The mean hydrodynamic radius of both proteins was measured using a Zetasizer Automated Plate Sampler (Malvern Instruments, UK) equipped with a 50 mW laser light source, with a wavelength of 830 nm. DLS data were collected at a scattering angle of 90° for 10 seconds at 25 °C. This was repeated 13 times in triplicate and the values were averaged. Autocorrelation data were fitted to a model of a multiple-exponential form suitable for polydisperse solutions using the protein-specific software supplied with the instrument. This generated a distribution of particles by size (Maslon et al., 2010). Assay buffer was used as a background control.

2.18 Circular dichroism (CD)

CD spectra of purified proteins were collected to define aspects of their secondary structure. Samples of 0.11 µM WT rLifA and rLifA_{C1480A} in CD buffer (see Appendix 1) were centrifuged at 12,000 x g, 4 °C for 15 minutes. The mean residue ellipticity ([θ]) for each protein was measured using a J-810 Spectropolarimeter (Jasco; Kelly et al., 2005) between wavelengths of 185 and 285 nm. The [θ] for each protein was plotted against wavelength using Microsoft Excel 2013. The percentages of different secondary structure motifs were determined using DichroWeb (http://dichroweb.cryst.bbk.ac.uk/html/home.shtml; Lobley et al., 2002).

2.19 Thermal denaturation assays (TDAs)

The thermal denaturation characteristics of rLifA and rLifA_{C1480A} were measured to assess their folding. Each protein was used at a concentration of 0.1 µM in assay buffer and mixed with 5 x SYPRO Orange in a 96 well plate, with a buffer only control in parallel. The plate was sealed and centrifuged at 3220 x g for 2 minutes to remove air bubbles then put into an IQ5 Multicolor Real-Time PCR Detection System (Bio-Rad). The temperature was increased from 15 to 70 °C in 0.5 °C increments every 30 seconds and the fluorescence was recorded at each increment. Normalised relative fluorescence units (RFU) for each sample were
plotted against temperature using Microsoft Excel 2013. The unfolding transition temperature \(T_m \) of each protein was calculated from the steepest part of the melting curve. To find the steepest part of the melting curve, the curves were differentiated with respect to temperature \((T; -dRFU/dT) \), therefore the \(T_m \) of each protein was the average of the lowest \(-dRFU/dT\) values.

2.20 Fluorescent labelling of proteins

In order to study binding and uptake of purified proteins upon interaction with T cells, proteins were directly labelled with a tetrafluorophenyl (TFP) ester using an Alexa Fluor® 488 Microscale Protein Labelling Kit (Invitrogen) according to the manufacturer’s instructions. A volume equal to 100 µg of protein in NaH_2PO_4, pH 7.6 buffer was mixed with a 1/10 volume of 1 M NaHCO_3. The volume of TFP ester dye added to the protein was calculated using the following formula, where the molar ratio of dye:protein was based on that required for the optimal degree of labelling of a 150 kDa protein (Invitrogen, 2006) and 11.3 nmol/µL was the concentration of the dye:

Volume of dye = \(((\mu g\ of\ protein/protein\ molecular\ mass) \times 1000 \times \text{molar\ ratio})/11.3\)

The protein/dye mixture was incubated at room temperature for 15 minutes and excess dye was removed by spin filtering the mixture at 16,000 x g for 1 minute through the Bio-Gel P-6 fine resin provided with the kit.

2.21 Protein transfection

2.21.1 Transfection of T cells with recombinant LifA fragments

Proteins were transfected into bovine T cells using Xfect™ Protein Transfection Reagent (Clontech Laboratories Inc.) according to the manufacturer’s instructions with some modifications. PBS was used to dilute 1 x Xfect Protein Transfection Reagent rather than deionised water (dH_2O) to reduce osmotic stress on
the cells. An appropriate volume of Xfect Protein Buffer was added to 5 µg of the tested proteins in a volume of 100 µL. The protein-buffer mix was added to 100 µL of diluted transfection reagent and incubated at room temperature for 30 minutes. T cells at a density of 8 x 10^6 cells/mL in serum-free RPMI were added in a volume of 400 µL to each transfection reaction then incubated at 37 °C, 5 % CO_2 for 1 hour. Cells were then centrifuged at 425 x g for 10 minutes then washed with PBS. Cells were resuspended in 400 µL of RPMI-CT, counted as described in Section 2.1, then diluted to a density of 4 x 10^6 cells/mL and seeded in 50 µL in a 96 well plate. A volume of 50 µL of RPMI-CT or 2 µg/mL ConA in RPMI-CT was added to the appropriate wells and the assay was continued as for standard T cell proliferation assays to determine if the transfected fragments were able to inhibit mitogen-stimulated proliferation. Negative controls with the transfection reagent but no proteins were used to determine the effects of the transfection reagent on ConA-stimulated proliferation and WT rLifA was used as a positive control. As a control to demonstrate that the transfection reagent was active, β-galactosidase supplied with the reagent was used as a positive control to determine transfection efficiency by blue-white screening as below.

2.21.2 X-gal staining of transfected cells

Blue-white screening for the presence of β-galactosidase in transfected T cells was performed using a Beta-Galactosidase Staining Kit (Clontech Laboratories Inc.) following the manufacturer’s instructions. Cells were centrifuged at 425 x g for 10 minutes then washed with 1 x PBS. Cells were incubated in Fixing Buffer at room temperature for 10 minutes then washed twice with 1 x PBS. Cells were then incubated in X-Gal Staining Mix (see Appendix 1) overnight at 37 °C, 5 % CO_2.

Cells were washed and resuspended in PBS then attached to poly-L-lysine coated slides (BD Biosciences) by centrifugation at 300 rpm for 5 minutes in a Cytospin 3 centrifuge (Shandon). Coverslips were mounted using ProLong® Gold Antifade Mountant (Life Technologies) and left to cure overnight. Cells were examined for the presence of intracellular β-galactosidase (blue staining) by light microscopy and images were analysed in Zen 2011 (Carl Zeiss). Transfection
efficiency was determined by counting both the total number of cells and number of blue-stained cells.

2.21.3 Confocal microscopy

T cells treated with fluorescently-labelled lymphostatin, or fragments thereof, were prepared as described in Section 2.6 and imaged by confocal laser scanning microscopy. After incubation with the labelled protein, cells were centrifuged at 425 x g for 10 minutes then washed three times with PBS. Cells were fixed by incubating them with 4 % (w/v) PFA on ice for 30 minutes, centrifuged at 425 x g for 10 minutes then washed three times with PBS. Cells were counter-stained with DAPI (4′,6-diamidino-2-phenylindole) at a dilution of 1/10,000 then washed with dH₂O. Cells were attached to poly-L-lysine coated coverslips as described for X-gal staining. Images were obtained using a Nikon EC-1 inverted confocal microscope and analysed using ImageJ (National Institutes of Health).

2.22 Analysis of lymphostatin processing in cells

2.22.1 Culture of J774A.1 cells

J774A.1 murine macrophage-like cells were cultured at 37 °C, 5 % CO₂ in RPMI-1640 medium (Gibco) with 10 % (v/v) FCS (Gibco), 2mM L-glutamine (Gibco) and 100μg/mL penicillin/streptomycin (Sigma-Aldrich; RPMI-CJ). The cells were grown to a confluence of 80–90 % then passaged into fresh medium as follows. The cell monolayer was dislodged from the flask with a cell scraper then centrifuged at 290 x g for 10 minutes at room temperature. Cells were resuspended in fresh medium, counted by trypan blue exclusion (0.4 % (w/v) trypan blue; HyClone) using disposable haemocytometer grids (Kova International) and re-seeded at a density of 0.5 x 10⁶ cells/mL in a T175 filter cap flask (Fisher Scientific). For long-term storage at -150 °C, cells were spun down and resuspended in 90 % (v/v) FCS/10 % (v/v) dimethyl sulfoxide (DMSO; Sigma-Aldrich) at a density of 1 x 10⁷ cells/mL, frozen in a cell freezer at -80 °C overnight, followed by transfer to -150 °C.
2.22.2 Detection of lymphostatin cleavage in J774A.1 cells

J774A.1 cells were seeded at a density of 1 x 10^6 cells/mL in a 12 well plate and cultured for 24 hours at 37 °C, 5 % CO₂ in RPMI-CJ. Cells were serum starved in serum-free DMEM for 1 hour. The medium was removed from the cells and WT rLifA or rLifA^{C1480A} was added to the medium at a final concentration of 1 µg/mL. The medium was mixed by vortexing and reapplied to the cells. Buffer treated cells were used as a negative control. After 1 hour of incubation, treated cells were lysed with 120 µL of NP-40 lysis buffer and incubated on ice for 30 minutes. Lysates were transferred to microcentrifuge tubes then centrifuged at 17,949 x g, 4 °C for 10 minutes and the supernatants were transferred into clean microcentrifuge tubes. Lysates were processed as described for T cells in Section 2.6.

Western blots used rabbit polyclonal anti-LifA antibody at a dilution of 1/20,000 or mouse monoclonal anti-6 x His antibody (BioLegend) at a dilution of 1/1000. Primary antibodies were detected using DyLight™ 800 4X PEG-conjugated goat anti-rabbit IgG (1/30,000 dilution) and DyLight™ 800-conjugated goat anti-mouse IgG (1/10,000 dilution) antibodies respectively (both from Cell Signaling Technology).

2.23 Treatment of T lymphocytes with inhibitors of endosome acidification

These experiments were carried out as described for T lymphocyte protein association assays (Section 2.6) but T cells were incubated with either bafilomycin A1 (at a final concentration of 0.0005–50 µM; LC Laboratories) or chloroquine diphosphate (over a range of 0.0125–1250 µM; Sigma-Aldrich) during the serum starving step. DMSO and PBS were used as carrier controls for bafilomycin A1 and chloroquine respectively.

Western blots used rabbit polyclonal anti-LifA antibody at a dilution of 1/20,000 and mouse monoclonal anti-β-actin as a protein loading control (GeneTex) at a dilution of 1/5000. Primary antibodies were detected using DyLight™ 800 4X PEG-conjugated goat anti-rabbit IgG (1/30,000 dilution) and DyLight™
680-conjugated goat anti-mouse IgG (1/15,000 dilution) antibodies respectively (both from Cell Signaling Technology).

Densitometry was performed on the putative N-terminal cleavage product of rLifA and β-actin signal using Image Studio Lite v5.2 and Microsoft Excel 2013. Linear regression analysis was carried out using Minitab 17. Average regression slopes were tested for statistical significance using a one-sample T-test. P values ≤ 0.05 were taken to be statistically significant.

2.24 Detection of GlcNAcylated proteins in bovine T lymphocytes in the presence or absence of lymphostatin

2.24.1 Western blotting for detection of O-GlcNAc-modified proteins

These experiments were carried out as described for T lymphocyte protein association assays (Section 2.6), with T cells being treated with a final concentration of 2 µg/mL WT rLifA or rLifA^{DTD/AAA}. Buffer-treated cells were used as a negative control. SDS-PAGE was carried out using three different gel systems with different molecular weight resolutions: 3–8 % Tris-Acetate gels (Novex) for proteins in the range of 71–460 kDa; 4–12 % Tris-Glycine gels (Novex) for proteins of 25–250 kDa; and 4–12 % Tris-Glycine gels (BioRad) for proteins of 10–150 kDa. Western blots were performed using mouse monoclonal anti-O-GlcNAc antibody (Novus Biologicals) at a dilution of 1/1000, which was detected using DyLight™ 800-conjugated goat anti-mouse IgG antibody (Cell Signaling Technology) at a dilution of 1/10,000.

2.24.2 Shotgun mass spectrometry

T cells were treated as described above for western blot analysis and lysed with 8 M urea. Protein concentrations were determined using Bradford reagent (BioRad) according to the manufacturer’s instructions. Samples were incubated for 30 minutes at room temperature in 2 M urea, 25 mM ABC and 5 mM DTT to denature and reduce the protein. Cysteine residues were alkylated by incubating the
samples at room temperature with 12.5 mM iodacetamide (Sigma-Aldrich) for 1 hour in the dark. Trypsin (0.4 µg; Worthington Biochemical Corporation) digestion was performed overnight at room temperature. Peptide extracts were cleaned on Omix reverse stage phase tips (Agilent Technologies). Samples were dried by Speedvac and stored a -20 °C until required. Samples were reconstituted in 0.05 % (v/v) trifluoroacetic acid (Fisher Scientific) and filtered using a 0.45 µm Millex® filter (Merck Millipore).

Shotgun mass spectrometry was performed using an online system of a nano-HPLC (Dionex™ UltiMate™ 3000 RSLC; Fisher Scientific) coupled to a QExactive mass spectrometer (Fisher Scientific) with a 300 µm internal diameter (I.D.) x 5 mm pre-column (5 µm particle size; Acclaim Pepmap) joined with a 75 µm I.D. x 50 cm column (3 µm particle size; Acclaim Pepmap). Peptides were separated using a multi-step gradient of 2–98 % buffer B (80 % (v/v) ACN and 0.1 % (v/v) formic acid (Merck Millipore)) at a flow rate of 300 nL/minute over 90 minutes. Buffer A was 2 % ACN and 0.1 % formic acid. Data from mass spectrometry spectra were searched against a Bos taurus protein database using Mascot. The parameters used in each search were: missed cut = 2; fixed cysteine carbamidomethylation modification; variable methionine oxidation and N- and O-linked GlcNAc modifications; peptide mass tolerance of 10 ppm; and a fragment mass tolerance of 0.05 Da. Search results were exported using a significance threshold (P value) of less than 0.05 and a peptide score cutoff of 20. Mascot searches were able to detect either one or two GlcNAc modifications to either Asn, Ser or Thr residues within a single peptide.

This experiment was repeated a second time using 3.6 x 10⁸ cells/sample for WT rLifA and buffer-treated cells. In-solution protein digestion and data collection and analysis were performed by Lisa Imrie, Kinetic Parameter Facility (KPF), Centre for Synthetic and Systems Biology, University of Edinburgh.

2.24.3 Glycoprotein enrichment

T cells were treated with WT rLifA or buffer as described in Section 2.24.1. Glycoprotein enrichment was performed using a wheat germ agglutinin (WGA)
Glycoprotein Isolation Kit (Thermo Scientific) according to the manufacturer’s instructions. T cell lysates containing 1–1.5 mg of total protein were diluted 1/4 with 5 x Binding/Wash Buffer stock solution. Lysates were added to WGA resin columns pre-equilibrated with 1 x Binding/Wash Buffer and incubated for 10 minutes at room temperature on a rocking platform. The columns were centrifuged at 1000 x g for 1 minute and the flowthrough was discarded. Columns were then washed twice with 1 x Binding/Wash Buffer, incubated at room temperature for 5 minutes on a rocking platform and then centrifuged at 1000 x g for 1 minute. Glycoproteins were eluted from the columns into clean microcentrifuge tubes by twice incubating the columns with Elution Buffer at room temperature for 10 minutes on a rocking platform, followed by centrifugation at 1000 x g for 1 minute. The protein concentration of pre- and post-enrichment lysates was measured using Bradford reagent (Sigma-Aldrich) according to the manufacturer’s instructions. Equal concentrations of pre- and post-enrichment lysates were examined by western blotting using mouse monoclonal anti-O-GlcNAc antibody (Novus Biologicals) at a dilution of 1/1000, which was detected by HRP-conjugated goat anti-mouse IgG antibody (AbD Serotec) at a dilution of 1/10,000 in TBS-T/2 % (w/v) skimmed milk powder (Chem Cruz).

To remove detergent, glycoprotein enriched lysates were run on a Bolt™ 4–12 % Bis-Tris Plus gel (Invitrogen) at 200 V until all of the sample had run into the gel. Gel pieces were excised and destained by three 15 minute washes with 50 mM ABC, 50 % ACN then shrunk in methanol for 10 minutes. SDS was removed by alternate 10 minute washes with 50 mM ABC and methanol. Proteins were reduced by incubation at 60 °C with 20 mM DTT, 50 mM ABC. Gels pieces were washed with methanol for 10 minutes then incubated with 50 mM iodacetamide, 50 mM ABC at room temperature for 1 hour in the dark to alkylate cysteine residues. Gel pieces were covered with methanol until they turned white then the methanol was decanted and the gel pieces were air dried. Gel pieces were rehydrated in 20 µg/mL trypsin (Worthington Biochemical Corporation) at 4 °C then incubated at room temperature overnight to digest the protein. Digest solutions were transferred to clean tubes and additional peptides were extracted from the gel pieces by 15 minute incubations with 1 % (v/v) formic acid followed by 1 % (v/v) formic acid, 50 % (v/v)
methanol then methanol alone. Peptide extracts were added to the digest solutions, dried by Speedvac, resuspended in 0.05 % (v/v) trifluoroacetic acid and filtered before shotgun mass spectrometry as described in Section 2.24.2. In-gel trypsin digests and shotgun mass spectrometry data collection and analysis were performed by Lisa Imrie, KPF.

2.25 Protein pull-downs to detect LifA-interacting partners in T cells

2.25.1 Anti-His protein pull-downs

Anti-His protein pull-downs were performed using a Pierce™ Pull-Down PolyHis Protein:Protein Interaction Kit (Thermo Scientific) according to the manufacturer’s instructions. A quantity of 150 µg of rLifA, or the equivalent volume of buffer, was added to a HisPur™ cobalt resin column pre-equilibrated with wash solution (1:1 ratio of BupH™ TBS and Pierce Lysis Buffer with 10 mM imidazole) and incubated for 30 minutes at 4 °C on a rocking platform. Columns were centrifuged at 1250 x g, 4 °C for 1 minute then washed four times with wash solution. T cells (2 x 10^8 cells) from three independent donors were centrifuged at 500 x g for 5 minutes, washed and resuspended in 2.5 mL/g wet weight of cells in ice cold TBS with 1 x Halt™ protease inhibitor cocktail (Thermo Scientific). Cells were lysed in an equal volume of Pierce Lysis Buffer and incubated for 30 minutes on ice with periodic inversions. Lysates were centrifuged at 12,000 x g, 4 °C for 5 minutes and 4 M Imidazole Stock Solution was added to the supernatant to make final concentration of 10 mM. Clarified lysate or wash solution was added to the appropriate columns and incubated for 30 minutes at 4 °C on a rocking platform. Columns were centrifuged at 1250 x g, 4 °C for 1 minute then washed a further five times. Proteins were eluted from the columns three times by the addition of 290 mM imidazole elution buffer, incubation for 5 minutes at 4 °C on a rocking platform followed by centrifugation at 1250 x g, 4 °C for 1 minute. Protein samples were denatured by the addition of an appropriate volume of 1 x sample reducing agent and 1 x LDS sample buffer and heated at 70 °C for 10 minutes. Samples were stored at -20 °C until analysis.
2.25.2 Silver staining

Pull-down eluates were subjected to SDS-PAGE using three different gel systems with different molecular weight resolutions: 3–8 % Tris-Acetate gels (Novex) for 71–460 kDa; 4–12 % Tris-Glycine gels (Novex) for 25–250 kDa; and 4–12 % Tris-Glycine gels (BioRad) for 10–250 kDa. Gels were stained using a Pierce™ Silver Stain Kit (Thermo Scientific) according to the manufacturer’s instructions. Gels were washed twice in dH₂O for 5 minutes then fixed for 30 minutes with 30 % (v/v) ethanol (Fisher Scientific), 10 % (v/v) acetic acid (Fisher Scientific). Gels were washed twice in 10 % (v/v) ethanol followed by a further two washes with dH₂O before incubation with Silver Stain Sensitizer (1/500 dilution) for 1 minute. Gels were washed twice with dH₂O then incubated for 30 minutes with 1 part Silver Stain Enhancer, 50 parts Silver stain. Gels were washed twice with dH₂O for 20 seconds then incubated with 1 part Silver Stain Enhancer, 50 parts Silver Stain Developer for 2.5 minutes. Development was stopped with 5 % (v/v) acetic acid.

2.25.3 Liquid chromatography mass spectrometry (LC-MS) to identify candidate interacting partners

The maximum possible volumes of pull-down eluates were run in triplicate on a gel. Protein species of interest were excised from silver stained gels, cut into pieces of ~1 x 1 mm and processed according to Shevchenko et al. (2006). Gel pieces were destained by three 15 minute washes with 50 mM ABC, 50 % ACN then shrunk in neat ACN for 10 minutes. Proteins were reduced by incubation at 56 °C with 10 mM DTT, 100 mM ABC for 1 hour. Gels pieces were washed with ACN for 10 minutes then incubated with 55 mM iodacetamide, 100 mM ABC at room temperature for 20 minutes in the dark to alkylate cysteine residues. Gel pieces were covered with ACN until they turned white then the ACN was decanted and the gel pieces were air dried. Gel pieces were rehydrated in 13 µg/mL trypsin (Promega), 10 mM ABC, 10 % ACN at 4 °C then incubated at 37 °C overnight to digest the protein. Digest solutions were transferred to clean tubes and additional peptides were
extracted from the gel pieces by 15 minute incubations with 1 % (v/v) formic acid, 2 % ACN then ACN alone. Digested peptide extracts were purified using StageTips (Rappsilber et al., 2007).

Nanoflow LC-MS/MS was performed using an online system of a nano-HPLC (UltiMate™ 3000 RSLC; Fisher Scientific) coupled to a microOTOF-II mass spectrometer (Bruker). Tryptic digests were delivered to a 100 μm I.D. × 2 cm trap column (5 μm particle size; Acclaim PepMap100) at a flow rate of 20 μL/minute in 100 % buffer A (0.1 % (v/v) formic acid in LCMS grade water). Following a brief washing step, peptides were transferred to a 75 μm I.D. × 25 cm analytical column (3 μm particle size; Acclaim PepMap100) and resolved on a 60 minute gradient of 7–35 % buffer B (0.1 % (v/v) formic acid in ACN) at a flow rate of 300 nL/minute. The eluent from LC was passed onto the nano electrospray source of the microOTOF-II, which was operated in data-dependent mode, automatically switching between MS and MS/MS mode. The m/z values of tryptic peptides were measured from an MS scan (300–2000 m/z), followed by MS/MS scans of the six most intense peaks. Rolling collision energy for fragmentation was selected based on the precursor ion mass and a dynamic exclusion was applied for 30 seconds.

Raw spectral data were processed using DataAnalysis software (Bruker). Data from mass spectrometry spectra were searched against the Uniprot B. taurus protein sequence database, NCBI whole database and the EPEC E2348/69 LifA sequence using Mascot. The parameters used in each search were: missed cut = 1; fixed cysteine carbamidomethylation modification; variable methionine oxidation and deamidation modifications; peptide mass tolerance of 25 ppm; fragment mass tolerance of 0.08 Da; and peptide charges were set to 2+ and 3+. In-gel digestion and LC mass spectrometry data collection and analysis were performed by Dr Dominic Kurian, Proteomics and Metabolomics Facility, The Roslin Institute.

2.25.4 Immunoprecipitation of putative LifA-protein complexes

T cells were serum starved in serum-free RPMI for 1 hour. A total of 1 x 10^7 cells, at a density of 4 x 10^6 cells/mL, were incubated with a final concentration of 1 μg/mL rLifA or the equivalent volume of buffer at 37 °C for 1 hour. Cells were washed with
ice-cold PBS and transferred to clean microcentrifuge tubes as described for protein association assays (Section 2.6). Cells were lysed in 500 µL of NP-40 lysis buffer and incubated on ice for 30 minutes. Lysates were centrifuged at 17,949 x g, 4 °C for 10 minutes and the supernatants were transferred into clean microcentrifuge tubes. Lysates were incubated with 25 µL of Pierce™ Protein A Plus agarose beads (Thermo Scientific), pre-equilibrated with NP-40 lysis buffer, at 4 °C for 1 hour on a rotator to remove proteins that may bind non-specifically to the beads. Samples were centrifuged at 2500 x g, 4 °C for 3 minutes and the supernatants were transferred to clean microcentrifuge tubes. Samples were then incubated with either rabbit polyclonal anti-INPP5E antibody (Proteintech) at a dilution of 1/500 or rabbit polyclonal anti-glutathione peroxidase 1 antibody (Abcam) at a dilution of 1/10 at 4 °C overnight on a rotator.

Samples were centrifuged at 2500 x g, 4 °C for 3 minutes and the supernatants were discarded. Beads were resuspended in 12.5 µL of NP-40 lysis buffer. Protein samples were denatured by the addition of 12.5 µL of 10 x sample reducing agent and 12.5 µL of 4 x LDS sample buffer and heated at 70 °C for 10 minutes. Samples were stored at -20 °C until analysis. Immunoprecipitated material was run alongside protein pull-down eluates on a 4–12 % Tris-Glycine gel. Anti-INPP5E and anti-glutathione peroxidase 1 antibodies bound to Pierce™ Protein A Plus agarose beads alone were included as antibody controls. Western blots were performed using rabbit polyclonal anti-INPP5E antibody at a dilution of 1/500 and rabbit polyclonal anti-glutathione peroxidase 1 antibody at a dilution of 1/1000. Primary antibodies were detected using DyLight™ 800 4X PEG-conjugated goat anti-rabbit IgG antibody at a dilution of 1/30,000.

2.26 Analysis of Akt phosphorylation

2.26.1 Incubation with rLifA proteins prior to mitogen stimulation

T cells were serum starved in serum-free RPMI for 1 hour then 6 x 10^6 cells, at a density of 4 x 10^6 cells/mL, were incubated with a final concentration of 1 µg/mL WT rLifA, rLifA^{DTD/AAA}, rLifA^{C1480A} or the equivalent volume of buffer at
37 °C for 1 hour. Cells were then stimulated with ConA at a final concentration of 5 µg/mL for the indicated times and processed as described for protein association assays (Section 2.6). Unstimulated cells were used as a negative control. Western blots were performed using rabbit monoclonal anti-pan Akt antibody (Cell Signaling Technology) at a dilution of 1/1000 in TBS-T/5 % (w/v) BSA or rabbit polyclonal anti-phospho-Akt (Ser473) antibody (Cell Signaling Technology) at a dilution of 1/1000 in TBS-T/5 % (w/v) BSA. As a protein loading control, blots treated with anti-phospho-Akt (Ser473) antibody were also probed with mouse monoclonal anti-β-actin antibody at a dilution of 1/5000. Primary antibodies were detected using DyLight™ 800 4X PEG-conjugated goat anti-rabbit IgG antibody at a dilution of 1/30,000 and DyLight™ 680-conjugated goat anti-mouse IgG antibody at a dilution of 1/15,000.

Densitometry was performed using Image Studio Lite v5.2 and Microsoft Excel 2013. Phospho-Akt1 (Ser473) signals for each sample were normalised against their respective actin protein-loading controls. Data were then further normalised against the ‘cells alone’ samples at each stimulation time point to provide fold changes in normalised phospho-Akt1 (Ser473) signal in comparison to cells alone. Data were transformed using log₁₀ and one-way ANOVAs were used to determine statistically significant differences between samples at each time point using Minitab 17. Post hoc Dunnett tests were used to calculate 95 % confidence intervals and confirm significance. Densitometry values derive from three independent biological replicates. P values ≤ 0.05 were taken to be statistically significant.

2.26.2 Incubation with rLifA proteins after mitogen stimulation

T cells were serum starved in serum-free RPMI for 1 hour then 6 x 10⁶ cells, at a density of 4 x 10⁶ cells/mL, were stimulated with 5 µg/mL ConA for 15 minutes as above. Cells were then incubated with 1 µg/mL rLifA or the equivalent volume of buffer at 37 °C for the indicated times. Unstimulated cells and cells stimulated with ConA but without rLifA/buffer treatment were used as negative and positive controls respectively. Cells were processed for western blotting and as described in Section 2.26.1. Densitometry data from each replicate were normalised to the protein
loading control as described in Section 2.26.1, then the fold change to the positive control of ConA-stimulated buffer-treated T cells was calculated. Data were transformed using log$_{10}$ and two-sample T-tests were used to determine statistically significant differences between samples at each time point using Minitab 17. Densitometry values derive from four independent biological replicates. P values ≤ 0.05 were taken to be statistically significant.

2.26.3 Infection of T cells with EPEC strains

EPEC E2348/69 wild-type bacteria, and isogenic mutant strains with single or double mutations in lifA and lifA-like genes or escN (Table 2.1) were grown in static DMEM cultures at 37 °C for ~5 hours to induce Type III secretion. The A$_{600}$ of each culture was measured, with an A$_{600}$ of 1 taken to reflect $\sim 1 \times 10^9$ bacteria/mL based on prior analysis of the relationship between culture absorbance and viable counts detected by direct plating. T cells were serum starved in serum-free RPMI for 1 hour then 6×10^6 cells, at a density of 4×10^6 cells/mL, were incubated with bacteria at a multiplicity of infection (MOI) of 200:1 (bacteria:T cells) at 37 °C for the indicated times. Cells were stimulated with a final concentration of 5 µg/mL ConA for 15 minutes where indicated and processed as described previously. Unstimulated cells and cells stimulated with ConA, but without EPEC infection, were used as negative and positive controls respectively. Cells were processed for the detection of pan-Akt, Ser473-phosphorylated Akt and β-actin as described previously.

Densitometry was performed as described previously and data from each replicate were normalised first to the β-actin loading control and the fold change was calculated relative to the positive control. Statistical analysis was performed as described in Section 2.26.1. Experiments involving EPEC E2348/69 NalR strains used post hoc Fisher tests in addition to Dunnett tests to calculate 95 % confidence intervals and confirm significance. Densitometry values derive from three independent biological replicates. P values ≤ 0.05 were taken to be statistically significant.
2.26.4 Immunoprecipitation of Akt and analysis of its post-translational modifications

T cells were serum starved in serum-free RPMI for 1 hour. A total of 1 x 10^7 cells, at a density of 4 x 10^6 cells/mL, were incubated at 37 °C with either 1 µg/mL rLifA/buffer for the indicated times or EPEC E2348/69 strains at an MOI of 200:1 for 1 hour. Cells were stimulated with 5 µg/mL ConA for 15 minutes. Unstimulated cells and cells stimulated with ConA, but without rLifA/buffer treatment or EPEC infection, were used as negative and positive controls respectively. Immunoprecipitation of Akt was performed as described previously using rabbit monoclonal anti-pan Akt at a dilution of 1/50. Beads were resuspended in 25 µL of NP-40 lysis buffer. Protein samples were denatured by the addition of 25 µL of 10 x sample reducing agent and 25 µL of 4 x LDS sample buffer and heated at 70 °C for 10 minutes. Whole cell lysate samples in 500 µL of NP-40 lysis buffer were also made for each immunoprecipitation condition. Samples were stored at -20 °C until analysis. Rabbit monoclonal anti-pan Akt antibody bound to Pierce™ Protein A Plus agarose beads alone were included as antibody controls. Western blots were performed using rabbit monoclonal anti-pan Akt antibody at a dilution of 1/1000 in TBS-T/5% (w/v) BSA, rabbit polyclonal anti-phospho-Akt (Ser^473) antibody at a dilution of 1/1000 in TBS-T/5% (w/v) BSA and mouse monoclonal anti-O-GlcNAc antibody at a dilution of 1/1000. Primary antibodies were detected using DyLight™ 800 4X PEG-conjugated goat anti-rabbit IgG antibody at a dilution of 1/30,000 and DyLight™ 800-conjugated goat anti-mouse IgG antibody at a dilution of 1/10,000.
3 Activity of lymphostatin fragments

3.1 Introduction

In silico analysis of the lymphostatin (LifA) protein from the prototype EPEC O127:H6 strain E2348/69 reveals several Pfam domains with homology to other proteins (Figure 3.1). The N-terminal amino acids (aa) 20–1144 are homologous to the nucleotide-binding domain of reticulocyte binding/rhoptry proteins expressed by *Plasmodium* species (22 % identity and 39 % similarity over 1124 amino acids). These proteins are involved in adhesion to reticulocytes (Galinski *et al*., 1992; Triglia *et al*., 2001), which may potentially be significant as lymphostatin is near identical in sequence to EHEC factor for adherence (Efa1), which has been reported to influence adherence of EHEC O111:H- to Chinese hamster ovary (CHO) cells (Nicholls *et al*., 2000). Located within this region is also a glycosyltransferase (GT) domain (aa 314–754) that shares homology with the large clostridial toxins (LCTs) TcdA and B (as described in Section 1.3.5.1) and a TcdB N-terminal helical domain (aa 219–280), thought to be involved in substrate recognition. Between amino acid residues 1465–1646 lies a YopT-like cysteine protease (CP) domain, described in Section 1.3.5.2, and at the C-terminal end of the protein (aa 2181–3107) is a conserved domain that belongs to the DUF3491 superfamily that has no known function.
Figure 3.1. *In silico* predicted domains of lymphostatin from EPEC O127:H6 strain E2348/69. NCBI Blast identified five domains with homology to other known proteins including reticulocyte binding/rhoptry protein (NBD94 superfamily, aa 20–1144), a glycosyltransferase domain (GT, aa 314–754), a TcdB N-terminal helical domain (Tc, aa 219–280), a YopT-like cysteine protease domain (aa 1465–1646) and a domain of unknown function (DUF3491 superfamily, aa 2181–3107).
Other domains and motifs of lymphostatin have also been previously reported. Klapproth et al. (2005) described an aminotransferase II motif in LifA from *C. rodentium* that is also present in EPEC E2348/69 LifA between amino acid residues 1947–1956. Nicholls et al. (2000) identified a number of predicted motifs in Efa1 from EHEC O111:H- (which is 99 % identical to E2348/69 lymphostatin) including two potential prepilin peptidase processing sites between residues 15–16 and 772–773 that are homologous to EPEC BfpA and *V. cholerae* TcpB respectively, both of which are Type IV pilus precursors (Donnenberg et al., 1992; Ng et al., 2016). A predicted transmembrane domain was also identified by Nicholls et al. (2000) between residues 2001–2033 of Efa1, however, this region of LifA has no homology to the transmembrane domain from LCTs that is required for the translocation of the LCT glycosyltransferase domain into the cytoplasm from the endosome (Nicholls et al., 2000; Qa’dan et al., 2000; Barth et al., 2001). In contrast to the NBCI Blast analysis, Nicholls et al. (2000) reported that only the initial 500 amino acids of LifA had 36 % homology to reticulocyte binding protein 2 from *Plasmodium vivax*. Other reported proteins with homologous regions to LifA include interaptin from *Dictyostelium discoideum* (21 % identity, 43 % similarity, aa 850–1150), *Mycoplasma pneumoniae* cytadherence high molecular weight protein 2 (HMW2; 32 % identity, 48 % similarity, aa 1766–1806) and *Streptococcus pyogenes* M5 protein (32 % identity, 65 % similarity, aa 1052–1095; Nicholls et al., 2000).

In our previous research, limited tryptic proteolysis of recombinant LifA (rLifA) from EPEC E2348/69 produced five major fragments (Figure 3.2A), which were identified by matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry (Figure 3.2B; Cassady-Cain et al., 2016). However, the contribution of these fragments to the overall function and activity of LifA is unknown. The largest fragment, designated F1, which encompasses the putative GT and CP domains, is richer in basic amino acids over the first 100 aa than full-length lymphostatin, which enabled us to separate F1 from other digest products by anion exchange chromatography (Cassady-Cain et al., 2016). The F1 fragment, purified in this way, did not inhibit the concanavalin A (ConA)-stimulated proliferation of bovine T lymphocytes (Cassady-Cain et al., 2016). Interestingly, several LifA fragments derived by limited trypsin proteolysis were eluted in the same
fractions from a size exclusion chromatography column (Walkinshaw Laboratory, unpublished data), suggesting that they may be capable of associating with each other despite not being covalently bonded.

It was hypothesised that predicted globular domains released by limited proteolysis may represent functional domains, and that if these fragments were capable of associating with each other, the resulting complexes may retain lymphostatin activity against T cells. In this chapter, I cloned, expressed and purified a selection of LifA fragments and assayed their ability to bind to T lymphocytes and inhibit their mitogen-activated proliferation.
Figure 3.2. Tryptic digests revealed predicted globular domains of lymphostatin. (A) Limited trypsin proteolysis of rLifA produced five major fragments, designated F1–5. (B) The approximate amino acid boundaries of the five fragments were determined by MALDI-TOF mass spectrometry, which revealed that fragments F2 and F4 were sub-fragments of F1 and F3 respectively (from Cassady-Cain et al., 2016).
3.2 Development of a robust assay for lymphocyte proliferation

Early experiments studying lymphostatin activity used bulk peripheral blood mononuclear cells (PBMCs) treated with crude bacterial lysates to examine the effects of LifA on mitogen-stimulated proliferation as no stable expression clone existed (Klapproth et al., 1995, 1996 and 2000; Malstrom and James, 1998; Stevens et al., 2002; Abu-Median et al., 2006; Deacon et al., 2010). Cassady-Cain et al. (2016) were the first to use highly-purified recombinant lymphostatin in proliferation assays. In order to establish whether enriching T cells was necessary for testing the activity of LifA fragments, I first compared the activity of wild-type (WT) rLifA against ConA-stimulated bulk PBMCs and enriched T cells from three independent donors using a colorimetric plate-based assay. The assay measured the conversion of MTS (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium) into a coloured formazan product by metabolically active cells, the absorbance of which was detected at around 490 nm. The quantity of formazan produced was directly proportional to the metabolic activity of dividing cells in the culture (Cory et al., 1991; Promega, 2012).

In both cell populations, rLifA inhibited ConA-stimulated proliferation in a concentration-dependent manner, producing typical sigmoidal curves where at high concentrations inhibitory activity was saturated and at low concentrations the activity was titrated away (Figure 3.3). The proliferation index (the ratio of proliferation of cells treated with rLifA + ConA/ConA alone), with standard deviation, of PBMCs decreased gradually from 0.99 ± 0.06 at 0.001 ng/mL of rLifA to 0.51 ± 0.06 at 0.1 ng/mL, then the curve leveled out to 0.56 ± 0.03 at 100 ng/mL. T cells produced a curve that was level between 0.001 and 0.01 ng/mL of rLifA, decreased sharply from 0.95 ± 0.24 at 0.01 ng/mL to 0.47 ± 0.12 at 0.1 ng/mL, then leveled out to 0.43 ± 0.13 at 100 ng/mL. The effective dose at which 50% of cell proliferation was inhibited by rLifA (ED\textsubscript{50}), with standard error of the mean, was 0.01 ± 0.001 ng/mL for PBMCs and 0.04 ± 0.02 ng/mL for T cells (W = 8, P = 0.3827). Despite there being no statistically significant difference between the ED\textsubscript{50}s, enriched T cells were used in all further experiments as the PBMCs did not consistently produce a fold induction of proliferation ≥ 2, which was used as a quality control for each
proliferation assay. The buffer that rLifA was dissolved in was used as a carrier control. The volumes of buffer added to cells were equal to those of the different concentrations of rLifA. The buffer did not affect cell proliferation.

Figure 3.3. Concentration-dependent inhibition of proliferation of ConA-stimulated peripheral bovine PBMCs and T lymphocytes by recombinant LifA. An absolute number of 200,000 cells were seeded into the wells of a 96 well plate. Titrations were carried out in triplicate and the results are the average obtained from 3 independent experiments using separate donors. Data were normalised against cells with ConA alone to produce a proliferation index. Error bars indicate the standard deviation of the average proliferation indices from across the 3 experiments.

3.3 Development of an assay to detect the association of LifA with T cells

In order to detect interactions between LifA and T lymphocytes, whether by binding of the protein to the plasma membrane or uptake into the cells, bovine T cells were incubated in the presence of rLifA for various time points and the cell lysates were analysed using a polyclonal anti-LifA antibody (Stevens Laboratory, clone 45). Despite some reactivity of the antiserum to T cell proteins, it recognised a protein of the expected size for rLifA (365 kDa). Initially, it appeared that rLifA was
associated with the T cells at all time points between 5 minutes and 2 hours (Figure 3.4A). However, through investigation of additional controls, it was subsequently found that rLifA was bound to the microcentrifuge tubes when no cells were present (Figure 3.4B). Attempts to remove this non-specific binding by repeated washing with PBS or transferring the cells to a clean tube once failed (Figure 3.4C), as did using Eppendorf® LoBind or bovine serum albumin-coated microcentrifuge tubes (data not shown). It was found that washing the cells and transferring them to clean tubes twice was sufficient to remove the non-specifically bound rLifA (Figure 3.4D).

Once the assay method had been optimised, bulk PBMCs and enriched T cells were incubated with rLifA from 5 minutes up to 24 hours (Figure 3.5). As with the pilot experiments, rLifA was observed to associate with PBMCs/T cells at all time points. This provided a useful assay for detecting interactions between T cells and WT rLifA, or mutated forms or fragments thereof, under different conditions.
Figure 3.4. The development of an assay to detect the association of rLifA with T lymphocytes. (A) Lysates from T cells treated with rLifA for varying time points appeared to show that rLifA associated with T cells from as little as 5 minutes to at least 2 hours. (B) A medium + rLifA control with no T cells revealed that rLifA non-specifically bound to the microcentrifuge tubes. (C) Washing tubes with PBS or transferring the cells to a clean tube once did not remove non-specific binding. (D) Washing and transferring the cells to a clean tube twice was sufficient to remove non-specifically bound rLifA. A quantity of 2 ng of rLifA was used a positive control. Proteins were detected using a polyclonal anti-LifA antibody (Stevens Laboratory, clone 45).
Figure 3.5. Association of rLifA with PBMCs/T cells. rLifA associated with bulk PBMCs and enriched T cells from as little as 5 minutes to at least 24 hours. A quantity of 2 ng of rLifA was used as a positive control. Proteins were detected using a polyclonal anti-LifA antibody (Stevens Laboratory, clone 45).

3.4 Generation of pRham-LifA-6 x His fragment clones

As noted in Section 3.1, three putative structural fragments of LifA (F1, F3 and F5) and two smaller subfragments (F2 and F4) were identified by limited proteolysis (Cassady-Cain et al., 2016) but the contribution of these fragments to the overall function and activity of lymphostatin is unknown. Expression clones were therefore made for modified versions of the three largest fragments that span the majority of the LifA protein (Figure 3.6). These subunits were the N-terminal putative catalytic fragment (F1, aa 1–1620), which contains the predicted putative GT and CP domains, the C-terminal large fragment (F3, aa 2111–2900) and C-terminal small fragment (F5, aa 2901–3223). The regions cloned in this study were
longer than the tryptic fragments for which the boundaries had been mapped by MALDI-TOF in order to preserve predicted secondary structure at the boundary and fully encompass predicted catalytic domains (secondary structure analysis performed by Dr Liz Blackburn, Edinburgh Protein Production Facility (EPPF), Centre for Translational & Chemical Biology). The N-terminal fragment was extended to the beginning of the protein to account for any possible processing events. An expression clone was also made for the glycosyltransferase domain (aa 221–1033) based on the predicted structural alignment of LifA with LCTs and the known boundaries of the GT domain of LCTs (Cassady-Cain et al., 2016). In all cases, the predicted open reading frame for LifA fragments was cloned in-frame to both N- and C-terminal six histidine (6 x His) tags for affinity purification of the proteins. In the case of the F1 fragment, this was cloned with only a C-terminal tag to ensure that the affinity tag would not be lost if a predicted N-terminal signal peptide was cleaved.
Figure 3.6. Schematic of the full-length LifA protein and the relative positions of fragment proteins. F1 – N-terminal fragment encompassing GT and CP domains; GT – glycosyltransferase domain; F3 – C-terminal large fragment; F5 – C-terminal small fragment. Numbers indicate amino acid positions within the full-length protein. CP – cysteine protease domain (aa 1442–1619) as defined by homology with other C58 cysteine proteases (Walkinshaw Laboratoty, unpublished data), which was encompassed by F1 but was not made into a recombinant protein itself.
PCR amplicons encoding the LifA fragments, which were confirmed to be of the expected size by gel electrophoresis, were fused to N- or C-terminal 6 x His tags using the Expresso™ Rhamnose Cloning and Expression System. All of the cloned fragments were under the control of a rhamnose-inducible glucose-repressible promoter that we previously established affords tight control of rLifA expression (Cassady-Cain et al., 2016) and adopted due to concerns from published studies regarding the instability of lifA clones (Klapproth et al., 2000; Nicholls et al., 2000). Putative recombinants for each expression clone were screened by colony PCR to determine if they contained the expected fragments. Positive colonies were validated by double-stranded sequencing of the inserts (see Appendix 2) and one validated clone for each LifA fragment was taken forward for protein production experiments (Figure 3.7).

Figure 3.7. PCR screen of the expression clones chosen for further experiments.

All expression clones contained gene inserts of the appropriate sizes (GT – 2460 bp; F1 – 4878 bp; F3 – 2391 bp; F5 – 990 bp; plus 150 bp to each insert from the vector amplified by the pRham Forward and pETite Reverse primers). Nuclease-free distilled water was used as a negative control. The full-length LifA insert (9687 bp + 150 bp) was used as a positive control.
3.5 Production of LifA fragment proteins

Pilot-scale protein production used one expression clone for each LifA fragment to determine whether recombinant fragments could be expressed at the optimal conditions known for rLifA production as previously described (Cassady-Cain et al., 2016). Recombinant LifA fragments of the expected sizes were observed in the soluble and insoluble bacterial lysate fractions of each expression clone (Figure 3.8). The rF1 expression clone produced not only the expected ~188 kDa fragment but also a unique ~150 kDa protein that was also reactive to the polyclonal anti-LifA antibody. rF5 was not observed in the soluble lysate fraction by western blotting, possibly due to its small size (~38 kDa).

Protein expression was optimised before large-scale production by examining the effects of growth medium (LB or 2xTY), post-induction temperature (20 or 30 °C), time (1, 2, 3 or 4 hours) and the pre-induction over-expression of chaperones by heat/cold shock. The optimal expression conditions for each fragment are listed in Table 3.1.
Figure 3.8. *E. coli*® 10G chemically competent cells produced LifA fragments when induced with 0.2 % L-rhamnose. Soluble and insoluble fractions of bacterial cell lysates were examined by (A) Coomassie staining and (B) western blotting using a polyclonal anti-LifA antibody (Stevens Laboratory, clone 45). Soluble rGT (~96 kDa), rF1 (~188 kDa) and rF3 (~89 kDa) were observed in the western blot. rF5 (~38 kDa) was observed in the insoluble fraction but not the soluble fraction, possibly due to its small size. A protein of ~150 kDa was observed only in cells producing rF1, suggesting that this protein may be derived from rF1, for example by processing, internal initiation of translation or premature termination. Cells transformed with the pRham empty plasmid were used as a negative control and 2 ng of rLifA was used as a positive control in the western blot. Proteins of the expected sizes are marked with arrows.
Table 3.1. The optimal expression conditions for each recombinant LifA fragment.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Growth medium</th>
<th>Post-induction temperature (°C)</th>
<th>Post-induction time (hours)</th>
<th>Heat/cold shock required</th>
</tr>
</thead>
<tbody>
<tr>
<td>rGT</td>
<td>LB</td>
<td>30</td>
<td>3</td>
<td>No</td>
</tr>
<tr>
<td>rF1</td>
<td>2xTY</td>
<td>30</td>
<td>3</td>
<td>No</td>
</tr>
<tr>
<td>rF3</td>
<td>LB</td>
<td>30</td>
<td>3</td>
<td>No</td>
</tr>
<tr>
<td>rF5</td>
<td>LB</td>
<td>30</td>
<td>3</td>
<td>Yes</td>
</tr>
</tbody>
</table>

3.6 Protein purification

3.6.1 LifA fragment purification

Large-scale production of the recombinant LifA fragments was carried out once the optimal expression conditions had been determined. Prior to purification, the optimal IMAC capture conditions for rF1 were determined to be the use of a nickel-Sepharose® column and IMAC buffers at pH 8. rF1, rF3 and rF5 were purified using only a two-step process of ion metal affinity chromatography (IMAC) and size exclusion chromatography (SEC). Figures for the purification of rF1 are shown as an example (Figures 3.9 and 3.10). rF1 could not be further purified by anion exchange chromatography using the same conditions as for F1 released by tryptic digestion (Cassady-Cain et al., 2016; data not shown). The recombinant GT domain was purified to a higher degree using anion exchange by Dr Liz Blackburn, EPPF.
Figure 3.9. IMAC purification of rF1 protein using Ni2+-Sepharose®. The absorbance of elution buffer at 280 nm shows the presence of rF1 where the concentration of imidazole was increased from 20 to 500 mM (marked with an arrow) to elute the protein from the nickel-Sepharose® beads. The large absorbance peak between ~0 and 200 mL corresponds to large cell debris that did not bind the column. The small peak before 230 mL corresponds to non-specifically bound proteins washed off by the increase in imidazole concentration from 10 to 20 mM. Inset: Coomassie stain of 8 µL from 1 mL IMAC filtrate fractions showing the rF1 protein eluted. The dominant protein species was ~150 kDa but the 188 kDa rF1 could be seen above it, indicated by arrows.
Figure 3.10. Purification of rF1 protein by size exclusion chromatography (SEC). The leading edges of the large absorbance peaks (marked with an arrow) correspond to the presence of rF1 in the filtrates of the Superose 6pg 10/300 SEC column used to filter the pooled IMAC fractions. SEC 1 – less pure IMAC fractions. SEC 2 – purest IMAC fractions. Inset: Coomassie stains of 8 µL from 0.5 mL SEC filtrate fractions showing the rF1 protein eluted. The rF1 protein of 188 kDa (expected size indicated by arrows) was no longer visible above the dominant ~150 kDa protein. rF1 was eluted earlier than it should for a globular protein of the same size, suggesting it could be linear, but this was likely caused by shortening of the protein. The large peaks correspond to proteins of lower molecular masses.
The recombinant LifA fragments were found to be eluted from the SEC columns in multiple forms. A protein of ~150 kDa was the dominant protein in the rF1 preparation after purification, while the presence of full-length rF1 was reduced, suggesting that full-length rF1 may be processed into a lower molecular mass product (Figure 3.11). rGT and anion exchange purified rF3 (made by Dr Liz Blackburn, EPPF) were analysed by size exclusion chromatography-multi-angle light scattering (SEC-MALS) and found to contain not only the monomeric proteins but also heptamer and trimer forms respectively. This suggests that these proteins are capable of associating into multimeric forms under normal buffer conditions. rF5 was eluted as a large aggregate protein, with a mass between 75–440 kDa, across 70 mL of SEC column eluate. Despite a large absorbance peak at the expected monomeric size of rF5, the protein was only observed in the multimer-containing elution fractions by western blotting. The size, purity and reactivity of rF1, rF3, rF5 and rGT proteins to anti-LifA antibody is shown in Figure 3.12. The identity of each recombinant fragment was confirmed by MALDI-TOF mass spectrometry of tryptic digests of the proteins. Details of the identified peptides are listed in Table 3.2 and mapped peptides are illustrated in Appendix 3. Mass spectrometry data for rGT was collected by Dr Liz Blackburn, EPPF.
Figure 3.11. Coomassie stain (left) and western blot (right) of recombinant F1 purification steps. Full-length rF1 (~188 kDa) was observed in the whole cell lysate but after purification the ~150 kDa variant of rF1 became the dominant protein in the eluate. Full-length rF1 was still observed after SEC purification by western blotting. Quantities of 200 ng and 2 ng of rLifA were used as positive controls in the Coomassie stain and western blot respectively. The position of the ~188 kDa and ~150 kDa variants of rF1 are marked with arrows.
Figure 3.12. Coomassie stain (left) and western blot (right) of recombinant LifA fragments. rGT (~96 kDa), rF3 (~89 kDa) and full-length LifA (~365 kDa) were observed at the expected positions. The pure and impure fractions of rF1 (~188 kDa) showed almost only the ~150 kDa form of rF1 after purification. rF5 (~38 kDa) was not observed in the fractions suspected to contain monomeric rF5 but was seen in fractions suspected to contain a multimeric form. Proteins of the expected sizes and ~150 kDa rF1 are marked with arrows.

Table 3.2. Summary of the MALDI-TOF mass spectrometry results for the recombinant LifA fragments.

<table>
<thead>
<tr>
<th>Protein</th>
<th>Mascot score</th>
<th>Peptide matches</th>
<th>Amino acid range</th>
<th>Coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rGT</td>
<td>318</td>
<td>49</td>
<td>18–804</td>
<td>58</td>
</tr>
<tr>
<td>rF1</td>
<td>279</td>
<td>30</td>
<td>251–1017</td>
<td>23</td>
</tr>
<tr>
<td>rF3</td>
<td>135</td>
<td>19</td>
<td>241–286</td>
<td>22</td>
</tr>
<tr>
<td>rF5</td>
<td>77</td>
<td>13</td>
<td>45–310</td>
<td>22</td>
</tr>
</tbody>
</table>
3.6.2 LifA fragment co-purification

In order to determine whether the recombinant LifA fragments could associate with each other as observed previously with fragments from limited proteolysis (Walkinshaw Laboratory, unpublished data), rF1, rF3 and rF5 were produced and purified together. Bacterial lysates of the three expression clones were pooled then purified by IMAC and SEC. Proteins of the expected sizes appeared in some of the same SEC elution fractions (Figure 3.13). However, the presence of rF5 was not as clear as the other fragments, and given that both rF3 and rF5 are known to form multimers it could not be concluded that a genuine association was observed.
Figure 3.13. SEC co-purification of rF1, rF3 and rF5. The recombinant fragments were co-purified using a Superose 6pg XK16/600 SEC column to determine whether they were capable of associating. Proteins of the expected sizes (rF1 – 150 kDa form; rF3 – ~89 kDa; rF5 – ~38 kDa) were observed in elution fractions at the expected elution volume for an ~277 kDa protein (~90 mL; rLifA elutes at ~80 mL). However, rF5 appeared just under the 37 kDa ladder on previous gels/blots and given that rF3 and rF5 are known to form a trimer (~267 kDa) and an aggregate (~74–440 kDa) respectively, it could not be concluded that the apparent observed association was genuine.
3.7 T cell proliferation assays using rLifA fragments

rLifA and the recombinant fragments were added to cells at a concentration of 2.73 nM, equivalent to 1 µg/mL of rLifA. None of the fragments exhibited lymphostatin activity when exogenously applied to T cells in either isolation or in combination (Figure 3.14). The proliferation indices, with standard deviations, for cells treated with each protein were 0.19 ± 0.03 (rLifA), 1.06 ± 0.1 (rGT), 0.96 ± 0.04 (rF1), 0.96 ± 0.08 (rF3), 1.01 ± 0.13 (rF5) and 0.86 ± 0.03 (rF1, rF3 and rF5 in combination). Although the proliferation index of the fragments in combination was found to be statistically significantly different from cells with ConA alone ($W = 120, P = 0.0027$), the fragments clearly did not inhibit proliferation to a similar degree as rLifA. This significance was not observed in experiments where the quantity of rF5 was increased or when uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) was mixed with the fragments (data not shown).
Figure 3.14. The recombinant LifA fragments do not exhibit lymphostatin activity in isolation or in combination against bovine T lymphocytes. An absolute number of 200,000 cells were seeded into the wells of a 96 well plate. Equimolar concentrations of protein were added to cells in triplicate and the results are the average obtained from 3 independent experiments using separate donors. Data were normalised against cells with ConA alone to produce a proliferation index. Error bars indicate the standard deviation of the average proliferation indices from across the 3 experiments. rF1, 3, 5 represents rF1, rF3 and rF5 combined in a molar ratio of 1:1:1. Asterisks indicate proliferation indices that were statistically significantly different from cells with ConA alone.

3.8 Protein transfection

Although the recombinant LifA fragments lacked lymphostatin activity when applied exogenously to T cells, it was hypothesised that rGT and rF1 may retain their activity when introduced into cells by protein transfection. This hypothesis reflects previous studies with LCTs, which established that the N-terminal GT region is sufficient to cause the collapse of the actin cytoskeleton when introduced into epithelial cells by microinjection or fusion to anthrax toxin lethal factor, which can
penetrate the plasma membrane of eukaryotic cells when combined with anthrax toxin protective antigen (Hofmann et al., 1997; Busch et al., 2000; Rupnik et al., 2005; Spyres et al., 2001).

3.8.1 X-gal staining

The commercially available Xfect™ Protein Transfection Reagent was tested on bovine T cells using purified β-galactosidase as a control. All imaged cells treated with both transfection reagent and β-galactosidase were heavily stained blue by the X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) substrate of β-galactosidase (Figure 3.15), indicating that β-galactosidase had been transfected into the cells. Cells without transfection reagent or β-galactosidase and cells with transfection reagent alone appeared clear. Cells treated with β-galactosidase alone exhibited staining that was far less intense, which may have been due to β-galactosidase binding to the cell surface.
Figure 3.15. β-galactosidase can be transfected into bovine T lymphocytes. As a positive control for the Xfect™ Protein Transfection Reagent, β-galactosidase was transfected into T cells and detected by X-gal staining. Low level staining was observed in some cells treated with β-galactosidase but without transfection reagent, possibly caused by the protein sticking to the cell surface. All cells observed that were treated with both β-galactosidase and transfection reagent were heavily stained by comparison, demonstrating that the transfection reagent functioned as expected. Scale bar = 10 µm. All light microscopy images are of the same scale.

3.8.2 Confocal microscopy of T cells treated with rLifA fragments

To establish if the transfection reagent was capable of transfecting rFl into T cells, cells were treated with fluorescently labelled rFl and the Xfect™ Protein
Transfection Reagent and examined by confocal microscopy. Labelled rFl was observed inside T cells, which had been optically sectioned at 1 µm (Figure 3.16), indicating that it had been introduced into the cells. Labelled rFl was not visible in T cells that were not treated with transfection reagent.
Figure 3.16. rF1 was transfected into bovine T lymphocytes. Fluorescently labelled rF1 (green channel) was transfected into T cells (bright-field channel) using the Xfect™ Protein Transfection Reagent. The nuclei of lymphocytes (blue channel; stained with DAPI (4′,6-diamidino-2-phenylindole)) occupies most of the cells but labelled rF1 can be seen within the area of the plasma membrane (composite), indicating the reagent is capable of inserting rF1 into the cells. rF1 is not observed in cells without transfection reagent. Scale bar = 10 µm. All confocal microscopy images are of the same scale.
3.8.3 Transfection assays

T cell proliferation assays were performed using cells treated with transfection reagent and rF1. The assay required optimising due to cytotoxic effects of the transfection reagent and did not yield consistent results. Ultimately, an assay performed by Dr Robin Cassady-Cain at The Roslin Institute using rGT revealed that the transfection reagent was capable of stimulating T cells without the addition of ConA (Figure 3.17). Despite the transfection reagent being able to insert protein into T cells, the proliferation assay was not a suitable system for measuring the potential inhibitory activity of transfected recombinant LifA fragments.

Figure 3.17. Xfect™ Protein Transfection Reagent interfered with T cell proliferation. An absolute number of 200,000 cells, treated with transfection reagent and protein, were seeded into the wells of a 96 well plate. Titrations were carried out in triplicate. The absorbance at 492 nm revealed that the transfection reagent appeared to stimulate T cells that had not been treated with ConA, making the assay unsuitable for measuring proliferation. Error bars indicate the standard deviation of the triplicate wells from one donor. Absorbance units are shown rather than proliferation indices as they show how the proliferation of cells – reagent and cells + reagent compares in the presence/absence of ConA separately. Data were collected by Dr Robin Cassady-Cain, The Roslin Institute.
3.9 Association of LifA fragments with T cells

Association assays were performed to determine whether the recombinant LifA fragments were capable of associating with T cells, similar to full-length rLifA. Proteins species of the expected sizes for rGT and rF1 (~150 kDa variant) were observed in lysates of T cells treated using the optimised protocol from Section 3.3 but rF3 and rF5 could not be detected, even after a long exposure in the chemiluminescent detection method used (Figure 3.18). It is possible that the regions of LifA encompassed by rF3 and rF5 are not capable of associating with T cells unless they are part of an intact protein, or that these two fragments were below the limit of detection for the antibody. A protein species between 100 and 150 kDa that is reactive to anti-LifA antibody was observed only in rLifA treated T cells, suggesting that it is a processed or degraded form of rLifA.
Figure 3.18. rGT and rF1 associated with T cells. T cells were treated with molar equivalents of protein (P)/buffer (B) and incubated at 37 °C for 1 hour. Assays were performed using the same donor on the same day but films were exposed to the membranes for either 5 minutes (rLifA and rF1) or 15 minutes (rGT, rF3 and rF5) to achieve the clearest blots. Full-length rLifA (~365 kDa), rGT (~96 kDa) and rF1 (~150 kDa; marked with arrows) were observed in treated T cell lysates but rF3 (~89 kDa) and rF5 (~38 kDa) could not be detected. A quantity of 2 ng of rLifA was used as a positive control (not shown on blot). The red arrow indicates a putative processed form of rLifA. Experiments were performed using 2 separate donors and representative blots are shown.
3.10 Association of LifA fragments with T cells in the presence of UDP-GlcNAc

As our previous research established that WT rLifA can bind to UDP-GlcNAc (Cassady-Cain et al., 2016) and GlcNAc moieties are abundant on cellular glycosaminoglycans and surface glycoproteins, we sought to determine if binding of rGT or rF1 to T cells may be competitively inhibited by free UDP-GlcNAc. We hypothesised that increasing the concentration of exogenous UDP-GlcNAc would competitively inhibit the interaction between the fragments and cell surface-bound GlcNAc. To investigate this, rGT and rF1 as well as rLifA were pre-incubated with different concentrations of UDP-GlcNAc before being exposed to T cells from three independent donors.

The concentrations of UDP-GlcNAc used were based around the dissociation constant (K_d) of UDP-GlcNAc with rLifA (120 ± 30 µM; Cassady-Cain et al., 2016), the concentration at which 50 % of the UDP-GlcNAc is bound to rLifA. The highest concentration (1 mM) was chosen, as at ~10 times the K_d, > 90 % of the UDP-GlcNAc should be bound to the proteins (reviewed in Price et al., 2007). The concentrations of 50 and 250 µM were chosen so that concentrations above and below the K_d were included.

The association of rLifA with T cells was not affected by exogenous UDP-GlcNAc. rGT and rF1 associated with T cells in a manner independent of UDP-GlcNAc concentration (Figure 3.19), suggesting that the fragments did not bind to GlcNAc moieties on the T cell surface, or that insufficient exogenous UDP-GlcNAc was used to competitively inhibit binding.
Figure 3.19. The association of rGT and rF1 with T cells was not inhibited by exogenous UDP-GlcNAc. Equimolar concentrations of protein were pre-incubated with different concentrations of UDP-GlcNAc before incubation with T cells. Experiments were performed using 3 separate donors and representative blots are shown. Even at 1 mM, ~10 times the Kd of UDP-GlcNAc with rLifA (Cassady-Cain et al., 2016), the fragments associated with T cells, suggesting that the association was not caused by the fragments binding to GlcNAc on the T cell surface.

3.11 Discussion

Toward an understanding of the structure and function of lymphostatin, domains predicted by limited proteolysis were cloned, expressed and purified. The
recombinant LifA fragments did not reconstitute lymphostatin activity when applied exogenously to bovine T cells, either in isolation or in combination. Based on our knowledge of large clostridial toxins homologous to LifA, it is possible that this is a consequence of having separated the putative catalytic domain(s) of LifA from the region(s) involved in cell binding and intracellular processing. To address this, we sought to introduce the predicted glycosyltransferase domain (rGT and rF1) directly into T cells, mindful that a similar strategy for LCTs could rescue the cytotoxic activity of the native toxin (Hofmann et al., 1997; Busch et al., 2000; Rupnik et al., 2005; Spyres et al., 2001). Despite rF1 being successfully transfected into T cells, the transfection reagent used interfered with the proliferation of the lymphocytes, rendering the T cell proliferation assay unsuitable for measuring lymphostatin activity. Microinjection was suitable for experiments with LCTs as these measured morphological changes in cells (Hofmann et al., 1997; Busch et al., 2000; Rupnik et al., 2005), however, the number of T cells required for a proliferation assay make this an unsuitable delivery system for the recombinant fragments. Creating a fusion protein of the fragments and the N-terminal 255 amino acids of anthrax toxin lethal factor, then combining them with anthrax toxin protective antigen may be a more effective way of transfecting the proteins into large numbers of T cells. Protective antigen facilitates the translocation of lethal factor and the adjoined protein across the endosomal membrane (Arora and Leppla, 1993; Milne et al., 1995). This method has been shown to be effective at delivering the N-terminal 556 amino acids of TcdB into CHO cells (Spyres et al., 2001), suggesting that it can be used for large proteins such as rGT and rF1.

There are also a number of methods that could be used to transfect genetic material into cells, which will then express the gene product. A plasmid encoding rGT or rF1 could be transiently transfected into T cells for short-term expression, or alternatively, stable transfection, in which the plasmid is inserted into the host cell genome, could be used (reviewed in Kim and Eberwine, 2010). However, stable transfection is not suitable for primary T cells as it requires an immortalised cell line that can be cultured and selected for using an additional selection marker, such as neomycin resistance (reviewed in Stepanenko and Heng, 2017). Jurkat cells could be used as a T cell model for stable transfection but they could not be used in
proliferation assays as they are immortal and therefore proliferate continuously. However, there is evidence that rLifA inhibits interleukin expression in Jurkat cells, which could be used as a method for examining the activity of the fragments (Malstrom and James, 1998; Stevens Laboratory, unpublished data). One major drawback of stable transfection is that the DNA vector is inserted randomly into the host cell genome, which can disrupt host cell genes and cause non-specific effects (reviewed in Stepanenko and Heng, 2017). Viruses such as herpes simplex virus and adenovirus can be used for stable transfection but are limited by size of the DNA package (reviewed in Kim and Eberwine, 2010). Recombinant, replication deficient adenovirus has been used to efficiently transfect lacZ into both primary T cells and Jurkat cells. It is unclear what effect this had on proliferation but phorbol myristate acetate (PMA)/ionomycin-stimulated cytokine production was not affected (Chen et al., 2002b). While no evidence could be found of herpes simplex virus being used for transfection of T cells, the viral protein Us3 is known to inhibit T cell activation and increase expression of the anti-inflammatory cytokine IL-10 (Sloan and Jerome, 2007; Yang et al., 2015). Therefore, any viral vectors used for transfection would have to be screened for potential effects on lymphocyte proliferation.

Alternatively, chemical reagents, such as calcium phosphate, DEAE-dextran or lipofectin can be used for transient transfection. These are not limited by DNA size but have a lower transfection efficiency than viral vectors and can be cytotoxic (reviewed in Kim and Eberwine, 2010; reviewed in Stepanenko and Heng, 2017). The transient transfection of RNA is another possible transfection method. RNA of rFl and rGT could be produced using a commercially available in vitro transcription kit, which would allow for rapid expression of the encoded proteins since transcription is not required (reviewed in Kim and Eberwine, 2010). However, there are certain elements of mRNA that are not present in DNA, such as the 5' cap and poly-A tail, as well as nucleoside modifications that must be taken into account when a plasmid is designed for in vitro transcription (Elango et al., 2005; Rozenski et al., 1999).

Rather than measuring the effect of transfected proteins on T cell proliferation, an alternative read-out could be used. LifA has been reported to inhibit the expression of multiple cytokines in T cells including IL-2, IL-4 and IFN-γ.
(Klapproth *et al.*, 1995, 1996 and 2000; Malstrom and James, 1998; Cassady-Cain *et al.*, 2017). Therefore, measuring cytokine expression could be used to detect effects of transfected rGT and rF1 using an enzyme-linked immunosorbent assay. Appropriate controls could be included to ensure that the transfection reagent does not affect cytokine expression.

The lack of lymphostatin activity with the rF1 fragment is consistent with previous observations using F1 released by limited trypsin proteolysis and purified by anion exchange chromatography (Cassady-Cain *et al.*, 2016). Previously, and in these studies, protein species of the expected sizes for rF1, rF3 and rF5 were observed in the same elution fractions of a size exclusion column, suggesting that they may be able to associate. However, no lymphostatin activity was detected on T cells treated with a mixture of the fragments and since rF3 and rF5 are known to form multimers it could not be concluded that the fragments were genuinely associating with each other under the assay conditions. It is possible that co-transformation of the expression strain with each fragment plasmid, so that all fragments are present at genesis, may be required for the recombinant fragment to associate.

rGT and rF1 were capable of associating with T cells and did so in a GlcNAc-independent manner. LCTs bind host cell receptors via multiple domains located in C-terminal portion of the proteins (von Eichel-Streiber and Sauerborn, 1990; Schorch *et al.*, 2014; LaFrance *et al.*, 2015; Manse and Baldwin, 2015; Tao *et al.*, 2016; Lambert and Baldwin, 2016) and therefore I hypothesised that the C-terminus may be required for LifA binding and cell entry. If the C-terminus is required for receptor binding in LifA, it is unclear why rGT and rF1 were observed to associate with T cells while the two C-terminal fragments did not. Using a fluorescent secondary antibody in these assays may reveal low concentrations of bound rF3 and rF5 however. It is possible that, just as multiple domains are required for LCT binding, the N-terminus of LifA may also play a role in cell binding. *In silico* analysis of LifA has shown that the N-terminus shares homology with the nucleotide binding domain of reticulocyte binding proteins from *Plasmodium*, which are responsible for adherence to reticulocytes (Galinski *et al.*, 1992; Triglia *et al.*, 2001; Grüber *et al.*, 2011). The N-terminal amino acid residues 1052–1095 of LifA
also share 32% homology with M5 protein from *S. pyogenes*, which is thought to bind CD46 on keratinocytes (Courtney *et al.*, 2002). However, LifA is only homologous to the N-terminal amino acids 86–126 of M5 protein, whereas it is the conserved C-terminal end of M proteins that is implicated in the adhesion of *S. pyogenes* to keratinocytes (Okada *et al.*, 1995; Perez-Casal *et al.*, 1995). LifA also exhibits homology to HMW2, which is required for adherence of *M. pneumoniae* to cells, however, the role of HMW2 may be indirect as it is part of the *Mycoplasma* cytoskeleton (reviewed in Balish, 2014). Similarly, interaptin plays a role in the cytoskeleton of *D. discoideum*, linking actin to intracellular membrane compartments (Rivero *et al.*, 1998). Therefore, the significance of the homology between LifA and the proteins HMW2 and interaptin is unclear. It is also possible that rGT and rF1 are able to bind to T cells via regions of the proteins that are not normally exposed in full-length LifA.

The association assay is limited in that it cannot distinguish proteins bound to the outer membrane of T cells with those that have been taken up by the cells. Therefore, it is unclear whether rGT and rF1 are adhering to the surface of the T cells or are being endocytosed. Fixing T cells before treating them with the recombinant LifA fragments could be used but carries the risk that receptors may be denatured by the fixative. Similarly, future binding experiments could be conducted at low temperature or in the presence of specific inhibitors of uptake pathways. Alternatively, quenching reagents such as trypan blue could be used to distinguish between surface-bound and internalised fragments (Loike and Silverstein, 1983; Sahlin *et al.*, 1983). T cells could be treated with FITC-labelled rGT or rF1 for varying durations then quenched with trypan blue. Flow cytometry could then be used to quantitatively determine whether the fragments are internalised over time (Vranic *et al.*, 2013). Had rGT and rF1 associated with T cells in a GlcNAc-dependent manner, it could be inferred that they are still capable of binding the sugar. However, as this is not the case, no conclusions can be made about the sugar binding ability of rGT and rF1. The possibility of these proteins binding to other sugars besides GlcNAc on the T cell surface cannot be ruled out, as the sugar binding ability of rLifA has only been tested using UDP-GlcNAc and UDP-Glc (Cassady-Cain *et al.*, 2016). Future studies could examine the ability of the rF1 and
GT fragments to bind UDP-GlcNAc by measuring changes in tryptophan fluorescence, as we previously described (Bease, 2015; Cassady-Cain et al., 2016).

There were a number of limitations with the experiments using the recombinant LifA fragments, one of which was the purity of the proteins. With the exception of rGT, all of the fragments used in these experiments were only purified by IMAC and SEC, whereas full-length rLifA is purified with an additional anion exchange step. This lower purity affects the concentration measurement, which is used to determine the quantity of protein required for each experiment. Therefore, negative results may have been the consequence of less protein being used and failure to achieve equimolar amounts to rLifA. Additionally, contaminating proteins may affect T cell proliferation. The low purity of the fragments also prevented any structural data from being gathered. rLifA and the DXD mutant variant rLifA\textsubscript{DTD/AAA} were biophysically characterised by a number of experiments when they were originally produced (Bease, 2015; Cassady-Cain et al., 2016). These biophysical characterisation experiments require the tested proteins to be of a high purity, which could not be achieved with rF1 and rF5. Despite rGT and rF3 being purified to a higher degree using anion exchange chromatography by Dr Liz Blackburn, no biophysical measurements were made for these proteins. Therefore, the only data regarding whether the fragments were correctly folded is derived from the SEC purification traces, which provides an approximate size for the proteins. However, the SEC purification of rF5 demonstrates that the protein likely forms aggregates. Additionally, an attempt to purify rF1 by anion exchange chromatography shows that the recombinant protein has different properties from the fragment released by the tryptic digest of full-length rLifA, which was purified using the same method (Cassady-Cain et al., 2016).

If the purification of the recombinant fragments could be optimised, the proteins could be subjected to the same biophysical experiments performed with rLifA and rLifA\textsubscript{DTD/AAA}. Dynamic light scattering could be used to determine whether the proteins had aggregated and circular dichroism could provide information on the secondary structure of the proteins. It would be particularly useful to compare the circular dichroism spectra of rF1 and tryptic digest F1 to determine how these two fragments differ. Thermal denaturation assays would allow for the
examination of the thermal stability of the recombinant fragments, giving an indication as to whether they were correctly folded.

The apparent shortening of rF1 from ~188 to ~150 kDa was an unexpected result that may have unintended consequences for the protein as the part of the protein that is lost may be required for activity. It is not clear what portion of the protein is lost, or by which process this happens, but it was hypothesised that the CP domain may be involved. MALDI-TOF analysis of tryptic fragments of the ~150 kDa species of rF1 may help to delineate which region is absent. In LCTs, a CP domain mediates autocatalytic cleavage of the proteins between the GT and CP domains (Egerer et al., 2007; Pruitt et al., 2009; Guttenberg et al., 2011; Rupnik et al., 2005; Kreimeyer et al., 2011) and a similar process could occur in LifA (see Chapter 4). This process occurs after a conformational change in LCTs inside cells (Qa’dan et al., 2000 and 2001; Barth et al., 2001) and can be challenging to reproduce in vitro owing to the potential requirement for low pH-induced structural changes and a co-factor. Although there were concerns that rF1 may be cleaved at the potential prepilin peptidase sites identified by Nicholls et al. (2000), the products produced by cleavage at these sites would be shorter than the observed ~150 kDa form of rF1.

Other structural abnormalities may also account for the inactivity of the recombinant LifA fragments. The additional methionine residues at the N-terminus of rF3 and rF5 as well as the C-terminal polyhistidine tags on rF1 and rF3 interrupt the normal amino acid sequence of LifA. In particular, since the sequences for rF3 and rF5 are joined in the full-length protein, the extra amino acids inserted between them could disrupt interactions necessary for the fragments to associate. Such issues could be resolved by using cleavable tags. N-terminal His-tags can be cleaved using a number of enzymes such as the TAGZyme system, which uses dipeptidyl peptidase I, glutamyl cyclotransferase and pyroglutamyl aminopeptidase (Pedersen et al., 1999; Schäfer et al., 2002; reviewed in Waugh, 2011). Alternatively, where it is unsuitable to use an N-terminal His-tag, C-terminal His-tags with tobacco etch virus or tobacco vein mottling virus protease cleavage sites can be used (Eschenfeldt et al., 2010). It is also possible to remove the methionine residues attached to the N-termini of rF3 and rF5. A modified form of methionine aminopeptidase has been reported to
remove the N-terminal methionine from bulky and acidic penultimate residues, as well as from small residues such as the penultimate glycine and proline found in rF3 and rF5 respectively (Liao et al., 2004). The main drawback of these techniques is that they require separation of the recombinant proteins from the proteases, which would likely dilute the proteins.

Although the recombinant fragments represent the three main tryptic digest fragments of rLifA, they do not cover the whole amino acid sequence of LifA. No recombinant fragment was made for aa 1621–2110. Given that this region is predicted to contain an aminotransferase II motif and a transmembrane domain (Klapproth et al., 2005; Nicholls et al., 2000), it may be required for the function of the full-length protein. Producing and purifying this sequence could be useful in order to determine whether this region can rescue lymphostatin activity when mixed with the other fragments. A lack of lymphostatin activity, even when fragments representing the whole sequence of the full-length protein are combined, would likely be indicative that these recombinant fragments do not associate. Alternatively, if the tryptic digest LifA fragments could be produced in sufficient quantities, they could be tested for inhibitory activity against T cells since there is evidence that these fragments actually associate.

Lastly, there appeared to be a lack of epitope affinity of anti-LifA antibody for rF5. This may be due to the small size of rF5 or that the F5 sequence is normally buried within the full-length protein, which may explain the apparent low solubility of rF5 and why it forms aggregates. This is consistent with previous attempts to detect the C-terminal end (aa 1897–3223) of Efa1 from EHEC O111:H- cloned into E. coli K-12 with an anti-6 x His (Abu-Median et al., 2006).

In conclusion, while the recombinant fragments of lymphostatin may yet prove useful for structural studies, their use in cellular assays is limited. Future studies of functional domains of lymphostatin will require the adoption of either more sophisticated approaches to using these recombinant fragments or alternative strategies.
4 The role of the cysteine protease motif in processing and activity of lymphostatin

4.1 Introduction

Lymphostatin contains a cysteine protease (CP) domain that is homologous to the CP domain of *Yersinia* YopT and other C58 family proteases (Shao et al., 2002). The protease activity of these proteins is dependent on a catalytic triad consisting of Cys, His and Asp residues. Such residues are present in LifA at amino acid positions 1480, 1581 and 1596 respectively (Shao et al., 2002). Some C58 proteases, such as *Yersinia* YopT and LopT from *Photorhabdus luminescens*, cleave Rho GTPases within target cells and act as cytotoxins (Shao et al., 2002; Brugirard-Ricaud et al., 2005). LifA, however, has not been reported to exhibit cytotoxicity in studies using diverse cell types (Klapproth et al., 1995 and 2000; Malstrom and James, 1998; Nicholls et al., 2000; Bease, 2015; Cassady-Cain et al., 2016). Other C58 proteases, such as *Pseudomonas syringae* AvrPphB and *Rhizobium* NopT, undergo CP domain-mediated autoproteolysis (Shao et al., 2002; Dai et al., 2008).

Large clostridial toxins (LCTs), which have N-terminal homology to LifA, also possess a CP domain with a D/H/C orientated catalytic triad (reviewed in Chandrasekaran and Lacy, 2017). After entering host cells by receptor-mediated endocytosis (Papatheodorou et al., 2010), LCTs undergo a pH-induced conformational change in the endosome resulting in pore formation in the membrane and insertion of the N-terminus into the host cell cytosol (Qa’dan et al., 2000 and 2001; Barth et al., 2001; Figure 4.1). The CP domain of LCTs then autocatalytically cleaves the protein to release the glucosyltransferase domain, which targets Rho GTPases (Pfeifer et al., 2003; Egerer et al., 2007; Guttenberg et al., 2011; reviewed in Chandrasekaran and Lacy, 2017). The autocatalytic cleavage of LCTs is dependent on the cellular co-factor inositol hexakisphosphate (InsP₆; Reineke et al., 2007), but previous attempts to induce autocatalytic cleavage of rLifA using InsP₆ *in vitro* showed no evidence of effect (Cassady-Cain et al., 2016).
Figure 4.1. Schematic representation of the uptake and processing of large clostridial toxins (LCTs) in host cells. LCTs are taken up by receptor-mediated endocytosis. Acidification of the endosome results in a conformational change in the proteins and insertion through the membrane. The proteins are autocatalytically cleaved by the cysteine protease domain, an event that requires the co-factor inositol hexakisphosphate, and the N-terminal glucosyltransferase domain is released into the cytoplasm where it glucosylates Rho GTPases resulting in the collapse of the actin cytoskeleton (from Jank and Aktories, 2008).

Few studies have been carried out to investigate the role of the CP domain of LifA and those that have were limited by a lack of precise mutagenesis and structural information on the mutant protein. For example, the CP domain of LifA was previously reported to be required for the colonisation of mice by *C. rodentium* (Klapproth *et al.*, 2005). However, the method used to generate a CP domain mutant introduced a stop codon to the *lifA* gene resulting in protein truncation rather than an in-frame deletion as claimed by the authors. This was corrected in a second study by
the same laboratory, which implicated the CP domain in LifA-mediated redistribution of β-catenin and E-cadherin at enterocyte apical junctions and the activation of RhoA during \textit{C. rodentium} infection (Babbin et al., 2009). The relevance of such events to pathogenesis is unclear and the study did not investigate the impact of the CP domain mutation on intestinal colonisation or lymphostatin activity. In another study, it was independently reported that a deletion of over 100 amino acids, encompassing the entire C/H/D motif, marked by a triple alanine sequence in EPEC E2348/69 abolished the inhibitory activity of LifA against ConA-stimulated PBMCs (Deacon et al., 2010). However, since no biophysical information was obtained for this protein, it cannot be ruled out that loss of lymphostatin activity was caused by structural changes to the protein.

Given that CP domains homologous to that of LifA are known to be required for autoproteolysis in a number of bacterial virulence factors, it was hypothesised that LifA is taken up by cells and undergoes CP domain-mediated processing to release the glycosyltransferase domain into the cytosol, similar to LCTs. The detection of a circa (c.) 140 kDa protein in the lysates of rLifA-treated T cells that was reactive to anti-LifA antibody (see Section 3.9) suggests that this may happen. To test this hypothesis, I substituted the predicted catalytic Cys1480 residue for an alanine residue using the existing pRham-LifA-6 x His plasmid by site-directed mutagenesis, then expressed and purified the protein. The mutant protein was assayed for its ability to inhibit mitogen-stimulated T cell proliferation and to be processed within different cell types. Biophysical properties of the protein were also analysed relative to wild-type (WT) lymphostatin. It was predicted that the mutation would abolish lymphostatin activity against T cells and prevent the appearance of the suspected cleavage product.

4.2 Generation of the pRham-LifA-6 x His C1480A clone

QuikChange site-directed mutagenesis was performed using the existing pRham-LifA-6 x His plasmid as a template to create the C1480A substitution in the lifA gene (Figure 4.2). An alanine substitution was chosen because alanine residues are small, non-polar and unreactive, which should allow the mutant protein to fold
correctly and be structurally similar to the WT protein. Previous experiments using this method were successful in substituting the DXD motif of the glycosyltransferase domain with a triple alanine sequence, which abolished UDP-GlcNAc binding and lymphostatin activity without affecting the structure of the protein (Bease, 2015; Cassady-Cain et al., 2016). Primers were designed to create a C1480A substitution and introduce a BsrDI restriction site at the same location in the plasmid (Figure 4.2A; see Section 2.8). Template plasmid with no primers and primers with no template plasmid were used as negative controls for the PCR. The pWhitescript plasmid and oligonucleotide control primers were used as a positive mutagenesis control. The oligonucleotide control primers repair a mutation in the β-galactosidase gene, which can be detected by blue-white screening using a chromogenic β-galactosidase substrate. The pUC18 plasmid was used as a positive transformation control because it contains part of the E. coli lac operon, which complements the host cell’s defective lacZΔM15 gene, and can also be detected by blue-white screening using a chromogenic β-galactosidase substrate.

Sixty-four transformants were obtained with DpnI digested DNA derived from the PCR reaction to introduce the C1480A substitution into the pRham-LifA-6 x His plasmid. This was within the expected range of 10–1000 colonies per plate. The transformants were cultured overnight to make glycerol stocks. Two colonies grew on the plate with cells transformed with the ‘no template’ control. The pWhitescript control had a mutagenesis efficiency of 95.4 %.

Ten of the putative C1480A substitution clones were screened by colony PCR, using primers to amplify the full-length lifA gene and vector, and analysed by agarose gel electrophoresis. All 10 tested positive for the presence of the full-length lifA gene and plasmid (data not shown). The colonies were screened against purified parental plasmid as a positive control and a no template negative control. To test whether these transformed colonies contained the C1480A mutation and were not simply derived from the template, they were screened by BsrDI digestion.
Figure 4.2. The process of creating the C1480A substitution mutant of LifA. (A) Nucleotide and amino acid sequence of the part of the catalytic C/H/D motif within the putative cysteine protease domain of LifA, highlighting the codon that was targeted for site-directed mutagenesis in order to create an alanine substitution mutant. It was also possible to incorporate a new *BsrDI* restriction site (GCAATGGG) at this location. (B) Schematic of the procedure for QuikChange Mutagenesis. Mutant strand synthesis is carried out using the mutagenic primers to replicate the entire plasmid using PCR. This is followed by *DpnI* digestion of methylated and hemimethylated template DNA to remove the parental plasmid DNA. Finally, the mutated plasmid is transformed into chemically competent cells (adapted from Agilent Technologies, 2015).
In the WT *lifA* sequence amplified by primers LifA FL For3 and LifA FL Rev8, there are two *BsrDI* restriction sites, whereas an additional *BsrDI* site was expected to be introduced within this amplicon with the C1480A substitution (Figure 4.3), thereby providing a rapid screen to identify putative mutant clones. Digestion of amplicons generated by PCR with LifA FL For3 and LifA FL Rev8 was expected to give fragments of ~1686, 1258, 1051 and 174 bp on a gel if the plasmid was mutated successfully (Figure 4.3). If the mutant insert was not present, bands of ~2735, 1258 and 174 bp would be expected. All but one of the clones tested were found to contain the mutant insert. The clones were screened against *BsrDI* digested template plasmid, amplified with primers LifA FL For3 and LifA FL Rev8, and a ‘no template’ negative control. The two colonies that grew on the ‘no template’ control plate were also screened and found not to contain the pRham-LifA-6 x His plasmid. Excess plasmid from the PCR reaction was observed at ~10 kb.

From the putative mutant clones identified, three clones were verified by sequencing, initially at the site of mutation using primers LifA FL For7, LifA FL For8, LifA FL Rev10 and LifA FL Rev11 to confirm that the expected sequence was present. Once this was confirmed, the entire *lifA* gene of two clones was sequenced to verify that no additional mutations were introduced during the mutagenesis process. Both clones were verified to contain the appropriate mutation, however, one clone was found to contain a G-T substitution at position 6999 of the gene sequence, resulting in a glycine-cysteine substitution. The other clone contained the expected sequence of the mutated EPEC E2348/69 *lifA* gene and was carried forward for further characterisation (see Appendix 4 for full sequence).
Figure 4.3. *BsrD*I digestion of amplicons from putative pRham-LifA-6 x His C1480A plasmid clones. (A) Of the 64 colonies that grew on a kanamycin plate, 10 were selected to be screened by *BsrD*I digestion of amplicons generated by PCR using primers LifA FL For3 and LifA FL Rev8. Two colonies that grew on a negative control plate were tested to confirm that they were false positives. Nuclease-free water was used as a negative control. Digested parent plasmid was included as a control. Excess plasmid from the PCR reaction can be seen at ~10 kb. Out of the 10 putative C1480A substitution clones selected, all but one tested positive for the presence of the C1480A mutation. (B) Schematic showing the expected sizes of amplified *lifA* gene products of *BsrD*I digestion. The 174 bp fragment produced by positive and negative clones is too faint to be visualised on the gel and so the image has been cropped to the limit of the lowest marker.
4.3 Production of recombinant LifA_{C1480A} protein

Pilot protein expression assays were performed in parallel to the sequencing analysis using the three clones that were verified for the C1480A substitution. The pRham-LifA-6 x His C1480A plasmids were examined for their ability to produce recombinant LifA_{C1480A} (rLifA_{C1480A}) when induced by rhamnose. Clones were grown under the conditions previously identified as optimal for the production of WT rLifA and rLifA_{DTD/AAA} (Bease, 2015; Cassady-Cain et al., 2016). Uninduced samples from the mutant plasmid-containing cells were used to ensure that the rLifA_{C1480A} was not produced without rhamnose induction.

In pilot experiments, cells transformed with the mutant plasmids were capable of producing a protein of the expected size of full-length rLifA_{C1480A} (~365 kDa) when induced by the addition of rhamnose to the culture, and the rLifA_{C1480A} protein could be found in the soluble and insoluble cell lysate fractions by western blotting (Figure 4.4). rLifA_{C1480A} was not present in the uninduced mutant plasmid-containing cells. While the size of the main reactive species in insoluble fractions of clones 1 and 2 appeared to be lower than that produced by clone 3, this was not evident upon analysis of the soluble fractions and is inferred to be a gel artefact (Figure 4.4).

The pRham-LifA-6 x His C1480A plasmid from clone 1 was transformed into E. cloni® 10G cells. These cells were found to express more protein than XL-10 Gold Ultracompetent cells and have been used previously for the expression of WT rLifA and derived proteins (Bease, 2015; Cassady-Cain et al., 2016; see Chapter 3). They have also previously been shown to be the best expresser of full-length rLifA in comparison to other expression strains tested (Walkinshaw Laboratory, unpublished data). E. cloni® 10G cells were examined to determine the optimal post-induction time for rLifA_{C1480A} production. It was found that 3 hours was the optimal post-induction time for rLifA_{C1480A} production. It was found that 3 hours was the optimal post-induction time for rLifA_{C1480A} production (data not shown), the same as for WT rLifA and rLifA_{DTD/AAA} (Bease, 2015; Cassady-Cain et al., 2016).
Figure 4.4. Pilot protein expression assay of LifA^{C1480A}. Three clones that tested positive for the C1480A mutation by BsrDI digestion were grown at 30 °C until the A_{600} was between 0.5 and 0.6. Protein expression was induced by the addition of 0.2 % L-rhamnose and samples were taken from each clone at 3 hours post-induction. The insoluble and soluble fractions of lysates from the clones were analysed by western blotting using polyclonal anti-LifA antiserum. Uninduced samples were used as negative controls. All three clones were shown to produce full-length LifA^{C1480A}.
4.4 rLifA^{C1480A} purification

Large-scale production of rLifA^{C1480A} was carried out using the previously described conditions for WT rLifA production (Cassady-Cain et al., 2016) and the protein was isolated to a high purity via a four-step process, which was monitored at each step. WT rLifA was also produced and purified in parallel so that it could be compared with rLifA^{C1480A} in biophysical experiments. rLifA^{C1480A} was eluted from the IMAC, SEC and anion exchange chromatography columns in a single absorbance peak (Figures 4.5–4.7). The multiple peaks observed between 120 and 160 mL on the IMAC trace are likely to have been caused by air passing over the column. rLifA^{C1480A} was eluted from the SEC column at the same volume as WT rLifA, indicating that the two proteins are of similar size and are folded in a similar manner. Anion exchange chromatography was able to separate full-length rLifA^{C1480A} from truncated versions of the protein. Only the fractions of highest purity after anion exchange were taken forward for biophysical characterisation. After purification, the rLifA^{C1480A} protein was estimated to be > 90% pure (Figure 4.8).
Figure 4.5. Ion metal affinity chromatography (IMAC) purification of rLifA^{C1480A} using Ni²⁺-Sepharose®. The absorbance of elution buffer at 280 nm shows the presence of rLifA^{C1480A} where the concentration of imidazole was increased from 20 to 500 mM (marked with an arrow) to elute the protein from the nickel-Sepharose® beads. The large absorbance peak between ~0 and 130 mL corresponds to large cell debris that did not bind the column. Inset: Coomassie stain of 8 µL from 1 mL IMAC filtrate fractions analysed by SDS-PAGE showing the rLifA^{C1480A} eluted. The protein appeared to have a lower molecular weight than expected due to being run on a Tris-Glycine gel rather than a Tris-Acetate gel. The second inset (bottom) is a continuation of the first (top).
Figure 4.6. Purification of rLifAC1480A by size exclusion chromatography (SEC).
The absorbance peaks marked with arrows correspond to the presence of rLifAC1480A in the filtrates of the Superose 6pg XK16/600 SEC columns used to filter (A) the purest IMAC fractions and (B) the less pure IMAC fractions. rLifAC1480A was eluted from the columns at the same volume as WT rLifA, giving confidence that the mutant protein was the same size as the WT. Inset: Coomassie stains of 8 µL from 0.5 mL SEC filtrate fractions analysed by SDS-PAGE showing the rLifAC1480A eluted. The protein appeared to have a lower molecular weight than expected due to being run on a Tris-Glycine gel rather than a Tris-Acetate gel.
Figure 4.7. Purification of rLifAC1480A by anion exchange chromatography. (A) The elution profile of WT rLifA. (B) The elution profile of rLifAC1480A. The absorbance peak marked with an arrow corresponds to the presence of rLifAC1480A in the filtrate of the Mono Q 5/50GL column used to filter the SEC fractions. The purest and less pure fractions were pooled into separate aliquots after the anion exchange chromatography but only the purest aliquot was used for further experiments. Both the WT and mutant proteins were eluted with ~140 mM NaCl. The small absorbance peak to the right of the marked peak corresponds to truncated rLifAC1480A. Inset: Coomassie stains of 8 µL from 0.25 mL anion exchange filtrate fractions analysed by SDS-PAGE showing the rLifAC1480A eluted. The protein appeared to have a lower molecular weight than expected due to being run on a Tris-Glycine gel rather than a Tris-Acetate gel.
Figure 4.8. Coomassie stain (left) and western blot (right) of purified WT rLifA and rLifA^{C1480A} analysed by SDS-PAGE. Quantities of 2 µg and 2 ng of anion exchange purified protein were used for the Coomassie stain and western blot respectively. The estimated purity of rLifA^{C1480A} was > 90 %.

4.5 Biophysical characterisation

In order to determine whether the rLifA^{C1480A} protein was folded and behaved in the same manner as the WT rLifA protein, a number of biophysical measurements were made, including analysis of dynamic light scattering (DLS), circular dichroism (CD) and thermal denaturation assays (TDAs). All biophysical measurements were made using the same batches of WT rLifA and rLifA^{C1480A}.
4.5.1 DLS showed that rLifAC1480A was of a similar size to WT rLifA

DLS was used to determine the size and state of the rLifAC1480A protein. DLS works by measuring the different intensities of laser scattering caused by the Brownian motion of particles in suspension. This allows protein-specific software supplied with the Zetasizer Auto Plate Sampler to calculate the velocity of the Brownian motion and therefore the size of the particles by using the Stokes-Einstein relationship (Malvern, 2015; Folta-Stogniew and Williams, 1999). This allows an approximate size determination and gives some insight into whether the protein is aggregated or multimeric.

Thirteen scans of WT rLifA and rLifAC1480A were performed in triplicate. The size distribution of the proteins was measured by the intensity of light scattering and by volume (Figure 4.9). The distribution by volume provides a more accurate size of the protein and distribution by the intensity of light scattering was used to detect large aggregates, which scatter light at much higher intensity than monomeric protein. Both distribution graphs had tight peaks between 9 and 30 nm. The mode hydrodynamic radius of rLifAC1480A as measured by intensity and volume was 15.78 and 11.94 nm respectively, compared to 17.3 and 11.63 nm for WT rLifA. DLS also provided approximate molecular weights for rLifA and rLifAC1480A based on their size, 308.7 ± 48 and 301.7 ± 15.6 kDa respectively, but these measurements are less accurate than measuring the molecular weight by SEC-MALS. rLifAC1480A appeared to have some aggregation but the peak between 100 and 1000 nm may have been caused by dust as subsequent DLS experiments performed with rLifAC1480A by Dr Liz Blackburn, EPPF, did not show any sign of aggregation (data not shown). A small peak was observed at ~5 nm on the rLifAC1480A distribution by volume trace, which was considered to be an artefact in one of the samples.
Figure 4.9. The size distribution by intensity and by volume of rLifA^{C1480A} compared to WT rLifA, measured by dynamic light scattering (DLS). rLifA and rLifA^{C1480A} at a concentration of 1.1 µM were measured by DLS to determine the size of the mutant protein and ensure that any loss of function was not caused by the protein forming large aggregates. (A) The distribution by the intensity of light scattering is used to detect aggregation. (B) The distribution by volume provided a more accurate size of the protein. Slight aggregation of LifA^{C1480A} was observed but the majority of the protein was monomeric. The proteins were scanned 13 times and the measurements were averaged. This was repeated in triplicate.
4.5.2 CD showed that rLifA_{C1480A} had a similar secondary structure to WT rLifA

CD was used to determine if the rLifA_{C1480A} protein had folded correctly on a secondary structure level and to observe whether it deviated significantly from the profile for the WT protein. CD works by detecting the difference in absorption between clockwise and anti-clockwise polarised light. CD signals only arise where the absorption of radiation occurs and therefore spectral bands can be assigned to distinct structural features of a molecule. The different secondary structures of a protein can be detected because they give rise to characteristic CD spectra in the far UV (Kelly et al., 2005). NaF was used in the CD buffer instead of NaCl as chloride ions interfere with CD at short wavelengths.

The CD profile confirmed that rLifA_{C1480A} had folded in a manner not significantly different from WT rLifA (Figure 4.10). The mean residue ellipticity peak and trough on the graph were indicative of a protein with a high α-helix content. The percentage of α-helices and β-sheets in rLifA_{C1480A} were 46 ± 5 % and 13 ± 2 % respectively, compared with 44 ± 5 % and 16 ± 2 % in WT rLifA. The percentage of turns and unstructured amino acids in rLifA_{C1480A} were 13 ± 6 % and 28 ± 7 % respectively, compared with 13 ± 6 % and 27 ± 3 % in WT rLifA. Overall, it can be concluded that rLifA_{C1480A} was folded and had a very similar structural profile to that of the WT protein.
4.5.3 TDAs showed that rLifA\(^{C1480}\) had a similar mid-point melting temperature to WT rLifA.

TDAs were used to measure the thermal stability of rLifA\(^{C1480}\) in comparison to the WT protein. This was carried out by using a fluorescence-based assay with the fluorophore SYPRO Orange, which fluoresces weakly in hydrophilic conditions and strongly in hydrophobic conditions, across a range of temperatures. As the temperature increases and the target protein unfolds it reveals hydrophobic amino acid chains that cause the SYPRO Orange to increase its fluorescence. The fluorescence intensity is proportional to the degree of protein unfolding (Lo et al., 2004; Pantoliano et al., 2001).

The mid-point melting temperatures (\(T_m\)) of WT rLifA and rLifA\(^{C1480}\) were 41.3 and 41 °C respectively (Figure 4.11). The slight decrease in \(T_m\) may have been
the result of minor structural instability caused by the C1480A substitution and was consistent with the reduction in T_m observed with the rLifA$^{DTD/AAA}$ mutant protein (Bease, 2015; Cassady-Cain et al., 2016). Overall, the thermal stability of rLifAC1480A was largely unaffected by the substitution.

![Thermal denaturation assay](image)

Figure 4.11. Thermal denaturation assays to evaluate the mid-point melting temperature (T_m) of WT rLifA and rLifAC1480A. The fluorescence of SYPRO Orange dye mixed with 0.1 μM rLifA and rLifAC1480A was measured over a temperature range of 15–70 °C to determine the T_m of each protein. Each fluorescence measurement was performed in triplicate. A reproducible T_m of ~41 °C was observed in both proteins. These results are from a single experiment.

4.6 Analysis of the ability of rLifAC1480A to inhibit mitogen-stimulated T cell proliferation

Peripheral blood T lymphocytes from five independent donors were used to test the activity of purified rLifAC1480A against ConA-stimulated T cells in comparison to the WT rLifA. Titration of WT LifA produced a sigmoid curve, with higher concentrations of LifA causing an increase in inhibition (Figure 4.12). The proliferation index, with standard deviation, decreased sharply from 0.91 ± 0.08 at 0.001 ng/mL of rLifA to 0.27 ± 0.15 at 0.1 ng/mL, then the curve leveled out and
decreased to a proliferation index of 0.23 ± 0.17 at 100 ng/mL. rLifA^{C1480A} produced a curve that saw the proliferation index, with standard deviation, gradually decrease from 0.95 ± 0.05 at 0.1 ng/mL to 0.48 ± 0.14 at 10 µg/mL. It required an ~100,000-fold increase in concentration for rLifA^{C1480A} to have the same inhibitory effect as that of the WT protein, which was comparable to the glycosyltransferase mutant rLifA^{DTD/AAA} (Bease, 2015; Cassady-Cain et al., 2016). The ED₅₀s, with standard errors, for WT rLifA and rLifA^{C1480A} were 0.013 ± 0.004 ng/mL and 1215.3 ± 684.1 ng/mL respectively (W = 15, P = 0.0097). This experiment combined with the biophysical data showed that the predicted catalytic Cys¹⁴⁸⁰ of the CP domain was required for the inhibitory activity of LifA and that loss of activity was not associated with major structural abnormalities relative to the WT protein.

Figure 4.12. Concentration titration of recombinant WT rLifA and rLifA^{C1480A} against ConA-stimulated peripheral bovine T lymphocytes. An absolute number of 200,000 cells were seeded into the wells of a 96 well plate. Titrations were carried out in triplicate and the results are the average obtained from 5 independent experiments using separate donors. Data were normalised against cells with ConA alone to produce a proliferation index. Error bars indicate the standard deviation of the average proliferation indices from across the 5 experiments.
4.7 Detection of putative autocatalytic cleavage of LifA

4.7.1 Detection of LifA cleavage in bovine T lymphocytes

A protein species reactive to anti-LifA antibody of ~140 kDa was previously observed in lysates of bovine T cells treated with rLifA but not buffer or recombinant LifA fragments (see Section 3.9, Figure 3.18). This same protein was also observed in lysates of T cells treated with the glycosyltransferase mutant rLifA^{DTD/AAA} (data not shown). It was suspected that this c. 140 kDa species was produced by a cleavage event within the T cells that required the CP motif. To determine if this protein was produced by C1480-mediated cleavage, T cells from two independent donors were treated with either WT rLifA or rLifA^{C1480A} for various durations. For cells treated with rLifA^{C1480A}, the 15 minute time point was replaced with a 2 hour time point to determine whether putative cleavage occurred at a slower rate than for the WT protein.

The putative cleavage product was observed at ~140 kDa in T cells treated with WT rLifA from 15 minutes and appeared to increase in concentration up to 1 hour (Figure 4.13). No proteins of this size were detected in lysates from T cells treated with rLifA^{C1480A}, even after 2 hours. This suggests that the detected protein of ~140 kDa was a processed form of LifA, the production of which required an intact CP motif. A second protein fragment of ~225 kDa, corresponding to the other half of LifA, was expected but never observed in T cell lysates. Attempts to identify the C-terminal portion of the protein using anti-6 x His antibodies and InVision™ His-Tag In-Gel Stain were unsuccessful.
Figure 4.13. Cleavage of lymphostatin in T cells was dependent on the cysteine protease motif. Western blot of lysates from T cells (1.2 x 10^7 cells) treated with 2 µg/mL WT rLifA or rLifA^{C1480A} for the times indicated. A volume equivalent to 2 x 10^6 cells was run in each well. A predicted c. 140 kDa cleavage product of WT rLifA was visible at 15 minutes post-incubation and increased in concentration up to 1 hour after treatment (marked with an arrow), while no cleavage product was observed in rLifA^{C1480A}-treated T cells even after 2 hours. This experiment was performed with 2 separate donors and a representative blot is shown.

4.7.2 Detection of LifA cleavage in J774A.1 murine macrophage-like cells

Cell types other than primary T lymphocytes have previously been used in experiments to test the effects of LifA. EPEC E2348/69 lysates have been reported to inhibit IL-2 secretion by mitogen-stimulated Jurkat cells (Malstrom and James, 1998)
and WT rLifA has been shown to inhibit the IL-4-induced proliferation of bovine B lymphocytes (Cassady-Cain et al., 2017). EPEC lysates did not inhibit the proliferation of epithelial cells in a LifA-dependent manner (Klapproth et al., 2000). However, EPEC E2348/69 has been reported to modulate signalling in epithelial and J774A.1 macrophage-like cells in a manner dependent on Type III secretion but independent of LEE-encoded and several non-LEE-encoded effectors (Ruchaud-Sparagano et al., 2007; Amin, 2017), suggesting a possible role for LifA. Therefore, I sought to determine whether cell types other than bovine T lymphocytes could be used to detect processed forms of LifA.

Jurkat cells were used initially, and although a protein of ~140 kDa was observed in the lysates of rLifA-treated Jurkats, full-length rLifA was not observed as it is in T cells (data not shown). J774A.1 murine macrophage-like cells were used subsequently. Cleavage products of ~140 and 225 kDa were detected in the lysates of J774A.1 cells treated with WT rLifA but not rLifAC1480A for 1 hour (Figure 4.1A). The product of ~225 kDa was also detected with anti-6 x His antibody, indicating that it was the C-terminal portion of the protein (Figure 4.1B). The quantity of full-length WT rLifA in the lysates was reduced in comparison to rLifAC1480A, most likely due the protein being processed into the observed cleavage products. Full-length rLifAC1480A was not detected by the anti-6 x His antibody in J774A.1 cells despite being visible on the anti-LifA blot, possibly due to there being less epitopes on rLifA proteins for monoclonal anti-6 x His antibodies than for polyclonal anti-LifA antibodies.
Figure 4.14. Lymphostatin was processed by J774A.1 cells into N- and C-terminal forms of ~140 and 225 kDa respectively. Western blots of lysates from J774A.1 macrophage-like cells (1 x 10^6 cells) treated separately with rLifA or rLifA_{C1480A} for 1 hour. A volume equivalent to 2.5 x 10^5 cells was run in each well. (A) An anti-LifA blot revealed the fragment of ~140 kDa previously observed in T cells as well as the predicted fragment of ~225 kDa (marked with arrows), the presence of which were dependent on an intact cysteine protease motif. The quantity of full-length rLifA in the cell lysate was reduced in comparison to rLifA_{C1480A}, likely due to the processing of rLifA into the lower molecular weight forms. (B) The c. 225 kDa fragment was reactive to anti-6 x His antibody (marked by arrow), indicating that it was the C-terminal portion of rLifA. Quantities of 2 ng of WT rLifA and rLifA_{C1480A} were used as positive controls. Western blots are from a single experiment.
4.8 Impact of inhibitors of endosome acidification on predicted autocatalytic cleavage

Given that LifA underwent CP domain-mediated cleavage in T and J774A.1 cells, it was thought that this process may have required endosome acidification to initiate a conformational change in the protein, as with LCTs (Qa’dan et al., 2000 and 2001; Barth et al., 2001). To test this, T cells were pre-treated with two different inhibitors of endosomal acidification, bafilomycin A1 and chloroquine, before treatment with rLifA.

4.8.1 Bafilomycin A1

Bafilomycin A1 is an inhibitor of V-ATPases, which acts by binding to and preventing the rotation of V-ATPase C subunits (Bowman et al., 1988 and 2004). Bafilomycin A1 concentrations were informed by previous studies and pilot western blots. Qa’dan et al. (2000) and Wu et al. (2015) used 0.5 and 5 nM bafilomycin A1 respectively, however, a western blot revealed that production of the c. 140 kDa cleavage product was not inhibited at 5 nM. Partial and total inhibition was observed at 0.5 and 50 µM bafilomycin A1 respectively (data not shown), therefore bafilomycin A1 was titrated from 50 µM down to 0.0005 µM.

Western blot analysis showed that the appearance of the c. 140 kDa cleavage product remained constant with increasing bafilomycin A1 concentration from 0.0005 to 0.5 µM but was reduced at concentrations of 5 and 50 µM (Figure 4.15). Densitometry from five independent donors showed that the fold change in normalised fluorescent signal of the cleavage product in comparison to the DMSO control, with standard deviation, decreased gradually from 1.21 ± 0.19 at 0.0005 µM bafilomycin A1 to 1.07 ± 0.23 at 0.05 µM, then decreased sharply to 0.19 ± 0.14 at 50 µM (Figure 4.16). The overall loss of protein at 50 µM, indicated by the actin control, suggested that bafilomycin A1 became toxic to T cells at this concentration. The average linear regression slope was found to be statistically significantly different from a horizontal line representing no change in normalised fluorescent signal as the concentration of bafilomycin A1 increases ($T(4) = -13.77, P < 0.001$).
Figure 4.15. Bafilomycin A1 inhibited lymphostatin cleavage in a concentration-dependent manner (western blot). An absolute number of 1.2 x 10^7 cells were incubated with the indicated concentrations of bafilomycin A1 then treated with rLifA for 1 hour. A volume equivalent to 2 x 10^6 cells was run in each well. Western blot analysis of bafilomycin A1-treated T cells showed that the appearance of the cleavage product (red box) was reduced with increasing inhibitor concentration. DMSO was used as a diluent only control. A quantity of 2 ng of rLifA was used as a positive control for the anti-LifA antibody. Actin was used as a loading control. Data were generated from 5 independent donors and blots are shown from a representative donor.
Figure 4.16. Bafilomycin A1 inhibited lymphostatin cleavage in a
concentration-dependent manner (densitometry). Densitometry was performed on
the western blots and the cleavage product signal at each inhibitor concentration was
normalised against its respective actin signal to account for overall loss of protein.
Data were normalised again against the DMSO control to give a fold change in
normalised signal compared to untreated cells. The average fold change in
normalised signal of bafilomycin A1-treated T cells decreased as the concentration
increased. Error bars indicate the standard deviation of the average fold changes from
across 5 experiments.

4.8.2 Chloroquine

Chloroquine is a lysosomotropic agent that can freely diffuse across
cytoplasmic vesicles in its unprotonated form. Once inside acidic vesicles,
chloroquine becomes protonated and is trapped, thereby raising the pH of the vesicle
(reviewed in Al-Bari, 2015). The concentrations of chloroquine used were informed
by a study using PK-15 (porcine kidney) cells in which 125 µM chloroquine was
reported to be the maximum concentration that did not affect cell viability (Misinzo
et al., 2008). As such, chloroquine was titrated from 1250 µM down to 0.0125 µM.
Western blot analysis showed that the appearance of the c. 140 kDa cleavage product remained constant when increasing the chloroquine concentration from 0.0125 to 1.25 µM and was reduced at 12.5 µM. The c. 140 kDa cleavage product appeared to be absent in T cells treated with 125 and 1250 µM chloroquine (Figure 4.17). Densitometry from five independent donors showed that the fold change in normalised fluorescent signal of the cleavage product in comparison to the PBS control, with standard deviation, decreased gradually from 1.19 ± 0.19 at 0.0125 µM chloroquine to 1.08 ± 0.24 at 12.5 µM, then decreased sharply to 0.09 ± 0.15 at 1250 µM (Figure 4.18). The overall loss of protein at 1250 µM, indicated by the actin control suggested that chloroquine became toxic to T cells at this concentration. The average linear regression slope was found to be statistically significantly different from a horizontal line representing no change in normalised fluorescent signal as the concentration of chloroquine increases ($T(4) = -13.71$, $P < 0.001$).

Taken together with the results from experiments using bafilomycin A1, these data suggested that LifA required endosome acidification to undergo CP domain-mediated cleavage.
Figure 4.17. Chloroquine inhibited lymphostatin cleavage in a concentration-dependent manner (western blot). An absolute number of 1.2 x 10^7 cells were incubated with the indicated concentrations of chloroquine then treated with rLifA for 1 hour. A volume equivalent to 2 x 10^6 cells was run in each well. Western blot analysis of chloroquine-treated T cells showed that presence of cleavage product (red box) remained constant between 0.0125–12.5 μM but was reduced at higher concentrations. PBS was used a diluent only control. A quantity of 2 ng of rLifA was used as a positive control for the anti-LifA antibody. Actin was used as a loading control. Data were generated from 5 independent donors and blots are shown from a representative donor.
Figure 4.18. Chloroquine inhibited lymphostatin cleavage in a concentration-dependent manner (densitometry). Densitometry was performed on the western blots and the cleavage product signal at each inhibitor concentration was normalised against its respective actin signal to account for overall loss of protein. Data were normalised again against the PBS control to give a fold change in normalised signal compared to untreated cells. The average fold change in normalised signal of chloroquine-treated T cells remained constant between 0.0125–12.5 µM but decreased at higher concentrations. Error bars indicate the standard deviation of the average fold changes from across 5 experiments.

4.8.3 Proliferation assays using inhibitor-treated bovine T cells

To determine whether inhibitors of endosome acidification could block lymphostatin activity against mitogen-stimulated T cells, cells were pre-treated with bafilomycin A1 or chloroquine at the concentrations described previously and used in proliferation assays. T cells were treated with buffer or 1 µg/mL of rLifA for an hour then washed with PBS to remove the inhibitors before ConA stimulation. It was expected that the proliferation indices of rLifA treated cells would increase as the concentration of inhibitor increased.
In contrast to what was expected, the proliferation indices of rLifA-treated cells remained constant at all inhibitor concentrations and became highly variable at the highest concentrations (data not shown). To determine whether these results were due to toxicity, the absorbance values of buffer-treated cells with and without the addition of ConA were examined (Figure 4.19). Proliferation was normal from 0.0005–0.5 µM bafilomycin A1 and 0.0125–12.5 µM chloroquine but reduced at higher concentrations. The concentrations at which proliferation was inhibited were the same concentrations at which the c. 140 kDa cleavage product was absent in the western blots of T cell lysates. Therefore, proliferation assays are not a suitable system for measuring the effect of endosome acidification inhibitors on lymphostatin activity.
Figure 4.19. Concentration titration of bafilomycin A1 and chloroquine against ConA-stimulated peripheral bovine T lymphocytes. An absolute number of 200,000 cells were seeded into the wells of a 96 well plate. T cells were pre-treated with 10-fold dilutions of (A) bafilomycin A1 (BafA) or (B) chloroquine (Chlq) before incubation in the presence/absence of ConA. DMSO and PBS were used as carrier controls for bafilomycin A1 and chloroquine respectively. Comparing the absorbance values of stimulated and unstimulated cells revealed that high concentrations of the inhibitors appeared to be toxic to the cells. Titrations were carried out in triplicate and the results are the average obtained from 3 independent experiments using separate donors. Error bars indicate the standard deviation of the absorbance values from across the 3 experiments.
4.9 Discussion

The putative YopT-like CP domain of lymphostatin, including a conserved C/H/D catalytic triad, was hypothesised to be required for autoproteolysis and activity of the protein. To investigate this, a C1480A substitution mutant was created, expressed and purified. The mutant protein was found to be structurally identical to WT rLifA by the methods used for biophysical characterisation but was substantially impaired in its ability to inhibit ConA-stimulated lymphocyte proliferation. The inhibition observed at high concentrations may have been due to residual activity or contaminants, as even lysates of *E. coli* K-12 with empty plasmids can inhibit the ConA-stimulated proliferation of PBMCs at high concentrations (Klapproth *et al*., 2000; Deacon *et al*., 2010). Within T cells, rLifA is cleaved into N- and C-terminal products of ~140 and 225 kDa respectively in a processing event that requires both the predicted catalytic Cys\[^{1480}\] and endosome acidification. These observations are consistent with the notion that LifA enters cells and is processed in a manner akin to the LCTs.

Unfortunately, attempts to confirm whether rLifA\[^{C1480A}\] retained its ability to bind UDP-GlcNAc using the previously described method of measuring changes in intrinsic tryptophan fluorescence (Bease, 2015; Cassady-Cain *et al*., 2016) were inconclusive. The fluorescence of intrinsic Trp residues can either decrease via quenching (reviewed in Price and Nairn, 2009) or increase (Weljie and Vogel, 2000), which is detected by a spectrophotometer. Fluorescence quenching occurs when an excited Trp residue loses energy by either colliding with molecules in the solvent (collisional quenching) or by forming long-lasting interactions with molecules (static quenching; reviewed in Price and Nairn, 2009). The exposure of each Trp residue to the quenching molecule determines how easily it is quenched (Eftink and Ghiron, 1976). Intrinsic Trp fluorescence increases when a protein undergoes a conformational change that exposes Trp residues to the solvent, but is stabilised by the binding of another molecule, such as UDP-GlcNAc, that prevents quenching (Weljie and Vogel, 2000). An increase in fluorescence has previously been observed when UDP-GlcNAc was added to WT rLifA (Bease, 2015; Cassady-Cain *et al*., 2016). The assay is technically difficult, however, since lymphostatin contains
36 Trp residues, which can mask the subtle change in fluorescence of a single residue. Due to the difficulty of detecting UDP-GlcNAc binding with WT rLifA and the reagent intensive nature of the assay, this experiment was ultimately abandoned. Given that WT rLifA and rLifA^{C1480A} were found to be structurally identical by the various methods of biophysical characterisation, it was thought that the C1480A substitution was unlikely to affect UDP-GlcNAc binding.

Only the N-terminal cleavage product was observed in T cell lysates, possibly due to the C-terminal end being retained in the endosome and degraded or being centrifuged out of the lysate with the insoluble material. T cells were treated with WT rLifA and rLifA^{C1480A} in parallel to the J774A.1 cells and a volume equivalent to 4 x 10⁶ cells was run the same gel as the J774A.1 cells. There appeared to be a protein species in the lysate of rLifA-treated T cells on the anti-LifA blot at ~225 kDa but it was too faint to be conclusive (data not shown). Given that some transmembrane proteins, such as the growth factor receptor ErbB-1, are known to be degraded by the ubiquitin-proteasome pathway from the endosome, treating T cells with proteasome inhibitors, such as β-lactone or MG-132, may reveal more of the LifA C-terminus (Levkowitz et al., 1998; van Kerkhof et al., 2001). Using these two different inhibitors would be useful, as peptide aldehydes like MG-132 can also inhibit lysosomal degradation (Rock et al., 1994; Craiu et al., 1997). Double the quantity of rLifA was applied to eight times the number of T cells compared to J774A.1 cells, with a volume equivalent to 16 times more T cells than J774A.1 cells being loaded into the gel. Despite this, more of each cleavage product and less full-length rLifA was observed in the lysates of J774A.1 cells compared to T cells. Although densitometry would be required to make a definite conclusion regarding this, the blot suggests that J774A.1 cells uptake more rLifA than T cells, which could provide a useful model for future studies of LifA cleavage. Full-length rLifA^{C1480A} was detected by anti-LifA antibodies in J774A.1 cells but not anti-6 x His antibodies, likely as there are more epitopes for anti-LifA binding present on rLifA proteins than for anti-6 x His binding. However, given that the C-terminal portion of WT rLifA could be detected with anti-6 x His, this suggests that there was either less full-length rLifA^{C1480A} present in the lysates compared to WT rLifA C-terminus or there was inconsistent staining with this antibody. Detection of proteins with
anti-6 x His antibody was generally poor when attempted, hence it was not used more extensively.

In parallel to the experiments investigating LifA cleavage, experiments were conducted to determine whether LifA might cleave host cell proteins like other virulence factors containing C58 protease domains (Shao et al., 2002 and 2003a; Brugirard-Ricaud et al., 2005). The detection of LifA protease activity was attempted using a commercially available Protease Fluorescent Detection Kit (Sigma-Aldrich), which uses a protocol modified from Twining (1984). Proteins exhibiting protease activity cleave the FITC-labelled casein substrate. After incubation, trichloroacetic acid is used to precipitate undigested casein, which is centrifuged out. The supernatant is neutralised and small fragments of labelled casein that are not precipitated can be detected by measuring the fluorescence intensity with excitation and emission wavelengths of 485 and 535 nm respectively (Sigma-Aldrich, 2019). A trypsin control was provided with the kit and papain was used as a cysteine protease control. Protease activity was not detected at any concentration of rLifA, however, the trypsin control failed to produce the expected standard curve, even after trouble shooting, and the assay was deemed unsuitable. Even if LifA does exhibit protease activity against a host protein(s), it cannot be guaranteed that it would act on the casein substrate. The C58 proteases YopT and AvrPphB require specific recognition sequences at their respective cleavage sites and such a sequence may be required for LifA protease activity (Shao et al., 2003a and 2003b). Although western blots suggest that the CP domain of LifA is required for autoproteolysis, AvrPphB uses its CP domain for both autocatalytic cleavage and cleavage of the host cell protein PBS1 (Shao et al., 2002 and 2003a). This could mean a dual role for the CP domain of LifA but this would likely require cleavage to occur to the C-terminal end of the C/H/D motif rather than between the CP and glycosyltransferase domains as it does in LCTs (Rupnik et al., 2005; Kreimeyer et al., 2011; Guttenberg et al., 2011). The sizes of the cleavage products, however, suggest that cleavage of LifA occurs between these two domains, similar to the LCTs.

Autocatalytic cleavage of LCTs requires the co-factor InsP₆ and occurs optimally between pH 7 and 8, although they have also been reported to cleave in the presence of DTT and β-mercaptoethanol (Reinke et al., 2007; Egerer et al., 2007;
Attempts to initiate the autocatalytic cleavage of rLifA in vitro, however, have been unsuccessful despite the range of conditions used, including different pHs, incubation times, and the presence or absence of InsP₆ and DTT (Cassady-Cain et al., 2016; Walkinshaw Laboratory, unpublished data). An experiment was performed to determine whether the putative co-factor of LifA was proteinaceous. T cell lysates without protease inhibitors were either incubated at 70 °C for 10 minutes, the same conditions used to denature protein for SDS-PAGE, or prepared immediately before the addition of rLifA and incubation at 37 °C for 1 hour. However, western blots revealed a complex ladder of protein species reactive to the anti-LifA antibody from lysates with and without heat treatment, making the c. 140 kDa cleavage product impossible to detect (data not shown). This may have been due to active proteases that survived the heat treatment cleaving rLifA, or host cell proteins that contain anti-LifA antibody reactive peptides, as experiments of this nature using LCTs heated lysates at 96 °C for 30 minutes (Reinke et al., 2007).

To confirm the requirement of endosome acidification for LifA cleavage, a number of approaches could be used. T cells could be pre-incubated with inhibitors, incubated with rLifA for 1 hour then acid pulsed, which may allow the protein to translocate across the plasma membrane (Qa’dan et al., 2000 and 2001). An alternative method would be to allow rLifA to bind T cells at 4 °C, briefly incubate the cells with inhibitor then replace the medium with fresh medium at a lower pH (Barth et al., 2001). Additional experiments performed by Qa’dan et al. (2000 and 2001) with the LCTs TcdB and TcsL could be used to obtain data relating to pH-induced conformational changes in LifA. Tryptophan fluorescence assays, used previously to detect UDP-GlcNAc binding with LifA (Bease, 2015; Cassady-Cain et al., 2016), can be used to detect changes in tryptophan fluorescence if differences in pH cause structural changes to the protein (Qa’dan et al., 2000 and 2001). rLifA could also be subjected to TNS (2-(p-Toluidinyl) naphthalene-6-sulphonate) fluorescence analysis to identify pH-induced changes in hydrophobicity. Similar to SYPRO Orange used in TDAs, TNS fluoresces at a greater intensity in hydrophobic environments, which can be measured between 380 and 500 nm (McClure and Edelman, 1966; Qa’dan et al., 2000). This method or TDAs could reveal structural changes that make rLifA more hydrophobic. The pH-induced structural changes in
TcdB and TcsL were also found to be reversible, as protein shifted from pH 4 to 7 exhibited normal background fluorescence (Qa’dan et al., 2000 and 2001). Membrane insertion of LifA could be studied using the acid pulse method described above from Barth et al. (2001). Cells could be pre-loaded with 86Rb$^+$, the release of which would be measured after protein treatment, indicating whether LifA forms a pore in the endosomal membrane like LCTs (Barth et al., 2001). Lastly, digestion of rLifA at different pHs with the pH stable *Staphylococcus aureus* V8 protease may reveal different digest profiles, confirming that previously unavailable digestion sites become exposed under acidic conditions (Qa’dan et al., 2000).

Attempts to determine the effects of endosome acidification inhibition on the biological activity of LifA were unsuccessful, as the concentrations of bafilomycin A1 or chloroquine required to inhibit LifA cleavage also inhibited T cell proliferation. An experiment using two-fold dilutions of bafilomycin A1 (0.15625–5 µM) or chloroquine (3.90625–125 µM) was carried out to look for subtle changes in proliferation that may have been missed in previous experiments. The proliferation index of rLifA treated T cells increased as the concentration of bafilomycin A1 increased but toxicity was observed at as low as 1.25 µM (data not shown). Toxicity caused by chloroquine did not become apparent until a concentration of 62.5 µM but the proliferation index remained constant as the concentration of chloroquine increased (data not shown). Although the effects of bafilomycin A1 on T cell proliferation have not been previously reported, the effects of chloroquine have. Schmidt et al. (2017) reported that 0.6 µM chloroquine reduced the proliferative capacity of human CD4$^+$ T cells to ~80 % of that of untreated cells, and by 10 µM it was reduced to ~30 %. It was also reported that the relative viability of activated T cells was not affected up to a concentration of 10 µM chloroquine but decreased to ~30 % at 100 µM (Schmidt et al., 2017).

Taken together, the work presented in this chapter identified a key role for the Cys1480 residue in intracellular processing and activity of lymphostatin in the absence of obvious effects on the biophysical properties of the protein relative to WT rLifA. However, it cannot be concluded if the loss of activity reflects a requirement for autocatalytic cleavage to release the catalytic domain from endosomal membranes, allowing it to reach its cellular target (as for LCTs), or a direct role for cysteine
protease activity against a cellular target that results in inhibition of T cell proliferation.
5 Identifying interacting partners of lymphostatin

5.1 Introduction

Although the inhibitory effects of lymphostatin on T cells were first observed over two decades ago, before the protein responsible was formally identified (Klapproth et al., 1995), the target(s) of lymphostatin activity remains unknown. Given that LifA binds UDP-GlcNAc and that mutation of the DXD motif within the glycosyltransferase (GT) domain abolishes this binding, as well as inhibitory activity, it was hypothesised that LifA acts as a glycosyltransferase (Bease, 2015; Cassady-Cain et al., 2016). Given the N-terminal homology between LifA and large clostridial toxins (LCTs), Rho GTPases that regulate the cytoskeleton may seem like a plausible target for LifA. However, LifA does not exhibit direct cytotoxicity or alter the morphology of treated cells (Klapproth et al., 1995 and 2000; Stevens et al., 2002; Bease, 2015; Cassady-Cain et al., 2016), which is associated with the glycosylation of Rho GTPases by LCTs (Just et al., 1994 and 1995a; Selzer et al., 1996). There is only limited evidence to suggest that LifA targets Rho GTPases (Babbin et al., 2009), which could not be confirmed by subsequent studies (Deacon et al., 2010). These experiments only examined well studied Rho GTPases however, and so LifA may target lesser studied Rho GTPases that have functions aside from regulating cell morphology.

As LifA inhibits the mitogen- and antigen-stimulated proliferation of T cells (Cassady-Cain et al., 2016 and 2017), it is possible that it targets part of the T cell signalling cascade. T cell signalling begins at the T cell receptor (TCR). T lymphocytes can be classed as either αβ or γδ depending on the class of proteins that make up the TCR (reviewed in Alcover et al., 2018). αβ T cells are activated against antigens by the interaction of the TCR with peptide-MHC complexes and co-stimulation from other cells, particularly antigen-presenting cells (APCs; reviewed in Courtney et al., 2017; reviewed in Attanasio and Wherry, 2016). The TCR of γδ T cells however, either interacts with antigens directly or MHC proteins that do not belong to either MHC class I or II (Adams et al., 2005; reviewed in Vermijlen et al., 2018). The TCR forms a complex with CD3, which itself is formed...
from γε, δε and ζζ subunits (Brenner et al., 1985; Samelson et al., 1985; Sussman et al., 1988), which acts as the intracellular signalling portion of the receptor. In αβ T cells, when the TCR interacts with a peptide-MHC complex the TCR co-receptors CD4 and CD8 bring the Src kinase Lck into contact with its substrates, which are the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 γ-, δ-, ε- and ζ-chains (Rudd et al., 1988; Veillette et al., 1988; Baniyash et al., 1988; Barber et al., 1989). The Src kinase Fyn also phosphorylates CD3 ITAMs but to a lesser extent than Lck (Denny et al., 2000). The phosphorylation of CD3 ITAMs results in the recruitment and Lck-dependent phosphorylation of ZAP70 (Iwashima et al., 1994; Neumeister et al., 1995; Chan et al., 1995). This in turn triggers a complex series of phosphorylation/dephosphorylation events in the linker for activation of T cells (LAT) signalosome that results in the remodelling of the cell cytoskeleton, signal transduction to the nucleus and binding to APCs (Figure 5.1; reviewed in Huse, 2009). A brief description of these events is given below highlighting the main processes involved.

Figure 5.1. The early TCR signalling pathway. The interaction of the TCR with peptide-MHC complexes results in the recruitment and activation of various proteins that are responsible for cytoskeleton remodelling, APC binding and co-stimulation and changes in gene expression (from Brownlie and Zamoyska, 2013).

Remodelling of the actin cytoskeleton occurs when the TCR is activated by an APC and results in areas of the T cell plasma membrane spreading across the
surface of the APC (reviewed in Kumari et al., 2014). Wiskott-Aldrich syndrome protein (WASP) is recruited to the LAT signalosome by Nck, where it is activated by the Rho GTPase Cdc42, which itself is activated first by Vav1 (Zeng et al., 2003). Vav1 also activates a second Rho GTPase, Rac1, which in turn activates WASP family veprolin homologous protein (Wave2; Crespo et al., 1996 and 1997; Nolz et al., 2006). WASP and Wave2 then recruit the actin-related protein 2/3 complex, which triggers actin polymerisation (reviewed in Kumari et al., 2014).

While cytoskeletal remodelling provides a large surface area for T cell-APC interaction, the upregulation of integrins, particularly lymphocyte function-associated antigen 1, results in the adhesion of the two cells (Bachmann et al., 1997). This allows for the co-stimulation of the T cell, which is necessary for effective stimulation. Typically, the T cell co-stimulatory receptor CD28 binds with the ligands CD80 or CD86 on APCs, which promotes proliferation, cell survival and cytokine production (reviewed in Esensten et al., 2016).

Gene expression after TCR activation is influenced by the protein PLCγ1, which controls the calcium ion, NF-κB and MAPK signalling pathways (reviewed in Cantrell, 2015). These three pathways respectively result in the transcription factors NF-AT, NF-κB and AP-1 upregulating the expression of IL-2, which is responsible for proliferation as well as the differentiation of naïve T cells into memory or effector T cells (reviewed in Cantrell, 2015; reviewed in Ross and Cantrell, 2018). The TCR is also capable of activating the mammalian target of rapamycin (mTOR) pathway through phosphoinositide 3-kinase (PI3K), which promotes cell survival and proliferation (Gorentla et al., 2011; Sinclair et al., 2008).

Recent studies provide some insight into the action of LifA on the T cell activation pathway. rLifA inhibits the proliferation of T cells that have been stimulated by the mitogen ConA (Cassady-Cain et al., 2016 and 2017), which activates T cells by interacting with the T3/antigen receptor complex, initiating the calcium ion signalling pathway (Kanellopoulos et al., 1985; Weiss et al., 1987; reviewed in Weiss et al., 1986). However, rLifA does not block the stimulation of T cells by phorbol myristate acetate (PMA) and ionomycin (Cassady-Cain et al., 2017). PMA activates protein kinase C (PKC) and ionomycin is a Ca²⁺ ionophore that activates both PKC and calmodulin (CaM; Castagna et al., 1982; Chatila et al., 2008).
This suggests that the target of LifA may lie downstream of the TCR but upstream of PKC and CaM (Figure 5.2). Cassady-Cain et al. (2017) also found that rLifA inhibited the IL-2 stimulated proliferation of T cells. IL-2 signalling has some downstream effects in common with TCR signalling, such as the activation of mTOR and the activation of Ras through the phosphorylation of SHC1, which associates with growth factor receptor-bound protein 2 (Grb2; reviewed in Ross and Cantrell, 2018). rLifA also inhibits the IL-4-stimulated proliferation of B cells but to a lesser degree than T cells (Cassady-Cain et al., 2017). It does not, however, inhibit the IL-12/IL-18-stimulated production of IFN-γ by NK cells, suggesting that the target(s) of LifA may be expressed in different quantities in different cell types, and/or that uptake and processing of LifA may vary between cell types in a way that dictates how much of the protein reaches the cellular target(s). The target(s) of LifA may also only be important in certain cell types. Additionally, LifA may not affect NK cells if its target(s) is not involved in IL-12/IL-18 signalling.

In this chapter, I sought to identify potential targets of glycosylation in rLifA-treated T cells. Since there were no suspected targets of LifA, a broad approach was employed to identify unique glycosylation events using western blotting and shotgun mass spectrometry. In addition, protein pull-downs were used to identify potential interacting partners and targets of LifA, including receptors and adaptor proteins that may traffic the GT domain-containing N-terminus to its target.
Figure 5.2. Overview of T cell signalling. ConA stimulates the T cell receptor (TCR) while PMA activates protein kinase C (PKC), which normally requires calcium for activation. The Ca2+ ionophore ionomycin activates PKC and calmodulin (CaM). It may be hypothesised that LifA acts by glycosylating a protein in the signalling pathway somewhere between the TCR and PKC and CaM, allowing to it to inhibit proliferation stimulated by ConA but not PMA and ionomycin (from Cell Signaling Technology®, 2014).
5.2 The bovine T lymphocyte O-GlcNAc profile

5.2.1 Western blotting

Initially, to identify possible targets of glycosylation and observe changes in the O-GlcNAcome, western blots were performed using the lysates of either T cells alone, rLifA-treated T cells, or T cells treated with the GT mutant rLifA^{DTD/AAA}. T cells were treated with protein at a final concentration of 2 μg/mL, as this concentration of rLifA achieves inhibition of ConA-stimulated proliferation at saturation. Lysates were run on three different gel systems to provide the best resolution at different molecular weights, with ranges of 10–150 kDa, 25–250 kDa and 71–460 kDa. Blots were probed with an anti-O-GlcNAc antibody, which detects O-linked GlcNAc. As there are currently no antibodies available that can detect N-linked GlcNAc, an examination of this modification by western blotting was not possible. No obvious changes were detected in the O-GlcNAc profile of rLifA-treated T cells in comparison to untreated or rLifA^{DTD/AAA}-treated T cells (Figure 5.3). Additionally, no O-GlcNAcylated proteins were detected below 50 kDa, even when the brightness and contrast of the image were increased.

Since no changes were detected in the O-GlcNAc profile of rLifA-treated T cells, untreated and rLifA-treated T cell lysates were subjected to glycoprotein enrichment using a commercially available kit. Wheat germ agglutinin (WGA) beads were used to isolate glycoproteins from the lysates with the intention of enhancing the detection of O-GlcNAcylated proteins and removing proteins that might bind to the anti-O-GlcNAc antibody non-specifically. It was also predicted that the glycoprotein enrichment would aid the identification of GlcNAcylated peptides by shotgun mass spectrometry (see Section 5.2.2). Despite a modest enrichment of some proteins in enriched lysates there was still no detectable change in the O-GlcNAc profile of rLifA-treated cells in comparison to untreated cells (Figure 5.4). Again, no O-GlcNAcylated proteins were detected below 50 kDa.
Figure 5.3. The O-GlcNAc profile of bovine T lymphocytes in the presence or absence of rLifA. T cells were treated with buffer, rLifA or rLifA_{DTD/AAA} at a final concentration of 2 μg/mL and the lysates were probed with an anti-O-GlcNAc antibody to identify changes in the O-GlcNAc profile. Lysates were run on three different gel systems to provide the best resolution at different molecular masses. No obvious changes in the O-GlcNAc profile were detected in cells treated with rLifA compared to cells alone or treatment with rLifA_{DTD/AAA}, and no O-GlcNAcylated proteins were detected below 50 kDa.
Figure 5.4. The O-GlcNAc profile of enriched T cell lysates in the presence or absence of rLifA. T cells were treated with buffer or rLifA at a final concentration of 2 μg/mL. Lysates were enriched for O-GlcNAcylated proteins using wheat germ agglutinin beads. Equal quantities of total protein from pre- and post-enriched lysates were run on two different gel systems to look for changes in the O-GlcNAc profile at different molecular mass ranges. While some glycoproteins were modestly enriched, there was an overall loss of protein diversity during the enrichment process. Again, there were no obvious differences in the O-GlcNAc profiles of cells treated with rLifA and those without.
5.2.2 Shotgun mass spectrometry

Published research to identify the target of LCT activity used electrospray mass spectrometry to determine both the sugar substrate and the particular amino acid that is glycosylated on RhoA (Just et al., 1995b and 1995c; Selzer et al., 1996). However, at the time of these experiments, RhoA was suspected of being a target since the toxins TcdA and B were known to cause actin depolymerisation similar to that observed in cells treated with *C. botulinum* C3 toxin, which ADP-ribosylates Rho GTPases (Quilliam et al., 1989). Additionally, treatment of cells with TcdA and B inhibited the ADP-ribosylation of RhoA by C3 toxin (Just et al., 1994 and 1995a). Unlike these experiments, there is currently no putative target protein of lymphostatin activity, as LifA treatment does not cause morphological changes and is not known to interfere with other effectors. Therefore, I used shotgun mass spectrometry to examine lysates of T cells treated, or not, with rLifA to detect peptides modified with GlcNAc, allowing for different types of linkage and multiple GlcNAc moieties.

Three independent sets of samples were sent to the Kinetic Parameter Facility (KPF) at the University of Edinburgh for analysis by Lisa Imrie: pellets of 1.2×10^7 T cells treated with buffer, rLifA or rLifA$^{DTD/AAA}$ at a final concentration of 2 μg/mL for 1 hour; pellets of 3.6×10^7 T cells treated with buffer or rLifA at a final concentration of 2 μg/mL for 1 hour; and T cell lysates subjected to glycoprotein enrichment from Section 5.2.1 (Tables 5.1–5.3). Peptides were searched for modifications with one or two GlcNAc molecules on either N-linkages, which occur on Asn residues, or O-linkages, which occur on Ser and Thr residues. The overall number of unique proteins and peptides detected in the two sets of cell pellets was between 399–744 and 1565–3259 respectively, but the number of unique GlcNAcylated peptides detected was much lower than expected. Shotgun mass spectrometry was expected to detect > 700 proteins from eukaryotic cell pellets of the sizes used (Lisa Imrie, personal communications). Only one unique N-linked modified peptide was detected that possessed the consensus sequence of Asn-Xaa-Ser/Thr/Cys, where Xaa is any amino acid other than proline, which is required for N-linked glycosylation (Pless and Lennarz, 1977; Bause and Legler,
1981). This peptide was detected in T cells treated with \(r\text{LifA}^{\text{DTD/AAA}} \), however, meaning that it could not have been modified in a GT domain-dependent manner. From the two sets of cell pellets a total of four peptides were detected with O-linked GlcNAc on Ser residues and two peptides had O-linked GlcNAc on Thr residues. No GlcNAc modified peptides were detected in the glycoprotein enriched samples, which also had lower numbers of unique proteins and peptides detected. A quality control sample of \(\text{Ostreococcus tauri} \) proteins was run on the spectrometer before each experimental sample, which tracked the retention times, intensities of the base peaks and number of proteins identified. All quality control samples performed as expected (Lisa Imrie, personal communications). Detailed information on the proteins/peptides identified can be found in Appendix 5.

Table 5.1. Proteins and peptides detected in pellets of \(1.2 \times 10^7 \) T cells by shotgun mass spectrometry. Data were collected and analysed by Lisa Imrie, KPF.

<table>
<thead>
<tr>
<th>Sample</th>
<th>No. of unique proteins</th>
<th>Total No. of peptides</th>
<th>No. of unique peptides</th>
<th>No. of unique glycosylated peptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells alone</td>
<td>686</td>
<td>119839</td>
<td>2965</td>
<td>4 N-linked modified peptides (none have correct linkage site)</td>
</tr>
<tr>
<td>Cells + rLifA</td>
<td>598</td>
<td>143953</td>
<td>2649</td>
<td>7 N-linked modified peptides (none have correct linkage site), 2 O-linked (S) peptides, 1 O-linked (S & T) peptide</td>
</tr>
<tr>
<td>Cells + rLifA(^{\text{DTD/AAA}})</td>
<td>697</td>
<td>161510</td>
<td>3012</td>
<td>8 N-linked modified peptides (none have correct linkage site), 1 O-linked (S) peptide, 1 N-linked & O-linked (T) peptide</td>
</tr>
</tbody>
</table>
Table 5.2. Proteins and peptides detected in pellets of 3.6×10^8 T cells by shotgun mass spectrometry. Data were collected and analysed by Lisa Imrie, KPF.

<table>
<thead>
<tr>
<th>Sample</th>
<th>No. of unique proteins</th>
<th>Total No. of peptides</th>
<th>No. of unique peptides</th>
<th>No. of unique glycosylated peptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells alone</td>
<td>744</td>
<td>45067</td>
<td>3259</td>
<td>2 N-linked modified peptides (none have correct linkage site), 1 O-linked (S) peptide</td>
</tr>
<tr>
<td>Cells + rLifA</td>
<td>399</td>
<td>18315</td>
<td>1565</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 5.3. Proteins and peptides detected in glycoprotein enriched T cell lysates by shotgun mass spectrometry. Data were collected and analysed by Lisa Imrie, KPF.

<table>
<thead>
<tr>
<th>Sample</th>
<th>No. of unique proteins</th>
<th>Total No. of peptides</th>
<th>No. of unique peptides</th>
<th>No. of unique glycosylated peptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells alone</td>
<td>85</td>
<td>21366</td>
<td>322</td>
<td>0</td>
</tr>
<tr>
<td>Cells + rLifA</td>
<td>80</td>
<td>4087</td>
<td>303</td>
<td>0</td>
</tr>
</tbody>
</table>

Only three GlcNAcylated peptides were detected that were unique to T cells treated with WT rLifA but these were not repeatedly detected in independent replicates. Eukaryotic initiation factor 4A-III (EIF4A3) and histone H2B were found to have O-GlcNAc modifications on Ser368 and Ser20 respectively. EIF4A3 is an RNA helicase that is involved in RNA splicing (Chan et al., 2004) but no evidence could be found in the literature that it can be regulated by O-GlcNAcylation. Histone H2B is known to be O-GlcNAcylated in a manner that regulates transcription, but this occurs on Ser112 (Fujiki et al., 2011). Although both of these proteins have the potential to affect T cell proliferation, they act at a transcriptional level and would therefore likely be affected by PMA/ionomycin stimulation, which is not inhibited by rLifA (Cassady-Cain et al., 2017).

The third GlcNAc modified peptide was derived from glyceraldehyde 3-phosphate dehydrogenase (GAPDH). In pellets of 1.2×10^7 cells treated with WT rLifA, there is an O-linked GlcNAc on one of three possible Thr residues (Thr141, Thr151 or Thr152) and another on either Ser146 or Ser149. However, this peptide was not
consistently detected in pellets of 3.6×10^8 cells treated with rLifA. This peptide sequence was detected in rLifA$_{DTD/AAA}$-treated T cells but with different modifications. Again, there was an O-linked GlcNAc on one of three Thr residues, but there was also an N-linked modification on either Asn139 or Asn147, rather than a Ser modification. GAPDH exists in a tetrameric form in the cytoplasm and has been shown to regulate calcium flux in kidney cells by interacting with IP$_3$R and delivering NADH, which stimulates IP$_3$R-mediated intracellular Ca$^{2+}$ release (Patterson et al., 2005). O-GlcNAcylation of GAPDH disrupts its tetrameric form, allowing it to be translocated to the nucleus, however, this modification is known to occur on Thr227 (Park et al., 2009). It is possible that LifA may GlcNAcylate GAPDH at a unique site however. It is also not clear whether GAPDH plays a major role in calcium flux caused by T cell activation. GAPDH is an attractive candidate for lymphostatin activity given its potential role in calcium flux and that it is targeted by the glycosyltransferase NleB as an innate immune evasion strategy (Gao et al., 2013; El Qaidi et al., 2017). Inhibiting GAPDH expression in macrophages has been shown to reduce IFN-γ production (Yamaguchi et al., 2016) but in T cells, GAPDH binds to and inhibits the translation of IFN-γ transcripts unless it is recruited for glycolysis (Chang et al., 2013). Calcium flux is also important for NK cell signalling (Bryceson et al., 2006) yet expression of IFN-γ by these cells did not appear to be affected by LifA treatment (Cassady-Cain et al., 2017). It is therefore unclear as to whether GAPDH is targeted by LifA.

Given the small number of GlcNAcylated peptides detected using shotgun mass spectrometry, it was decided that this method (or the equipment available) may not be sufficiently sensitive to identify potential targets of LifA activity and that other approaches should be pursued.
5.3 Protein pull-downs

5.3.1 Identifying candidate LifA interacting partners by silver staining and liquid chromatography mass spectrometry (LC-MS)

To detect proteins that interact with LifA, lysates of T cells were passed through a column on which His-tagged rLifA was immobilised on Co$_{2+}$-agarose beads (Thermo Fisher Scientific Inc., 2013a; reviewed in Puckett, 2015). Control columns on which rLifA alone was immobilised, or where T cell lysate was passed with no rLifA loaded on the column, were respectively used to distinguish putative interacting proteins from degraded forms of rLifA and proteins that bind non-specifically to the beads. Eluted proteins were analysed on three different gel systems to provide the best resolution at different molecular weights, with ranges of 10–250 kDa, 25–250 kDa and 55–460 kDa. Silver staining revealed potential interacting partners of rLifA at ~70, 100 and 180 kDa (Figures 5.5 and 5.6). The c. 180 kDa protein was consistently observed using T cells from three independent donors while the other proteins were not. In Figures 5.5 and 5.6, the c. 180 kDa appeared at the same size as a protein species in the rLifA alone control but appeared slightly below this species on other silver-stained gels. The presence of the c. 180 kDa protein appeared to remain consistent at each elution step, whereas very little of the rLifA species was eluted after the first elution step. No putative interacting partners of rLifA were detected below 50 kDa (Figure 5.7).

The c. 180 kDa protein and the corresponding area from the T cells alone control were excised and analysed by LC-MS by Dr Dominic Kurian, Proteomics and Metabolomics Facility, The Roslin Institute. Most of the peptides identified were from various forms of keratin, which is a common contaminant, or other proteins that are not involved in T cell signalling. Peptides from lymphostatin were detected when the c. 180 kDa protein was searched against the whole NCBI database and the EPEC E2348/69 LifA sequence, indicating that some of the protein at this position in the gel is derived from rLifA. Two proteins detected by searching the Uniprot B. taurus database were unique to the c. 180 kDa gel band from the rLifA pull-down but not the T cell only control. These were found to be involved directly in lymphocyte
signalling, however, only a single peptide was detected for each protein and both proteins are smaller than 180 kDa. One was derived from Calpain 7, an ~93 kDa protein that is activated by calcium and has been reported to be required for T cell proliferation, the expression of proinflammatory cytokines and lymphocyte function-associated antigen-1-mediated adhesion (Smith et al., 2011; Stewart et al., 1998). However, further examination of the peptide ion fragmentation pattern gave little confidence that this peptide was genuine.

The second protein located at c. 180 kDa in the rLifA pull-down but not the T cell only control was inositol polyphosphate-5-phosphatase E (INPP5E), also known as pharbin, which is predicted to be ~72 kDa. INPP5E regulates protein kinase B (Akt) phosphorylation by hydrolysing phosphatidylinositol (3,4,5)-triphosphate (PIP₃), PI(3,5)P₂ and PI(4,5)P₂, which is converted into PIP₃ by PI3K (reviewed in Eramo and Mitchell, 2016). PIP₃ is required for the Ser₄⁷³ phosphorylation of Akt1 by mTORC2 (Sarbassov et al., 2005; Gan et al., 2011), and given that Akt1 Ser₄⁷³ phosphorylation was found to be reduced in rLifA-treated T cells in independent studies (Stevens Laboratory, unpublished data; see Chapter 6), this made INPP5E an attractive candidate for future work. INPP5E has been reported to be phosphorylated by aurora kinase A, which increased its phosphatase activity (Plotnikova et al., 2015). It can also be O-GlcNAcylated by O-GlcNAc transferase but the effect of this on its activity is not known (Tian and Qin, 2019). Analysis of the peptide ion fragmentation also gave confidence that the peptide detected by LC-MS was genuine, despite the difference in molecular weight. Therefore, further experiments with INPP5E were carried out as described in Section 5.3.3. Detailed information on the proteins/peptides identified can be found in Appendix 5.
Figure 5.5. Pull-down assays using rLifA immobilised on columns to capture T cell proteins (55–460 kDa). rLifA or buffer was captured on cobalt resin beads and T cell lysate was then mixed with the resin. Proteins were eluted from the resin three times and silver staining was used to detect protein species that were unique to rLifA with T cell lysate or found in greater quantities than in lysate alone. rLifA was captured and mixed with lysis buffer to determine which protein species were products of rLifA. Two unique protein species were detected at ~100 and 180 kDa (marked with arrows). Although the c. 180 kDa protein appears at roughly the same position as a protein from the rLifA alone control, this protein was seen consistently in multiple replicates below the rLifA alone band. A quantity of 2 ng of rLifA was used to show the position of full-length rLifA. This experiment was performed with 3 independent donors and a representative gel is shown.
Figure 5.6. Pull-down assays using rLifA immobilised on columns to capture T cell proteins (25–250 kDa). The c. 180 kDa protein species detected on the previous gel was also observed on this gel type. The c. 100 kDa protein could not be seen using this gel system but another protein species was detected at ~70 kDa. Unique protein species are marked with arrows. A quantity of 2 ng of rLifA was used to show the position of full-length rLifA. This experiment was performed with 3 independent donors and a representative gel is shown.
Figure 5.7. Pull-down assays using rLifA immobilised on columns to capture T cell proteins (10–250 kDa). Using a gel to achieve resolution at the lowest molecular weights did not reveal any unique protein species below 25 kDa (the limit of the gel system used in Figure 5.6). Even the proteins of higher molecular weights observed using other gel types could not be seen. This experiment was performed with 3 independent donors and a representative gel is shown.

5.3.2 Shotgun mass spectrometry of pull-down eluates

Whole eluates from the same donor used in the experiments shown in Figures 5.5–5.7 were used for shotgun mass spectrometry, performed by Lisa Imrie, KPF. Eluates from the first elution step were used as these contained the most protein. However, the number of proteins/peptides detected was far lower than previously
observed when searching for GlcNAc modified peptides (Tables 5.4 and 5.5). The same quality controls were applied to these analyses as described in Section 5.2.2. Detailed information on the proteins/peptides identified can be found in Appendix 5.

Table 5.4. Proteins and peptides detected in protein pull-down eluates by shotgun mass spectrometry. Data were collected and analysed by Lisa Imrie, KPF.

<table>
<thead>
<tr>
<th>Sample</th>
<th>No. of unique proteins</th>
<th>Total No. of peptides</th>
<th>No. of unique peptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells alone</td>
<td>12</td>
<td>43</td>
<td>12</td>
</tr>
<tr>
<td>rLifA + cells</td>
<td>8</td>
<td>24</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 5.5. Identities of proteins and peptide sequences detected in protein pull-down eluates by shotgun mass spectrometry. Green cells highlight proteins unique to the ‘rLifA + cells’ sample. Most proteins were detected in both samples but some were identified by different peptide sequences. Data were collected and analysed by Lisa Imrie, KPF.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Protein name</th>
<th>Peptide sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cells alone</td>
<td>Actin, alpha cardiac muscle 1</td>
<td>AGFAGDDDAPR</td>
</tr>
<tr>
<td></td>
<td>Antithrombin-III</td>
<td>RVWELSK</td>
</tr>
<tr>
<td></td>
<td>Apolipoprotein A-I</td>
<td>VQPYLDEFQKK</td>
</tr>
<tr>
<td></td>
<td>Cationic trypsin</td>
<td>SSGTSYPDVLK</td>
</tr>
<tr>
<td></td>
<td>Complement C3</td>
<td>LPYSVVR</td>
</tr>
<tr>
<td></td>
<td>Epidermal growth factor receptor (Fragment)</td>
<td>IPLENLQIIR</td>
</tr>
<tr>
<td></td>
<td>Fibronectin</td>
<td>STTPDITGYR</td>
</tr>
<tr>
<td></td>
<td>Gelsolin</td>
<td>AALKTASDFISK</td>
</tr>
<tr>
<td></td>
<td>Inter-alpha-trypsin inhibitor heavy chain H3</td>
<td>GHVSFKPSLDQQR</td>
</tr>
<tr>
<td></td>
<td>ITIH2 protein</td>
<td>TILDDDLR</td>
</tr>
<tr>
<td></td>
<td>Lumican</td>
<td>ILGPLSYK</td>
</tr>
<tr>
<td></td>
<td>Serum albumin</td>
<td>LGEYGFQNALIVR</td>
</tr>
<tr>
<td>rLifA + cells</td>
<td>Antithrombin-III</td>
<td>EVALNTIIFMGR</td>
</tr>
<tr>
<td></td>
<td>Cationic trypsin</td>
<td>SSGTSYPDVLK</td>
</tr>
<tr>
<td></td>
<td>Complement C3</td>
<td>LPYSVVR</td>
</tr>
<tr>
<td></td>
<td>Fibronectin</td>
<td>STTPDITGYR</td>
</tr>
<tr>
<td></td>
<td>Gelsolin</td>
<td>AGKEPGLQIWR</td>
</tr>
<tr>
<td></td>
<td>Glutathione peroxidase</td>
<td>FLVGPDGIPVMR</td>
</tr>
<tr>
<td></td>
<td>ITIH2 protein</td>
<td>FYNQVSTPLLR</td>
</tr>
<tr>
<td></td>
<td>Serotransferrin</td>
<td>DLLFRDDTK</td>
</tr>
</tbody>
</table>

Despite the low number of proteins/peptides detected, two proteins were unique to the sample where T cell lysate was mixed with rLifA bound to Co²⁺-agarose beads. The first was serotransferrin, which is an ~77 kDa protein that is N-glycosylated. It transports Fe³⁺ ions, which are required for cell replication, but it is unlikely to interact with LifA in T cells as it is a blood plasma glycoprotein (reviewed in Clerc et al., 2016). The second is glutathione peroxidase (GPx), which is ~24 kDa and is known to protect cells from reactive oxygen species (ROS)-induced oxidative stress as well as regulate various signalling pathways (reviewed in Brigelius-Flohé and Maiorino, 2013). ROS promote T cell proliferation and GPx deficient CD4⁺ T cells exhibit increased proliferation and are driven
towards a Th1 response (Won et al., 2010). Human GPx activity can be regulated by phosphorylation of Tyr96 by the non-receptor tyrosine kinases ABL1 and 2 (Cao et al., 2003), but this residue is not present in the bovine homologue. GPx can also be O-GlcNAcylated within the C-terminal 100 amino acids, which increases binding with ABL1 and 2 and therefore phosphorylation (Yang et al., 2010). If LifA O-GlcNAcylates GPx at this known site, thereby increasing its activity and lowering proliferation, this would coincide with the observations made in Chapter 6, where rLifA inhibited Akt1 Ser473 phosphorylation. This is because overexpression of GPx has been reported to suppress Akt1 Ser473 phosphorylation (McClung et al., 2004; Handy et al., 2009). In contrast, however, Akt1 Ser473 phosphorylation has also been reported to be downregulated in GPx deficient cells (Taylor et al., 2004; Taylor et al., 2005).

Since GPx was the only plausible candidate identified by shotgun mass spectrometry, further experiments were carried out with this protein as described in Section 5.3.3.

5.3.3 INPP5E and GPx do not appear to specifically interact with rLifA

Given that it was uncertain whether rLifA targeted or interacted with INPP5E or GPx, western blotting using polyclonal antibodies against these proteins was used to determine whether they were specifically pulled down from T cell lysates by rLifA. Eluates from the first elution step were used as these contained the most protein. However, reactivity at the expected positions was not obvious (Figure 5.8A), except for INPP5E when the brightness was increased (Figure 5.8B). This suggested that INPP5E was present in both the eluate from the column with rLifA plus T cell lysate, as well as the column with T cell lysate alone.

Whole T cell lysates were originally used as positive controls for the antibodies but INPP5E and GPx could not be detected (data not shown). To resolve this, immunoprecipitation (IP) was used to isolate both proteins from T cell lysates and concentrate them prior to western blot analysis. IP was performed on T cells treated with buffer or rLifA to determine whether rLifA caused any changes in protein expression. At the expected positions in the gel for INPP5E, similar reactivity
was observed for the IP sample of rLifA-treated T cells relative to the IP sample of T cells alone (red box in Figure 5.8A), however, reactivity to GPx was neither clear nor specific. The bulk of reactivity observed was due to detection of the antibodies used for immunoprecipitation. A protein species was detected at ~180 kDa with the anti-INPP5E antibody, however, this was also detected in the IP controls, making it unclear as to whether a peptide from INPP5E was at that position. No proteins were detected below 20 kDa. Given that full-length INPP5E was detected in both pull-down eluates, that GPx was not convincingly detected in either, and that the presence of the INPP5E peptide at ~180 kDa could not be confirmed, it was decided that no further experiments would be carried out with these proteins.
Figure 5.8. Detection of inositol polyphosphate 5 phosphatase E (INPP5E) and glutathione peroxidase (GPx) in eluates from columns loaded with rLifA (or diluent) and used to capture T cell proteins. (A) Protein pull-down eluates were probed for INPP5E (43–250 kDa) and GPx (20–43 kDa). Immunoprecipitation (IP) was performed on the lysates of T cells treated with buffer/rLifA to provide positive controls for INPP5E (~72 kDa; marked with box) and GPx (~24 kDa; no clear band). IP was performed using polyclonal anti-INPP5E and anti-GPx1 antibodies. INPP5E and GPx could not be detected at the expected sizes initially, although a band was observed at ~180 kDa on the anti-INPP5E blot, around the same size as the protein species used for mass spectrometry that identified a peptide belonging to INPP5E. Anti-INPP5E and anti-GPx antibodies bound to protein A beads were used to show the position of the antibody heavy chains at ~50 kDa. Arrows indicate the expected sizes of INPP5E and GPx. Asterisk indicates the antibody heavy chain. (B) Increasing the brightness of the western blot revealed protein species at the expected size for INPP5E in both pull-down eluates, suggesting it is not unique to rLifA with T cell lysate (marked with box). Even at this brightness, GPx could not be detected.
5.4 Discussion

Despite previous studies providing an insight into where LifA is likely to act in the T cell signalling cascade, a target of LifA glycosyltransferase activity has yet to be identified. Various methods were employed to detect putative targets of GlcNAc modification and other proteins that LifA may interact with. However, inconsistent results meant that the few proteins identified could not be confirmed as genuine targets/interacting partners.

Anti-O-GlcNAc western blotting detected far fewer O-GlcNAc modified proteins than anticipated, as mammalian cells have been reported to contain over 1000 O-GlcNAcylated proteins (Trinidad et al., 2012; Qin et al., 2017). However, western blots performed on murine T cells with the same antibody used in this study (Swamy et al., 2016) detected a number of proteins comparable to that in Section 5.2.1. This suggests that many of the predicted O-GlcNAcylated proteins in mammalian cell lysates may be present at concentrations below the limit of detection for this antibody or are only transiently modified. Additionally, anti-O-GlcNAc antibodies recognise specific peptide sequences with O-GlcNAc modifications, not solely the O-linked sugar moiety, meaning that other proteins may have been identified if several different antibodies had been used (reviewed in Ma and Hart, 2014). Swamy et al. (2016) reported that O-GlcNAcylated proteins were upregulated after CD3/CD28 activation for 24 hours. However, in experiments using ConA-stimulated T cells, no changes to the O-GlcNAc profile were detected and the overall protein concentration was reduced by 1 hour post-incubation and completely absent by 24 hours post-incubation (data not shown). This may have been caused by incubating the cells in serum-free medium for the entire duration of the experiment. Detecting GlcNAc modified peptides by western blotting is limited by the lack of antibodies against N-linked GlcNAc. The anti-O-GlcNAc IgM clone CTD110.6, however, has been reported to cross-react with N-GlcNAc (Isono, 2011), which could be used to identify previously undetected modifications. N-GlcNAc modifications could then be distinguished from O-GlcNAc by treating T cell lysates with PNGase F, which cleaves between N-GlcNAc and the adjoined Asn residue (Plummer Jr et al., 1984).
Like the western blot approach, shotgun mass spectrometry identified far fewer GlcNAcylated proteins than expected. Given that mass spectrometry approaches have previously identified over 1000 O-GlcNAcylated proteins (Trinidad et al., 2012; Qin et al., 2017), it is possible that the mass spectrometer used in this study may not have been sensitive enough to detect all of the modified peptides. A study using human primary T cells identified 214 O-GlcNAcylated proteins, which is still far more than detected in this study (Lund et al., 2016). The digestion of the samples with trypsin may also be responsible for the lack of detected GlcNAcylated peptides. Some O-GlcNAcylation sites are located in sequences with clustered Ser/Thr residues and few Arg and Lys residues, which trypsin cleaves between, resulting in long peptides that are not easily detected. Proteolysis using chemicals, such as cyanogen bromide, or digestion with other enzymes such as Asp-N or Glu-C may improve the detection of such sequences (reviewed in Ma and Hart, 2014). A method that may improve the detection of O-GlcNAcylated peptides would be to subject T cell lysates to β-elimination followed by Michael addition of dithiothreitol (DTT). This method enzymatically removes O-GlcNAc moieties and replaces them with DTT. The bond between DTT and Ser/Thr residues is more stable than the glycosidic bond and does not break during peptide fragmentation, allowing for detection of the modified peptide (Nika et al., 2013; Lund et al., 2016). This technique would be particularly useful as the form of shotgun mass spectrometry used at the KPF (electrospray ionisation-collision induced dissociation (higher energy collisional dissociation)-quadropole time-of-flight tandem mass spectrometry) is known to break glycosydic bonds during peptide fragmentation (reviewed in Ma and Hart, 2014). The use of this form of mass spectrometry may explain the low the number of O-GlcNAcylated peptides detected. Other GlcNAcylated residues may be missed since all proteins in the sample do not exhibit 100 % peptide coverage. Top-down proteomics is an approach that could be taken to overcome this. Top-down proteomics allows for the analysis of whole proteins by mass spectrometry, provides 100 % coverage and does not cause the loss of post-translational modifications (reviewed in Cui et al., 2011; reviewed in Catherman et al., 2014). However, top-down proteomics does have some limitations, such as the inability to detect insoluble proteins, a lack of robust methods for protein
separation and difficulty analysing proteins > 70 kDa (reviewed in Gregorich and Ge, 2014).

Isolating GlcNAc modified proteins using WGA enrichment did not allow for the detection of a greater number of GlcNAcylated proteins using shotgun mass spectrometry. This may be due to the method of enrichment. WGA preferentially binds GlcNAc but also has affinity for sialic acid, which is commonly found at terminal positions of glycans (Thermo Fisher Scientific Inc., 2013b; reviewed in Varki et al., 2017). Therefore, GlcNAc modified proteins may have been competitively inhibited from binding to the WGA beads due a large number of glycoproteins with terminal sialic acid moieties. This could be rectified by using succinylated WGA, which is an acidic form of WGA that binds normally to GlcNAc but not sialic acid (Monsigny et al., 1980). Greater enrichment of GlcNAcylated proteins may also be achieved by using combined antibody/lectin enrichment. Lee et al. (2016) developed this method, which uses WGA and multiple anti-O-GlcNAc antibodies attached to resin beads, and were able to identify 990 O-GlcNAcylated proteins alone. Given that O-GlcNAc modifications are a common signalling mechanism in mammalian cells and can be removed by O-GlcNAcase, pre-treating cells with O-GlcNAcase inhibitors, such as PUGNAc or thiamet-G, may prevent the removal of putative LifA-mediated O-GlcNAc modifications (Horsch et al., 1991; Yuzwa et al., 2008). However, many of these inhibitors are analogues of GlcNAc (reviewed in Gloster and Vocadlo, 2010) and so should be tested to determine whether they might bind to LifA and inhibit its activity. Considering the long-lasting effects of LifA on T cells (Cassady-Cain et al., 2017), however, it is likely that predicted GlcNAc modifications made by LifA are not removed by O-GlcNAcase.

It is also possible that proteins modified by LifA were not detected using western blotting or shotgun mass spectrometry approaches because only N- and O-linked GlcNAcylation was investigated. These are the most common forms of glycosylation but sugars can bond to other amino acids. NleB has been shown to GlcNAcylate arginine residues in GAPDH (El Qaidi et al., 2017). S-linked GlcNAc is attached to the sulphur atom in cysteine residues and has recently been identified in mammals (Maynard et al., 2016). GlcNAc has also been shown to be transferred onto hydroxyproline and phosphate groups attached to serine residues in D.
discoideum (Teng-umnuay et al., 1999; Mehta et al., 1996) but this is not known to occur in mammalian cells. It should also be noted that while LifA has been shown to bind UDP-GlcNAc (Cassady-Cain et al., 2016), we cannot preclude the possibility that it binds other sugar donors, and that transfer of a different sugar is responsible for lymphostatin activity.

Further evidence of issues with the sensitivity of the shotgun mass spectrometry conducted herein is the low number of proteins/peptides identified in protein pull-down eluates. Originally, eluates were fractionated by SDS-PAGE and gel sections of whole wells were sent for analysis by shotgun mass spectrometry. However, no peptides were detected using this method despite protein species being visible on silver stained gels. This led to the analysis of whole eluates, which contained a larger quantity of protein. Given that the ‘rLifA + cells’ and ‘cells alone’ samples contained ~39 and 49 µg of protein respectively, it is unlikely that the quantity of protein was too low to detect. This can be assumed because the glycoprotein enriched samples contained as little as 10 µg of protein yet still allowed for the detection of hundreds of unique peptides. Both shotgun mass spectrometry and LC-MS can be further complicated by the fact that bands on a silver stained gel may not all represent proteins. Silver stain is known to also bind nucleic acids, proteolipids and lipopolysaccharide that cannot be matched to the protein databases used to analyse mass spectra (Somerville and Wang, 1981; Cochary et al., 1990; Tsai and Frasch, 1982). Silver staining is also not sensitive to all types of proteins (Friedman, 1982), which suggests that interacting partners of LifA could remain unseen using this staining method. Negative stains or fluorescent dyes could potentially be used to search for proteins not detected by silver staining (reviewed in Gauci et al., 2011). Another drawback of silver staining is that glutaraldehyde in the sensitising reagent cross-links proteins (Shevchenko et al., 1996) meaning that the mass of cross-linked peptides will not be accurately matched to protein databases. It is unclear why a peptide unique to bovine INPP5E was detected ~100 kDa above its expected position in the gel. This may have been due to a degraded peptide binding to another protein or it may simply not have been a genuine result.

The detection of GPx in pull-down eluates was complicated by the fact that there are eight GPx isoforms (reviewed in Brigelius-Flohé and Maiorino, 2013), and
that Uniprot did not state which of these was detected. The polyclonal antibody used to detect GPx was raised against GPx1, which is ubiquitously expressed and is the most studied isoform (reviewed in Brigelius-Flohé and Maiorino, 2013). However, later in silico analysis of the protein identified by shotgun mass spectrometry revealed that the isoform was actually GPx5. This protein has only ~47 % identity and~59 % similarity to GPx1 between amino acids 18–201, which may explain why GPx was not detected in the pull-down eluates. However, GPx5 would not be expected to be found in T cells as previous studies using mice, rats, pigs, humans, macaques and cattle have shown that it is expressed specifically in the male reproductive tract (Rejraji et al., 2002; Williams et al., 1998; Barranco et al., 2016; Hall et al., 1998; Légaré et al., 2017).

Interactions between LifA and other proteins, especially targets of GlcNAc modification, may be transient and therefore difficult to detect using standard protein pull-downs. The detection of interacting partners is also dependent on the strength of the interaction and whether the buffer used disrupts these interactions. Chemical cross-linking could be used in conjunction with protein pull-downs to capture transient interactions (reviewed in Leitner, 2016). A cross-linking reagent could be used to label rLifA at specific surface bound amino acid residues before performing protein pull-downs, which should then be permanently bound to interacting partners from T cell lysates (Thermo Fisher Scientific Inc., 2010). Selecting an appropriate cross-linking reagent is dependent on the desired amino acid target and the spatial proximity of potential interacting proteins (reviewed in Leitner, 2016). A compromise is often required between selecting a large cross-linking reagent, which is more likely to form a cross-link with another protein but is less specific, and a smaller reagent, which is less likely to form a cross-link but be more likely to bind a true interacting partner (reviewed in Leitner, 2016). Not all cross-linked interacting proteins can be isolated by SDS-PAGE as their size prevents them from entering the gel (reviewed in Leitner, 2016), however, some cross-linking reagents contain tags, such as biotin, to facilitate the isolation of protein complexes (Trester-Zedlitz et al., 2003). Isolated protein complexes could then be subjected to LC-MS (reviewed in Leitner, 2016).
The approaches used in this chapter were unable to conclusively identify putative targets/interacting partners of lymphostatin. Unlike studies that identified the targets of the LCTs and NleB, where targets of glycosylation were already suspected, no proteins were confidently predicted to interact with LifA at the beginning of this study. As such, methods were used that had the potential to identify interacting partners from complex T cell lysates. However, since no interacting partners were identified this way, I decided to pursue a candidate approach and investigate a protein that was independently shown to be affected by LifA (see Chapter 6).
6 Analysis of the impact of lymphostatin on phosphorylation of the cellular protein kinase Akt

6.1 Introduction

Due to the inconclusive results obtained in the previous chapter, a candidate approach to investigating putative targets of LifA was taken. Initially, Vav1 was considered for investigation as it plays an important role in both T and B cell signalling (reviewed in Bustelo, 2014). Vav1 is a guanine nucleotide exchange factor for Rho GTPases and affects the calcium flux, ERK and NF-κB signalling pathways in T cells (Costello et al., 1999). Its activity is regulated by phosphorylation of three tyrosine residues (López-Lago et al., 2000). Vav1 deficient Jurkat and murine T cells exhibit reduced IL-2 expression and proliferation, which is observed in LifA-treated T cells (Costello et al., 1999; Cao et al., 2002; Klapproth et al., 1995, 1996 and 2000; Malstrom and James, 1998; Stevens et al., 2002; Deacon et al., 2010; Cassady-Cain et al., 2016 and 2017). Costello et al. (1999) also found that ionomycin partially rescues the proliferative capacity of Vav1 deficient T cells and similarly rLifA does not inhibit the proliferation of PMA/ionomycin-stimulated bovine T cells (Cassady-Cain et al., 2017). Experiments by Dr Robin Cassady-Cain, The Roslin Institute, revealed that Vav1 was O-GlcNAcylated in both rLifA-treated and untreated bovine T cells (data not shown). While the possibility that lymphostatin modifies Vav1 by addition of a sugar moiety on other linkages (for which antibodies are lacking) cannot be precluded, it was elected not to pursue Vav1 further.

Further experiments by Dr Robin Cassady-Cain using a Proteome Profiler Human Phospho-Kinase Array Kit (R&D systems) with highly purified bovine γδ T cells, highlighted a number of signalling proteins with reduced phosphorylation in ConA-stimulated cells treated with rLifA (Figures 6.1 and 6.2; Stevens Laboratory, unpublished data). One protein of particular interest was protein kinase B (PKB), also known as Akt. Akt has three isoforms that act on a variety of substrates to regulate metabolism and promote cell survival, growth and proliferation (Figure 6.3; reviewed in Manning and Toker, 2017). In T cells, Akt can be activated by the TCR
and Lck kinase through PI3K and Rac1, which causes the nuclear translocation of NF-κB and inhibits NF-AT dephosphorylation by glycogen-synthase kinase 3 (GSK3; Genot et al., 2000; Prasad et al., 1993; Jones et al., 2000; Reif et al., 1997; Lafont et al., 2000). Akt can also be activated through CD8 co-stimulation, which has the same down-stream effects as TCR-induced activation and is known to result in increased IL-2 expression (Okkenhaug et al., 2001; Burr et al., 2001; Coudronniere et al., 2000; Kane et al., 2001; Cross et al., 1995; Beals et al., 1997).

The kinase activity of Akt1 is regulated by phosphorylation at multiple sites, with the major two being Thr308 and Ser473 (Alessi et al., 1996; Hart and Vogt, 2011; reviewed in Manning and Toker, 2017). Phosphorylation occurs on the homologous residues Thr309 and Ser474 of Akt2 and on Thr305 and Ser472 of Akt3 (Meier et al., 1997; Brodbeck et al., 1999; Nakatani et al., 1999). Chemical inhibitors against PI3K and mTORC2, which are required for the phosphorylation of Akt1 Thr308 and Ser473 (Alessi et al., 1996; Tsuchiya et al., 2014; Sarbassov et al., 2005; Gan et al., 2011), have been shown to inhibit the CD3/CD8-stimulated proliferation of human T cells in a dose dependent manner (Herrero-Sánchez et al., 2016). This was not the result of increased apoptosis and the inhibition of proliferation produced sigmoid curves akin to those from rLifA-treated bovine T cells (Herrero-Sánchez et al., 2016; Cassady-Cain et al., 2016 and 2017). Blocking Akt phosphorylation also inhibited the secretion of IL-2, -4 and -10, and IFN-γ, similar to observations by Cassady-Cain et al. (2017), as well as IL-6 and TNF-α (Herrero-Sánchez et al., 2016).

Akt1 activation is also regulated by O-GlcNAcylation. Akt1 is O-GlcNAcylated at multiple sites, some of which inhibit the phosphorylation of Thr308 and Ser473, while others inhibit phosphorylation of other amino acids (Wang et al., 2012; Gandy et al., 2006). O-GlcNAcylation of the residues Thr305 and Thr312 disrupts the interaction between Akt1 and 3-phosphoinositide-dependent protein kinase-1 (PDPK1), which inhibits Thr308 phosphorylation (Wang et al., 2012). O-GlcNAcylation of Ser473 inhibits phosphorylation of this residue and has been found to cause apoptosis in murine pancreatic β cells (Kang et al., 2008). Shi et al. (2015) also claimed that both Thr308 and Ser473 are O-GlcNacylated, resulting in apoptosis of multiple cell types, but did not explicitly identify the GlcNAcylated residues as was done by Kang et al. (2008) and Wang et al. (2012).
Figure 6.1. rLifA inhibited the phosphorylation of various kinases in bovine γδ T cells. γδ T cells were incubated with buffer or 1 μg/mL rLifA for 1 hour at 37 °C, washed twice then stimulated with 5 μg/mL ConA for 15 minutes. T cell lysates were used in experiments with the Proteome Profiler Human Phospho-Kinase Array Kit according to the manufacturer’s instructions. The array comprises immobilised antibodies specific for phosphorylated variants of the kinases shown on the right, which capture the proteins from cell lysates. Once unbound proteins have been removed, captured proteins are then detected with a cocktail of biotinylated detection antibodies, streptavidin-horse radish peroxidase and chemiluminescent detection reagents. A representative set of western blots of the kinase array from 1 of 3 independent donors is shown. Red boxes – duplicate spots of Akt1 Ser\(^{473}\) (also reacts with Akt2 Ser\(^{474}\) and Akt3 Ser\(^{472}\)). Blue boxes – duplicate spots of other proteins with noticeably reduced phosphorylation in rLifA-treated cells relative to control cells. White asterisks – reference spots. Data were collected by Dr Robin Cassady-Cain, The Roslin Institute.
Figure 6.2. Densitometry analysis of the phosphorylation level of proteins detected using the Proteome Profiler Human Phospho-Kinase Array Kit. Pixel density data from duplicate spots of western blots was detected using Image Studio Lite v5.2. Data from cells + rLifA + ConA were normalised against cells + ConA to produce a phosphorylation index. Data is from at least 2 independent donors and shown for a subset of kinases detected by the array where reliable detection was possible. Blue and red bars denote the phosphorylation indices of individual replicates where data were collected from only 2 donors. Green bars denote the mean phosphorylation index where data were collected from 3 independent donors. Error bars indicate the standard deviation of indices across these donors. Data were collected by Dr Robin Cassady-Cain, The Roslin Institute.
PI3K can also be activated by Lck kinase in T cells. PI3K activates both PDPK1 (not seen in diagram) and mTORC2, which phosphorylate Akt1 Thr^{308} and Ser^{473} (and corresponding Akt2/3 residues) respectively (from Coquillard et al., 2015).

EPEC have been known to modulate the PI3K/Akt pathway in phagocytes for some time with effectors such as EspF, but this protein was not responsible for the observed inhibition of Akt1 Ser^{473} phosphorylation (Celli et al., 2001; Quitard et al., 2006). Quitard et al. (2006) also reported that the inhibition of Akt1 Ser^{473} phosphorylation was dependent on the bacterial T3SS. Ruchaud-Sparagano et al. (2007) reported that EPEC inhibited the TNF-α-stimulated phosphorylation of Akt1 Ser^{473} in Caco-2 cells in a manner dependent on EspA but not intimin. A more detailed study found that EPEC suppressed Akt1 Ser^{473} phosphorylation in both HeLa cells and J774A.1 murine macrophage-like cells in a manner dependent on the T3SS but not intimin, six LEE effectors or 14 non-LEE encoded effectors (Amin,
Recent personal communications with Professor Brendan Kenny, Institute for Cell and Molecular Biosciences, Newcastle University, appear to confirm the T3SS-dependent inhibition of Akt1 Ser\(^{473}\) phosphorylation in J774A.1 cells. Preliminary evidence from experiments in the Kenny Laboratory using EPEC mutant strains lacking various effector proteins (Cepeda-Molero et al., 2017) also suggested that this inhibition was dependent on LifA and the homologous LifA-like protein (data not shown). It was also reported by Professor Kenny that the inhibition of Akt1 Ser\(^{473}\) phosphorylation in this manner coincided with the O-GlcNAcylation of the protein (data not shown).

Given the apparent effects of LifA on Akt1 Ser\(^{473}\) phosphorylation and the reported LifA dependent O-GlcNAcylation of the protein in J774A.1 cells, it was hypothesised that lymphostatin inhibits Akt1 Ser\(^{473}\) phosphorylation by O-GlcNAcylation of this residue. Western blot analysis was used in a number of experiments to investigate the role of rLifA and live EPEC in the inhibition of Akt1 Ser\(^{473}\) phosphorylation and putative O-GlcNAcylation. Since the anti-phospho-Akt1 Ser\(^{473}\) antibody used in the following experiments also reacts with Akt2 Ser\(^{474}\) and Akt3 Ser\(^{472}\), the general term Akt Ser is used to refer to this phosphorylation site for the purposes of this study. It should be noted that Akt possesses a number of other Ser residues that can be phosphorylated (reviewed in Manning and Toker, 2017), which are not relevant to this study.

6.2 Effect of recombinant lymphostatin on Akt Ser phosphorylation

6.2.1 Pre-treatment of bovine T lymphocytes with rLifA inhibited ConA-stimulated phosphorylation of Akt Ser in a manner dependent on catalytic motifs

Highly purified \(\gamma\delta\) T cells from bovine peripheral blood were used for the kinase array experiments, but the method was costly and reagent intensive. Therefore, I first investigated whether this form of enrichment was necessary to detect Akt Ser phosphorylation by western blot analysis. ConA-treated \(\gamma\delta\) T cells did not show any greater level of Akt phosphorylation than ConA-treated T cells.
 enriched using a nylon wool column, nor any greater suppression of phosphorylation when treated with rLifA (data not shown).

T cells from three independent donors were pre-treated with either buffer, wild-type (WT) rLifA, rLifA^{DTDAAA} or rLifA^{C1480A}, at final concentrations of 1 μg/mL, then stimulated with ConA for various times. The cell lysates were probed by western blotting, using a polyclonal antibody, which although raised against murine Akt1 phospho-Ser⁴⁷³, was also known to recognise Akt2 phospho-Ser⁴⁷⁴ and Akt3 phospho-Ser⁴⁷². Western blot analysis showed that while Akt Ser phosphorylation was markedly increased upon ConA stimulation of buffer-treated cells, it was reduced to levels only slightly above unstimulated cells in rLifA-treated cells (Figure 6.4). In cells treated with rLifA^{DTDAAA} or rLifA^{C1480A}, Akt Ser phosphorylation was comparable to that of ConA-stimulated controls when T cells were stimulated for 5 minutes but appeared to decrease gradually with time. Densitometry showed that the fold change in normalised Akt phospho-Ser (pAkt) signal, with standard deviation, from WT rLifA-treated cells was consistently lower than buffer-treated T cells at all time points after ConA stimulation (0.61 ± 0.05 at 5 minutes; 0.13 ± 0.02 at 15 minutes; 0.17 ± 0.12 at 30 minutes) in comparison to untreated cells (Figure 6.5). The fold change in normalised pAkt signal, with standard deviation, from rLifA^{DTDAAA}-treated cells decreased gradually (0.99 ± 0.29 at 5 minutes; 0.86 ± 0.35 at 15 minutes; 0.86 ± 0.03 at 30 minutes) and was more variable in rLifA^{C1480A}-treated cells (0.83 ± 0.05 at 5 minutes; 0.57 ± 0.12 at 15 minutes; 1.05 ± 0.9 at 30 minutes). The fold change in normalised pAkt signal was found to be statistically significantly different from buffer-treated cells in cells treated with WT rLifA (F(3, 8) = 49.16, P < 0.001 at 5 minutes post-stimulation; F(3, 8) = 33.76, P < 0.001 15 minutes; F(3, 8) = 5.49, P = 0.021 at 30 minutes) but not with the mutant proteins.

These experiments confirmed observations made using the Proteome Profiler Human Phospho-Kinase Array that lymphostatin could inhibit the phosphorylation of Akt Ser in bovine T cells and indicated that this event was dependent on the predicted glycosyltransferase and cysteine protease motifs of LifA.
Figure 6.4. The ConA-stimulated phosphorylation of Ser of Akt in bovine T cells was inhibited by rLifA in a manner dependent on the DXD motif and C1480 (western blot). An absolute number of 6 x 10^6 T cells were treated with 1µg/mL rLifA, rLifA_DTD/AAA, rLifA_C1480A or buffer for 1 hour then stimulated with ConA for the times indicated. A volume equivalent to 1 x 10^6 cells was analysed by SDS-PAGE in each well. The phospho-Akt (pAkt) signal was greatly reduced after stimulation at all times in cells pre-treated with rLifA in comparison to untreated cells. The pAkt signal from cells treated with rLifA_DTD/AAA and rLifA_C1480A decreased with time following ConA stimulation but not to the same extent as with rLifA. Unstimulated cells were used as a negative control. Pan Akt and actin signals were used as loading controls. Data were generated from 3 independent donors and blots are shown from a representative donor.
Figure 6.5. The ConA-stimulated phosphorylation of Ser of Akt in bovine T cells was inhibited by rLifA in a manner dependent on the DXD motif and C1480 (densitometry). Densitometry was performed on the western blots and the pAkt signal from each sample was normalised against its respective actin signal to account for overall loss of protein. Data were then normalised against the appropriate cells alone controls to give a fold change in normalised signal compared to untreated cells. The average fold change in normalised signal of rLifA-treated cells was reduced at all time points while there was no significant difference between the normalised signal of cells alone and cells treated with rLifADTD/AAA or rLifAC1480A. Error bars denote the standard deviation of the average fold changes from across 3 experiments. Asterisks indicate fold changes in normalised signal that were statistically significantly different from ConA-stimulated cells alone.

6.2.2 Treatment of bovine T lymphocytes with rLifA after ConA stimulation did not suppress Akt Ser phosphorylation

To determine whether LifA could suppress Akt phosphorylation in T cells that had already been activated by ConA, akin to phenotypes observed in J774A.1 cells (Professor Brendan Kenny, personal communications), T cells from four independent donors were stimulated with ConA then incubated with buffer or
1 μg/mL rLifA for various time points. rLifA did not suppress Akt Ser phosphorylation at a faster rate than the natural loss of phosphorylation observed in buffer-treated cells (Figure 6.6). The fold change in normalised pAkt signal, with standard deviation, increased slightly from 1.46 ± 0.43 at 0 minutes post-treatment to 1.52 ± 0.47 at 5 minutes in buffer-treated cells and from 1.58 ± 0.58 at 0 minutes to 1.65 ± 0.65 at 5 minutes in rLifA-treated cells (Figure 6.7). It then gradually decreased to 0.58 ± 0.23 at 60 minutes in buffer-treated cells and 0.33 ± 0.26 at 60 minutes in rLifA-treated cells. The fold change in normalised pAkt signal in rLifA-treated cells was not statistically significantly different at any time point from that in buffer-treated cells ($T(5) = -0.18, P = 0.862$ at 0 minutes post-incubation; $T(5) = -0.26, P = 0.808$ at 5 minutes; $T(5) = 0.55, P = 0.605$ at 15 minutes; $T(4) = 2.47, P = 0.069$ at 30 minutes; $T(3) = 1.52, P = 0.225$ at 60 minutes).
Figure 6.6. rLifA did not inhibit Akt Ser phosphorylation in bovine T cells pre-stimulated with ConA (western blot). An absolute number of 6 x 10^6 T cells were stimulated with ConA for 15 minutes then treated with buffer or 1µg/mL rLifA for the times indicated. A volume equivalent to 1 x 10^6 cells was analysed by SDS-PAGE in each well. The pAkt signal decreased over time and the addition of rLifA did not appear to reduce the pAkt signal at a faster rate than in buffer-treated cells. Unstimulated cells were used as a negative control and cells stimulated with ConA for 15 minutes, but without buffer/rLifA treatment, were used as a positive control. Pan Akt and actin signals were used as loading controls. Data were generated from 4 independent donors and blots are shown from a representative donor.
Figure 6.7. rLifA did not inhibit Akt Ser phosphorylation in bovine T cells pre-stimulated with ConA (densitometry). Densitometry was performed on the western blots and the pAkt signal from each sample was normalised against its respective actin signal to account for overall loss of protein. Data were then normalised against the positive control to give a fold change in normalised signal compared to buffer-treated cells. Error bars denote the standard deviation of the average fold changes from across 4 experiments.

6.2.3 rLifA did not appear to O-GlcNAcylate Akt in bovine T lymphocytes

Given that Akt was observed to be O-GlcNAcylated in J774A.1 cells by EPEC in a LifA-dependent manner (Professor Brendan Kenny, personal communications), I sought to determine whether this could be detected in bovine T cells using recombinant protein. Cells from two independent donors were treated with buffer or 1 μg/mL rLifA for various times then stimulated with ConA. Immunoprecipitation (IP) was performed on the lysates using the anti-pan Akt antibody. Western blot analysis revealed that at times when Akt Ser phosphorylation was inhibited by rLifA, no proteins of the expected size of Akt (~56 kDa) could be detected with the anti-O-GlcNAc antibody (Figure 6.8). Protein species detected at ~50 kDa in the IP samples correspond to the heavy chain of the anti-pan Akt antibody. Phosphorylation appeared stronger in the IP samples due to the protein...
being concentrated during the IP procedure. Contrary to the hypothesis, these experiments suggested that Akt was not O-GlcNAcylated in bovine T cells as a result of LifA treatment.

Figure 6.8. rLifA did not appear to O-GlcNAcylate Akt in bovine T lymphocytes. An absolute number of 1 x 10^7 T cells were treated with buffer or rLifA for the times indicated then stimulated with ConA for 15 minutes. IP was performed using the pan Akt antibody and these samples were compared with whole cells lysates (WCL). At 60 and 120 minutes, when the pAkt signal was reduced in cells treated with rLifA, no O-GlcNAcylated proteins could be detected at the expected size for Akt (~56 kDa). Unstimulated cells were used as a negative control. The heavy chain of the anti-pan Akt antibody was observed at ~50 kDa in the IP samples (indicated by asterisks). Arrows indicate Akt. This experiment was performed with 2 independent donors and a representative blot is shown.
6.3 Effects of live EPEC on Akt phosphorylation

6.3.1 Pre-incubation of bovine T lymphocytes with EPEC inhibited ConA-stimulated phosphorylation of Akt Ser in a T3SS-dependent manner

Although LifA did not appear to O-GlcNAcylate Akt it was clear that it inhibited ConA-induced Ser phosphorylation (see Section 6.2). However, the concentration of rLifA applied to T cells in these experiments was likely far in excess of what would be encountered during an infection. Therefore, live EPEC E2348/69 NalR (Levine et al., 1978 and 1985) and derived mutant strains constructed by the Stevens Laboratory were used to infect T cells at a multiplicity of infection (MOI) of 200:1, akin to experiments by Amin (2017). EPEC E2348/69 ΔlifA (Stevens et al., 2002) was used to assess the role of lymphostatin, while E2348/69 ΔescN::KanR, which cannot produce the T3SS-associated ATPase EscN (Garmendia et al., 2004), was used as a T3SS-deficient control. Initially, T cells were incubated with bacteria cultured under T3S-inducing conditions for various time points but not stimulated to determine whether EPEC caused an initial activation of Akt followed by inhibition, as seen in J774A.1 cells (Amin, 2017). However, the EPEC strains did not cause an initial activation of Akt in T cells (data not shown).

In further experiments, T cells from three independent donors were stimulated with ConA after incubation with the bacteria at an MOI of 200:1 for 0, 15, 30 or 60 minutes, as was done with rLifA-treated cells. The pAkt signal from both cells infected with WT and ΔlifA EPEC decreased rapidly from 0–60 minutes post-infection (Figure 6.9). The pAkt signal from cells infected with the ΔescN::KanR strain decreased at a slower rate. This was likely due to the decreasing pan Akt signal, which may have been caused by cell death as a result of the bacteria acidifying the medium. The fold change in normalised pAkt signal, with standard deviation, of cells treated with the WT, ΔlifA and ΔescN::KanR strains decreased from 0.62 ± 0.43, 0.73 ± 0.42 and 2.03 ± 1.12 respectively at 0 minutes post-infection to 0.08 ± 0.05, 0.14 ± 0.23 and 0.29 ± 0.28 respectively at 60 minutes (Figure 6.10). The fold change in normalised pAkt signal from E2348/69 ΔlifA-infected cells was not statistically significantly different from WT
E2348/69-infected cells at any time ($F(2, 6) = 3.9, P = 0.673$ at 0 minutes post-infection; $F(2, 6) = 3.43, P = 0.798$ at 15 minutes; $F(2, 6) = 4.38, P = 0.73$ at 30 minutes; $F(2, 6) = 0.93, P = 0.584$ at 60 minutes). The fold change in normalised pAkt signal from E2348/69 ΔescN-infected cells was statistically significantly different from WT E2348/69-infected cells at 0 and 30 minutes post-infection but not at 15 or 60 minutes ($F(2, 6) = 3.9, P = 0.04$ at 0 minutes post-infection; $F(2, 6) = 3.43, P = 0.054$ at 15 minutes; $F(2, 6) = 4.38, P = 0.034$ at 30 minutes; $F(2, 6) = 0.93, P = 0.463$ at 60 minutes). These experiments showed that the inhibition of Akt Ser phosphorylation by EPEC in bovine T cells was dependent on the T3SS but not LifA alone.
Figure 6.9. Akt Ser phosphorylation induced by ConA was inhibited by prior incubation with live EPEC in a manner dependent on the Type III secretion system but not LifA (western blot). An absolute number of 6×10^6 T cells were incubated with EPEC E2348/69 NalR strains at an MOI of 200:1 for the times indicated then stimulated with ConA for 15 minutes. A volume equivalent to 1×10^6 cells was analysed by SDS-PAGE in each well. The pAkt signal decreased with time with both the wild-type (WT) and ΔlifA strains but remained elevated with the ΔescN::KanR (ΔescN) strain until 60 minutes, at which point the pan Akt signal also decreased. Unstimulated cells were used as a negative control and cells stimulated with ConA for 15 minutes, but without EPEC treatment, were used as a positive control. Pan Akt and actin signals were used as loading controls. Data were generated from 3 independent donors and blots are shown from a representative donor.
Figure 6.10. Akt Ser phosphorylation induced by ConA was inhibited by prior incubation with live EPEC in a manner dependent on the Type III secretion system but not LifA (densitometry). Densitometry was performed on the western blots and the pAkt signal from each sample was normalised against its respective actin signal to account for overall loss of protein. Data were then normalised against the positive control to give a fold change in normalised signal compared to uninfected cells. Error bars denote the standard deviation of the average fold changes from across 3 experiments. Asterisks indicate fold changes in normalised signal that were statistically significantly different from cells treated with wild-type (WT) EPEC E2348/69.

6.3.2 Inhibition of Akt Ser phosphorylation in bovine T lymphocytes by EPEC was not dependent on LifA or LifA-like protein

Due to claims of functional redundancy between LifA and LifA-like protein in respect of their ability to modulate Akt activation (Professor Brendan Kenny, personal communications), experiments from Section 6.3.1 were repeated using the original EPEC E2348/69 StrR strain (Taylor, 1970) and derived mutants (Cepeda-Molero et al., 2017) provided by Professor Brendan Kenny, Newcastle University. WT, ΔlifA and ΔescN strains in the E2348/69 StrR background were used as described previously for their NalR counterparts and compared to ΔlifA-like and
ΔlifA ΔlifA-like strains in the E2348/69 StrR background. Each strain was incubated with T cells from three independent donors at an MOI of 200:1 for 0, 15 or 30 minutes. The 60 minute incubation was omitted since Akt Ser phosphorylation was previously observed to be reduced at this time even with the T3SS-deficient mutant.

In contrast to observations made by the Kenny Laboratory with J774A.1 cells, the ΔlifA ΔlifA-like double mutant inhibited ConA-stimulated Akt Ser phosphorylation in bovine T cells (Figure 6.11). The fold change in normalised pAkt signal, with standard deviation, from cells infected with the WT strain decreased from 0.16 ± 0.08 at 0 minutes post-infection to 0.02 ± 0.02 at 30 minutes (Figure 6.12). The fold change in normalised pAkt signal, with standard deviation, from cells infected with the ΔlifA, ΔlifA-like and ΔlifA ΔlifA-like strains decreased from 0.24 ± 0.09, 0.22 ± 0.08 and 0.18 ± 0.07 respectively at 0 minutes to 0.1 ± 0.02, 0.09 ± 0.03 and 0.08 ± 0.02 respectively at 15 minutes, then increased slightly to 0.12 ± 0.07, 0.13 ± 0.14 and 0.1 ± 0.1 respectively at 30 minutes. The fold change in normalised pAkt signal, with standard deviation, from E2348/69 ΔescN-infected cells also decreased from 0.64 ± 0.13 at 0 minutes post-infection to 0.59 ± 0.27 at 15 minutes, then increased again to 0.76 ± 0.79 at 30 minutes. The fold change in normalised pAkt signal from E2348/69 ΔlifA-, ΔlifA-like- or ΔlifA ΔlifA-like-infected cells was not statistically significantly different from WT E2348/69-infected cells at any time. The fold change in normalised pAkt signal from E2348/69 ΔescN-infected cells was statistically significantly different from WT E2348/69-infected cells at all time points (% 4) = 6.18, P = 0.004 at 0 minutes post-incubation; F(4, 10) = 18.73, P < 0.001 at 15 minutes; F(4, 10) = 4.75, P = 0.005 at 30 minutes).

These results suggested that while recombinant lymphostatin can inhibit ConA-stimulated Akt Ser phosphorylation, this effect was not obvious when T cells were pre-incubated with EPEC prior to stimulation. However, T3SS-dependent inhibition of Akt Ser phosphorylation upon ConA stimulation could be observed and other Type III secreted effectors may contribute to this activity.
Figure 6.11. The inhibition of ConA-stimulated Akt Ser phosphorylation by prior incubation with live EPEC was independent of LifA and LifA-like protein (western blot). An absolute number of 6 x 10^6 T cells were incubated with EPEC E2348/69 Str^R strains at an MOI of 200:1 for the times indicated then stimulated with ConA for 15 minutes. A volume equivalent to 1 x 10^6 cells was analysed by SDS-PAGE in each well. The pAkt signal decreased with time with all strains except the ΔescN strain, where the signal only began to decrease at 30 minutes, at which point the pan Akt signal also decreased. Unstimulated cells were used as a negative control and cells stimulated with ConA for 15 minutes, but without EPEC treatment, were used as a positive control. Pan Akt and actin signals were used as loading controls. Data were generated from 3 independent donors and blots are shown from a representative donor.
Figure 6.12. The inhibition of ConA-stimulated Akt Ser phosphorylation by prior incubation with live EPEC was independent of LifA and LifA-like protein (densitometry). Densitometry was performed on the western blots and the pAkt signal from each sample was normalised against its respective actin signal to account for overall loss of protein. Data were then normalised against the positive control to give a fold change in normalised signal compared to uninfected cells. Error bars denote the standard deviation of the average fold changes from across 3 experiments. Asterisks indicate fold changes in normalised signal that were statistically significantly different from cells treated with wild-type (WT) EPEC E2348/69.

6.3.3 EPEC did not appear to O-GlcNAcylate Akt in bovine T lymphocytes

Since recombinant LifA did not appear to O-GlcNAcylate Akt, I sought to determine whether another putative effector protein was responsible for the observations made by the Kenny Laboratory. Given that EPEC appeared to cause inhibition of Akt Ser phosphorylation independently of LifA/LifA-like, it was hypothesised that the protein responsible for this may O-GlcNAcylate Akt.

Bacteria were incubated with T cells from a single donor at an MOI of 200:1 for 1 hour (the time at which O-GlcNAcylation was detected by the Kenny Laboratory) and IP was performed as described in Section 6.2.3. Similar to
observations made with rLifA, live EPEC did not appear to O-GlcNAcylate Akt (Figure 6.13). As observed previously, the phospho-Akt signal was reduced by WT and lifA mutant strains relative to the ConA-stimulated control.

Figure 6.13. EPEC did not appear to O-GlcNAcylate Akt in bovine T lymphocytes. An absolute number of 1×10^7 T cells were incubated with EPEC E2348/69 StrR strains at an MOI of 200:1 for 1 hour then stimulated with ConA for 15 minutes. No O-GlcNAcylated proteins at the expected size of Akt could be detected in IP samples from T cells infected with EPEC strains at the same time as they inhibited Akt phosphorylation. Unstimulated cells were used as a negative control. The heavy chain of the anti-pan Akt antibody was observed at ~50 kDa in the IP samples (indicated by asterisks). Arrows indicate Akt.
6.4 Discussion

Evidence from several previous studies suggested that lymphostatin inhibits the phosphorylation of Akt1 at Ser\(^{473}\) and corresponding residues in Akt2/3. To test the hypothesis that Akt is a cellular target of lymphostatin, directly or indirectly, recombinant lymphostatin and live EPEC were assessed for their ability to inhibit Akt Ser phosphorylation and O-GlcNAcylate Akt in primary bovine T cells. rLifA was found to inhibit Akt Ser phosphorylation in a manner dependent on its catalytic DXD motif and C1480 residue. This inhibition was only detected when T cells were treated with rLifA before stimulation with ConA and not after, which contrasts with the findings of the Kenny Laboratory. They found that EPEC suppressed Akt Ser phosphorylation in J774A.1 cells after an initial activation caused by the bacteria (Amin, 2017; Professor Brendan Kenny, personal communications), however, this may have been the result of different signalling pathways that act on Akt in T cells and macrophages. J774A.1 cells are also an immortalised cell line, which do not necessarily reflect the cellular biology of their progenitor cells. It should also be noted that although T cell enrichment using nylon wool columns was more efficient than using anti-γδ TCR antibodies, this would result in some contamination from B cells and monocytes/macrophages, which may have affected the results. In further contrast to the findings of the Kenny Laboratory, recombinant LifA did not appear to O-GlcNAcylate Akt in bovine T cells at a time and concentration previously shown to inhibit ConA-stimulated proliferation and suppress Akt Ser phosphorylation. This study used the RL2 anti-O-GlcNAc antibody clone, as did the Kenny Laboratory, however, antibodies were sourced from different suppliers with different maximum recommended dilutions. As such, this study used an antibody dilution of 1/1000, whereas the Kenny Laboratory used 1/500, which may have been responsible for the difference in results. The concentration of protein applied to the T cells was also not reflective of the quantity of protein that is taken up by cells. Therefore, an apparent lack of O-GlcNAcylation may have been due to low quantities of the LifA N-terminus acting within cells.

I then sought to replicate the experiments of the Kenny Laboratory using bovine T cells and live EPEC strains to determine whether the concentrations of LifA
produced by the bacteria were sufficient to inhibit Akt Ser phosphorylation. Although the T3SS-dependent inhibition of Akt Ser phosphorylation could be confirmed using this model, the inhibition observed was independent of LifA and LifA-like protein. It is possible that another Type III secreted effector(s) was responsible for the inhibition observed, as other effectors from EPEC are known to modulate Akt phosphorylation. Both Tir and EspZ have been reported to indirectly enhance Akt Ser phosphorylation and thus promote the survival of kidney and epithelial cells respectively (Sason et al., 2009; Shames et al., 2010). However, with the exception of Stx (Gobert et al., 2007), which is not produced by EPEC, no other effector proteins from A/E E. coli have been identified that inhibit Akt Ser phosphorylation. LifA and its homologues ToxB and Efa1' have been shown to affect the expression and secretion of Type III secreted proteins in some strains (Stevens et al., 2002 and 2004), which raises the possibility that the effect of lifA during EPEC infection may be indirect. One method of studying any direct effects of LifA in EPEC on Akt would be to re-insert the lifA gene into the EPEC0 strain, which possesses a functional T3SS but lacks all Type III secreted effectors (Cepeda-Molero et al., 2017).

In order to determine whether the disparities between this study and the observations of the Kenny Laboratory were caused by the difference in cell types used, EPEC infections of J774A.1 cells were attempted. EPEC appeared to inhibit the phosphorylation of Akt Ser in a manner dependent on the T3SS but not LifA/LifA-like (data not shown). However, Akt Ser phosphorylation was also decreased by 30 minutes post-infection with an E. coli K-12 strain that lacks LifA (HB101) to a level similar to that of the EPEC E2348/69 strains. It is possible that changes to the experimental procedures used by our laboratories could be responsible for this, including in the number of J774A.1 cells used and the extent to which they were serum starved. Akt Ser phosphorylation was not reduced at 1 hour post-infection in E2348/69 ΔescN-infected cells, which is consistent with previous observations. An alternative explanation for this observation may be that E2348/69 ΔescN causes sustained activation of Akt by an unknown mechanism, rather than fail to inhibit it. Putative O-GlcNAcylation of Akt was not observed in EPEC-infected
J774A.1 cells either (data not shown) and the reasons for the discordance between studies remain unclear.

Proliferation assays in which T cells were incubated with EPEC E2348/69 strains for 1 hour before ConA stimulation were attempted to determine whether live bacteria could inhibit T cell proliferation. Previous assays have used either bacterial lysates or recombinant protein (Klapproth et al., 1995, 1996 and 2000; Malstrom and James, 1998; Stevens et al., 2002; Deacon et al., 2010; Bease, 2015; Cassady-Cain et al., 2016 and 2017). After incubation with the bacteria, T cells were washed and resuspended in fresh medium with antibiotics. However, despite streptomycin being the only antibiotic known that these strains were resistant to, the bacteria were found to be capable of surviving in 100 μg/mL gentamicin when 80 μg/mL has been reported to be sufficient kill E. coli (Marchès et al., 2003). It was thought that the bacteria may have been capable of invading the T cells and re-emerging as they have been reported to invade epithelial cells (Donnenberg et al., 1989). However, high concentrations of kanamycin, which penetrates cells, also did not kill the bacteria. They survived in 250 μg/mL kanamycin as well as combinations of antibiotics including chloramphenicol and ceftazidime. It is unclear how the bacteria were able to survive multiple classes of antibiotics, but this prevented the measurement of proliferation as the T cells were killed by the acidified medium due to bacterial outgrowth.

Other experiments were also attempted to assess the potential role of Akt as a target for LifA during this study. An in vitro glycosylation assay was attempted using recombinant 6 x His-tagged human Akt1 (rAkt1; Novus Biologicals) and conditions based in on the in vitro glucosylation assay described by Donald et al. (2013) for RhoA and the large clostridial toxins (LCTs) TcdA and B. Conditions were designed to mimic the host cell cytoplasm and UDP-GlcNAc was used in place of UDP-Glc. However, on western blots rAkt1 appeared as a complex ladder of proteins instead of a single band at ~56 kDa. This may have been the result of a poor quality batch, as the supplier’s website showed the protein to be of the expected size. Alternatively, it is possible that this was due to rAkt1 being produced in E. coli rather than mammalian or insect cells as may be required for the proper folding of a mammalian protein. Even if rAkt1 was biophysically normal and was a target for LifA, there are
a number of other potential reasons why in vitro glycosylation may not occur. Although full-length rLifA is known to bind UDP-GlcNAc (Bease, 2015; Cassady-Cain et al., 2016) it is unclear whether it can transfer the sugar in this form. The homologous LCTs can transfer their sugar substrates in their full-length form (Just et al., 1995b and 1995c; Selzer et al., 1996; Busch et al., 1998; Nagahama et al., 2011), but given that rLifA is processed within T cells (see Section 4.7), it may require cleavage for the N-terminal glycosyltransferase domain to become active. Other co-factors, such as ATP or metal ions, may also be required for the glycosylation reaction. The reaction was attempted in T cell lysates, as done by Selzer et al. (1996), to ensure that the necessary co-factors were present but again, rAkt did not appear at the expected size (data not shown).

Another experiment was performed to determine whether the LifA-mediated inhibition of T cell proliferation was caused by the inhibition of Akt Ser phosphorylation. T cells were treated with titrations of either rLifA or the inhibitor OSU-03012 (AR-12; APExBIO) for 1 hour. AR-12 prevents the phosphorylation of Akt Thr and Ser by inhibiting PDPK1 activity (Zhu et al., 2004; Cen et al., 2007). However, AR-12 may also target p21-activated kinases and aurora kinase A (Porchia et al., 2007; Silva et al., 2014), meaning that the effects of this inhibitor may not be specific to Akt. AR-12 at a concentration of 2.5 μM inhibited Akt Ser phosphorylation to a level comparable with 1 μg/mL rLifA in a single donor (data not shown). AR-12 concentrations lower than 2.5 μM (0.1–1 μM) did not appear to inhibit Akt Ser phosphorylation, while higher concentrations (5–10 μM) were toxic. However, this observation could not be confirmed in additional donors due to toxicity issues at 2.5 μM. Toxicity at 5 μM and above was not unexpected as this has previously been reported in human macrophages (Hoang et al., 2014), however, this was after a 72 hour incubation. Cytotoxicity was < 10 % at 2.5 μM AR-12 in this same study. It is possible that the toxicity observed at 2.5 μM in bovine T cells was due to differences in the sensitivities of different cell types, species or donors to AR-12. A proliferation assay was performed with a different single donor in which T cells were treated with titrations of either rLifA or AR-12. AR-12 at 2.5 μM was not cytotoxic in the proliferation assay but the effect on Akt Ser phosphorylation was not measured. However, at this concentration the proliferation index was only reduced to
0.71, comparable to 0.01 ng/mL rLifA (data not shown). Although caveats existed, these experiments suggested that LifA does not act by solely inhibiting Akt Ser phosphorylation.

Taken together, the observations made in this study suggest that lymphostatin does not directly target Akt in bovine T cells, at least not via O-GlcNAcylation. rLifA did not reduce Akt Thr phosphorylation to the same degree as Ser phosphorylation in experiments by Dr Robin Cassady-Cain. It is possible that the cellular target of LifA lies upstream of Akt Thr and Ser phosphorylation but has a greater effect on Ser phosphorylation. No kinases from the subset identified with reliable detection (Figure 6.2) lie directly upstream of Akt. GSK3, WNK1 and p27 are all possible substrates for Akt (reviewed in Manning and Toker, 2017) but have variable levels of phosphorylation. There is potentially cross-talk between the TCR and PI3K/Akt signalling pathways however (see Section 7.2.4), which may make determining the upstream effects on Akt and the downstream effects of Akt difficult.
7 Discussion

Lymphostatin is a large protein produced by A/E E. coli that inhibits the mitogen- and antigen-stimulated proliferation of T lymphocytes. In this study, I sought to better understand the mode of action of lymphostatin by attempting to identify functional domains and possible targets of the protein, as well as investigating the role of the putative cysteine protease domain.

7.1 Analysis of lymphostatin structure and function

Recombinant fragments of lymphostatin representing putative structural domains did not possess inhibitory activity when applied exogenously to T cells in isolation or in combination. Direct transfection of T cells with the predicted catalytic N-terminal proteins rGT and rF1 did not produce conclusive results with regards to the inhibition of mitogen-activated proliferation. However, these two proteins were found to interact with T cells in a manner insensitive to exogenous GlcNAc, while the C-terminal proteins rF3 and rF5 did not. Experiments seeking to define the roles of structural domains of lymphostatin were limited by several factors. rF3 and rF5 formed multimers, making it difficult to determine using SEC whether or not they associated with each other. Further, rF1 and rF5 could not be purified to a higher degree using anion exchange chromatography, which prevented biophysical measurements from being taken. We cannot preclude the possibility that the absence of activity was a consequence of improper folding of the proteins.

7.1.1 Structural analysis

Currently, there is only limited experimental structural information on the N-terminal portion of LifA, which was gathered by Cassady-Cain et al. (2016). The N-terminal half of lymphostatin was predicted by PSIPRED (Buchan et al., 2013) to contain the majority of the α-helix content of the protein. PSIPRED predicted that the F1 fragment released by limited trypsin proteolysis was composed of 52 % α-helix, 5 % β-sheet and 43 % coil (Cassady-Cain et al., 2016). CD analysis of F1 yielded
similar results to the PSIPRED predictions but with a higher β-sheet content (51 ± 5 % α-helix, 13 ± 3 % β-sheet, 37 ± 7 % coil) and confirmed that the α-helix content was higher in F1 than in full-length LifA (37 ± 3 % α-helix). Cassady-Cain et al. (2016) also made structural predictions about the GT domain of LifA. Through alignment of the LifA primary sequence with that of various LCTs it was predicted that the GT domain of LifA consists of a catalytic core with α-helical/unordered insertions. The catalytic core is thought to be involved in substrate binding and the insertions involved in target recognition (Figure 7.1). An XNX motif at the base of the β-hairpin in the substrate binding site is thought to confer sugar specificity (Figure 7.2). The LCTs TcdA and B and TcsL have an INQ sequence at this position, allowing them to bind UDP-Glc but not UDP-GlcNAc. The LNG sequence at this position in LifA has more similarity to the sequences of the UDP-GlcNAc binding LCTs TcnA and TpeL, and it is hypothesised that this sequence is what allows for the accommodation of the acetyl group of GlcNAc (Cassady-Cain et al., 2016).

If time and resources were invested in optimising the purification conditions for the recombinant LifA fragments, there are a number of methods, besides those described in Section 3.11, which could be used to gather structural information on lymphostatin. X-ray crystallography could be used to determine the structure of LifA or domains within. X-rays are diffracted by protein crystals to produce a series of spots, which can be used to determine the original crystal structure using Bragg’s Law (reviewed in Wang and Wang, 2017). To complete the structural model, further information is obtained by computational methods or by molecular replacement, which uses information from homologous proteins to make inferences about the structure of the protein under investigation (reviewed in Taylor, 2010). This technique has been used to determine the structure of the TcdA glucosyltransferase domain (Pruitt et al., 2012), the cysteine protease domain of PaTox (Bogdanović et al., 2018), and TcdA lacking the receptor binding domain (Chumbler et al., 2016). However, X-ray crystallography requires highly ordered protein crystals and so far attempts to produce crystals of full-length rLifA and rGT have been unsuccessful despite testing diverse conditions (Walkinshaw Laboratory, unpublished data). Producing crystals of rLifA is technically difficult due the size of the protein.
Figure 7.1. The glycosyltransferase (GT) domains of the large clostridial toxin TcdA and lymphostatin. (A) Representation of the crystal structure of the GT domain of C. difficile TcdA (Pruitt et al., 2012) bound to UDP-Glc. (B) Model of the GT domain of LifA from E. coli O127:H6 strain E2348/69 bound to UDP-GlcNAc based on homology with TcdA. The catalytic core (grey) is thought to be involved in substrate binding and the α-helical/unordered insertions (orange/blue) are thought to be involved in target recognition. Purple spheres represent Mn$^{2+}$ ions (from Cassady-Cain et al., 2016).
Figure 7.2. The predicted binding sites of the large clostridial toxin TcdA and lymphostatin GT domains, illustrating sugar substrate specificity. (A) Model of the TcdA binding site in complex with UDP-Glc. Asp285 and Asp287 are shown in red. Ile382 and Gln384 of the XNX motif are shown in blue. (B) Model of the LifA binding site in complex with UDP-GlcNAc based on homology with TcdA. Asp557 and Asp559 are shown in red. Lue667 and Gly669 of the XNX motif are shown in blue and are predicted to allow for the accommodation of the GlcNAc acetyl group. Purple spheres represent Mn$^{2+}$ ions (from Cassady-Cain et al., 2016).

Cryo-electron microscopy (EM) is another technique that could be used to produce three-dimensional models of the recombinant fragments. Cryo-EM uses thin sections of molecules frozen at low temperatures on a porous carbon grid, which are visualised by EM, and has the advantage over X-ray crystallography of requiring less material (reviewed in Murata and Wolf, 2018). This technique is predicted to be feasible for lymphostatin, as rLifA appears soluble and monodispersed by negative staining and transmission electron microscopy (Cassady-Cain et al., 2016). It is difficult to visualise proteins smaller than 50 kDa using standard cryo-EM, with the current smallest protein visualised being ~43 kDa (Herzik et al., 2019), which would be problematic for studying rF5 (~38 kDa). This could be overcome by fusing rF5 to a modular, self-assembling protein scaffold, which can hold an attached protein in symmetric and rigidly defined orientations (Liu et al., 2018b). However, given that
rF5 appeared to aggregate, this method may not be possible as proteins that naturally self-associate prevent the assembly of the scaffold protein (Liu et al., 2018b). Cryo-EM has previously been used to visualise pH-dependent conformational changes in TcdA (Pruitt et al., 2010), and given that rLifA requires endosome acidification for cleavage, a similar experiment could be performed to detect pH-dependent structural changes in lymphostatin.

Small angle X-ray scattering (SAXS) can also be used to provide lower resolution information on the structure of proteins. SAXS measures the intensity of X-rays scattered by a solution of particles to provide information on the size, shape and molecular weight of a protein of interest (reviewed in Kikhney and Svergun, 2015). Although SAXS provides less detailed information than X-ray crystallography, it can be combined with this technique, as well as nuclear magnetic resonance, to provide information on protein flexibility that detailed structural measurements do not detect (Schulte et al., 2014; Grishaev et al., 2005). Further, it has the advantage that we have successfully used this technique to gain structural insights into lymphostatin. SAXS was combined with transmission electron microscopy of negatively stained rLifA to estimate the surface envelope and volume of the protein (Cassady-Cain et al., 2016) and has also been used to detect pH-dependent changes in rLifA and the mutant proteins rLifADTD/AAA and rLifAC1480A (Walkinshaw Laboratory, unpublished data). Highly purified rGT and rF3, produced by Dr Liz Blackburn, EPPF, have also been subjected to SAXS but the results were confounded by the self-association of these fragments (Walkinshaw Laboratory, unpublished data).

7.1.2 Investigating the role of functional domains

Other methods could also be used to study the roles of predicted functional domains. Given that the N-terminus of lymphostatin contains the GT and CP domains, it was hypothesised that the C-terminus is involved in cell binding and uptake. Immunocytochemistry and confocal microscopy using the polyclonal anti-LifA antibody against rF3 and rF5 could be used to assess the location of these proteins within T cells. However, since these proteins could not be detected in T cell
lysates (see Section 3.9), despite being reactive to anti-LifA antibodies in isolation, they may not be detectible using this method. It is possible that these proteins are incapable of entering cells due to missing amino acids, therefore an alternative would be to produce recombinant LifA C-terminus (aa 1621–3223). Another alternative is splicing by overlap extension (SOEing) PCR. SOEing PCR uses primers for two different genes that overlap, thereby allowing for the creation of fusion proteins (Higuchi et al., 1988; Bryksin and Matsumura, 2010). SOEing PCR could be used to create a fusion protein of a reporter such as enhanced green fluorescent protein and the C-terminal end of LifA. After treating T cells with the purified fusion protein, confocal microscopy could then be used to assess the location of the protein. This method would not be limited by antibody sensitivity but may be limited by the quantity of protein that is taken up by cells.

Another method that could be used to study functional domains is the use of nested truncations. A number of methods have been developed to create nested truncations in various genes but all rely on the same underlying principle (Frischauf et al., 1980; Poncz et al., 1982; Henikoff, 1990). A series of truncations could be made from the N- or C-terminus of LifA and the resulting proteins could be assessed for inhibitory activity to determine which regions of the protein are required for activity. However, when producing truncations from the N-terminus, the possibility of deleting a signal sequence for protein secretion should be considered. Alternatively, a series of in-frame deletions could be created within the coding sequence of lifA, for example using restriction and re-ligation (McKnight and Kingsbury, 1982), SOEing PCR or by de novo synthesis of the desired lifA sequences. It should be noted however, that truncated proteins may not fold properly unless the correct boundaries for structure are chosen (Stevens Laboratory, unpublished data).

Alanine scanning mutagenesis could be used for fine-scale mapping of residues required for activity and involves the sequential substitution of each amino acid in a specific region with Ala residues (Cunningham and Wells, 1989). Since alanine scanning mutagenesis cannot be used to investigate the role of Ala residues within these regions, serine scanning mutagenesis could potentially be used for these particular residues (Pál et al., 2005; Follis et al., 2005). With a protein the size of
lymphostatin, such a time- and resource-intensive strategy would be optimally focused on predicted catalytic domains or to test structure predictions.

Error-prone PCR could be used to randomly insert mutations into the \textit{lifA} gene. This is performed using a low-fidelity polymerase, such as Taq, and modified PCR conditions, such as increasing the concentration of MgCl$_2$, adding MnCl$_2$ and unbalancing the concentrations of dNTPs (Leung \textit{et al.}, 1989; Cadwell and Joyce, 1992). However, not all nucleotide changes will introduce coding changes and some may alter the reading frame, meaning that large numbers of cloned amplicons would likely need to be sequenced. Lastly, mutagenesis using transposons such as Tn5, which inserts at near-random could be used (Ruvkun and Ausubel, 1981). Transposons can also include reporter genes that can provide information regarding the location of proteins within the bacterial cell, such as Tn\textit{phoA} or Tn\textit{lacZ} which can create translational fusions to alkaline phosphatase or \(\beta\)-galactosidase and respectively identify domains located outside or inside the cytoplasmic membrane (Manoil and Beckwith, 1985; Manoil, 1990). A Tn\textit{phoA} insertion in \textit{lifA} from EHEC E45035 confirmed that at least part of the protein is located outside the bacterial cytoplasmic membrane (Nicholls \textit{et al.}, 2000). The main drawback of all of these methods is that there is currently no high throughput system for producing and screening the large number of mutant proteins that could be made. Lysates of the mutant strains could be used in assays of lymphostatin activity, however, lysates are known to be less sensitive than recombinant protein for this purpose and biophysical experiments could not be performed to ensure the mutant proteins are folded and stable.

7.2 \textbf{Mode of action of lymphostatin on T lymphocytes}

Due to the N-terminal homology between LifA and the LCTs, it was hypothesised that LifA may similarly enter cells by receptor-mediated endocytosis, undergo a pH-dependent conformational change in the endosome and insert the N-terminus through the endosomal membrane prior to CP domain-mediated cleavage of the protein and release of the GT domain-containing N-terminus into the cytoplasm. In this study, CP domain-mediated cleavage of recombinant lymphostatin
was observed in both primary bovine T cells and J774A.1 murine macrophage-like cells. The cleavage event was found to produce N- and C-terminal cleavage products of ~140 and 225 kDa respectively, but attempts to determine if a co-factor(s) is required for cleavage have been unsuccessful (Cassady-Cain et al., 2016). Lymphostatin does not self-cleave in isolation, which suggests a co-factor of some form is required for this event. Using the inhibitors bafilomycin A1 and chloroquine, endosome acidification was also found to be required for rLifA cleavage in T cells, consistent with the prediction of a low pH-dependent membrane insertion event akin to LCTs.

Attempts to identify targets or other interacting partners of lymphostatin were less successful. Shotgun mass spectrometry appeared to be limited by the sensitivity of the spectrometer, as very few GlcNAcylated proteins were detected, even after using a method to enrich GlcNAcylated proteins from T cell lysates. Two possible candidate targets were identified from the eluates of protein pull-downs, however, follow-up experiments could not confirm that these proteins specifically interacted with rLifA. A candidate target approach with the protein kinase Akt revealed that pre-incubating T cells with rLifA or live EPEC inhibits Akt1 Ser473 phosphorylation. However, this inhibition does not appear to be caused by O-GlcNAcylation of Akt as suggested by the laboratory of Professor Brendan Kenny (unpublished observations). The LifA/LifA-like-independent inhibition of Akt1 Ser473 phosphorylation by EPEC also suggests that the bacteria possess another virulence factor that may target Akt.

There are a number of experiments based on previous studies with LCTs that could be performed to further the understanding of the mode of action of lymphostatin, which are described in Sections 7.2.1–7.2.4.

7.2.1 Mechanism of cell entry

Lymphostatin is known to be secreted via the LEE-encoded T3SS (Deng et al., 2012; Bease, 2015), but this is not necessary for activity as lysates and recombinant protein can inhibit mitogen-activated lymphocyte proliferation (Klapproth et al., 1995, 1996 and 2000; Malstrom and James, 1998; Stevens et al., 2002; Bease, 2015; Cassady-Cain et al., 2016 and 2017). This, and the requirement
for endosome acidification for rLifA cleavage, suggests that LifA enters cells to reach its target rather than targeting a protein on the host cell surface. However, the exact mechanism by which LifA is taken up has yet to be identified. LCTs are taken up by clathrin-mediated endocytosis (Papatheodorou et al., 2010), but given the lack of homology between LifA and LCTs at the C-terminus uptake of LifA by the same pathway cannot be predicted with confidence.

To determine which endocytic pathway LifA is taken up by, experiments could be performed using inhibitors of different pathways. During this study, I attempted to carry out proliferation assays in which T cells were treated with inhibitors before incubation with buffer/rLifA and ConA stimulation. The following inhibitors were used: chlorpromazine, which inhibits clathrin-mediated endocytosis by preventing the formation of clathrin coated pits at the plasma membrane (Wang et al., 1993); methyl-β-cyclodextrin, which inhibits cholesterol-dependent endocytosis by forming soluble inclusion complexes with cholesterol and thus depleting it from cell membranes (Vieth et al., 2010; Ohtani et al., 1989; Kilsdonk et al., 1995); and cytochalasin D, which inhibits actin polymerisation and induces depolymerisation, thereby preventing phagocytosis and macropinocytosis (Casella et al., 1981; Sakr et al., 2001). It was hypothesised that ConA-stimulated T cell proliferation would not be suppressed if the inhibitors used blocked the uptake of rLifA, however, the concentrations of inhibitors used in these experiments proved to be cytotoxic. A more effective method for examining the mechanism of cell entry may be to pre-incubate T cells with a titration of each inhibitor, similar to the experiments performed with bafilomycin A1 and chloroquine. The presence/absence of the c. 140 kDa cleavage product at different inhibitor concentrations could then be used as an indicator for the effects of each inhibitor on rLifA uptake, before loss of cell viability occurs. Other inhibitors could also be tested, such as a combination of PMA and filipin, which inhibits caveolae-mediated endocytosis (Smart et al., 1994; Schnitzer et al., 1994), and nocodazole, which inhibits microtubule formation (Hoebeke et al., 1976; Samson et al., 1979). It should be noted, however, that some of these inhibitors have overlapping functions and are not specific to one form of endocytosis (reviewed in Ivanov, 2008). This could prove useful in that two inhibitors with overlapping functions that block rLifA entry could indicate which
mechanism lymphostatin is taken up by. It is unlikely that data exist on the inhibitor concentrations required to specifically block uptake pathways in bovine T cells, therefore significant pilot work and use of control ligands or pathogens would be required.

Chondroitin sulphate proteoglycan 4, polio virus receptor-like 3 and frizzled proteins have all been identified as receptors for TcdB (Yuan et al., 2015; LaFrance et al., 2015; Tao et al., 2016), while lipoprotein receptor-related protein 1 has been identified as a receptor for TpeL (Schorch et al., 2014). These LCT receptors were identified by various library screening methods, including gene traps and haploid genetic screens, which screened for toxin resistance. Gene trapping is a form of insertional mutagenesis that uses random integration of a reporter gene with a selectable marker throughout the genome of a host cell. This disrupts gene function and produces a dominant expression phenotype, allowing the products of disrupted genes that would normally interact with a protein of interest to be identified (reviewed in Kumari et al., 2018). Haploid genetic screening is a similar method but uses haploid cell lines so that the effects of gene disruption are not masked a second copy of the gene (reviewed in Elling and Penninger, 2014). It may be possible to use such screens to identify the receptor for lymphostatin using Jurkat cells and measuring IL-2 secretion by enzyme-linked immunosorbent assay, which has been reported to be inhibited by LifA (Malstrom and James, 1998).

7.2.2 Translocation

Little is known about LCT pore formation and translocation through the endosomal membrane, but knowledge thus far may be useful for understanding how the N-terminus of LifA escapes the endosome and mostly derives from structural studies and mutagenesis of particular sequences (Genisyuerek et al., 2011; Zhang et al., 2013b; Chen et al., 2016; Chumbler et al., 2016). Computational methods could be used to predict regions with particular secondary structures that may be of interest to investigate (Zhang et al., 2014; Chen et al., 2016). Zhang et al. (2014) used TMHMM v2.0 (Krogh et al., 2001), which uses a hidden Markov model to predict amino acid sequences that form transmembrane helices in the translocation domain
of TcdB. This programme does not predict EPEC E2348/69 LifA to contain any transmembrane helices, but the complimentary probability plot reveals several regions of hydrophobicity that are more likely to form these structures than the rest of the protein. Similar results are obtained when analysing LCTs, therefore it is likely that transmembrane helices are not predicted because LifA and LCTs are not true transmembrane proteins. Eight small hydrophobic regions were identified in LifA using TMHMM v2.0 at positions 96–113, 1362–1377, 1674–1697, 1901–1927, 2053–2069, 2330–2353, 2571–2590 and 2957–2971. Five larger distinct peaks were identified at positions 1850–1883, 1947–1988, 1988–2038, 2119–2138 and 2235–2264 (Figure 7.3). Interestingly, the largest of these peaks spans the transmembrane domain predicted by Nicholls et al. (2000) and the smaller preceding peak encompasses the aminotransferase II motif predicted by Klapproth et al. (2005). The overall size of the protein also affects the probability score, as separately analysing the region containing the five peaks provides a higher score for each peak. This suggests that a region of LifA may be inserted into the endosomal membrane of host cells to facilitate translocation of the catalytic N-terminus into the cytoplasm.

Zhang et al. (2014) mutated amino acids within the hydrophobic regions that were highly conserved between LCTs. Amino acids were substituted for either polar lysine residues, which would disrupt hydrophobic interactions, or less polar cysteine residues. A similar approach could be taken with LifA, however, choosing highly conserved amino acids may be problematic as LifA homologues do not exhibit as high similarity at the primary sequence level as LCTs. If defective LifA mutants were identified using this method, which would likely be performed by screening lysates, mutant proteins could be purified and biophysically characterised. Mutant proteins that were structurally stable could then be assayed for activity and the ability to form pores as described in Section 4.9 (Qa’dan et al., 2000; Barth et al., 2001).

Amino acids involved in the predicted pH-dependent conformational change of LifA could be identified by performing similar experiments to Genisyuerek et al. (2011). This study first used nested deletions to identify a region of TcdB that was required for pore-forming activity. Two glutamic acid residues located between hydrophobic clusters were substituted for lysine residues, which are not neutralised upon acidification. These amino acids were chosen because similar residues are
required for pore formation by diphtheria toxin (Silverman et al., 1994). Mutant TcdB proteins were then assayed for cytotoxicity and pore-forming activity (Genisyuerek et al., 2011). Acidic amino acids are found between predicted transmembrane helices in EPEC E2348/69 LifA at the following positions: 1886, 1887, 1898, 1904, 1922, 1930, 1935, 1988, 2040, 2041, 2048, 2055, 2066, 2071, 2084, 2095, 2101, 2109, 2112, 2117, 2151, 2153, 2168, 2170, 2180, 2184, 2195, 2207, 2220, 2224, 2227, and 2234. These may warrant investigation in future studies.

Figure 7.3. Probability plot of transmembrane helices as predicted by TMHMM v2.0 for EPEC E2348/69 LifA. Five distinct peaks located within the ‘hinge’ (aa 1621–2110) and F3 (aa 2111–2900) regions of LifA indicate amino acids with higher probabilities of forming transmembrane helices than the rest of the protein. Two smaller hydrophobic regions (aa 1901–1927 and 2053–2069) are located between these peaks but are barely visible on the plot. The largest peak and the preceding smaller peak span the predicted transmembrane domain and aminotransferase II motif respectively.
The requirement of cholesterol for pore formation could also be tested as it has been for TcdA and B (Giesemann et al., 2006). Methyl-β-cyclodextrin could be used to deplete T cell membranes of cholesterol, and since the acid pulse method used to detect pore formation (see Section 4.9) allows the protein to translocate through the plasma membrane, the potential effects of methyl-β-cyclodextrin on endocytosis would be irrelevant. Rescuing pore formation by restoring cholesterol levels with water-soluble cholesterol could then be attempted. The biggest limitation for studying the translocation of LifA is that any mutant proteins that are made cannot be easily tested for effects of the mutation on other predicted functional domains. Tryptophan fluorescence assays could be used to confirm UDP-GlcNAc binding and directly labelling the protein with a fluorophore could be used to assess uptake. However, unlike LCTs, there is currently no in vitro cleavage assay for LifA. As such, using T cells or J774A.1 cells to detect the presence of cleavage products would be prevented if the mutant protein cannot form a pore in the endosomal membrane.

7.2.3 Cleavage of lymphostatin

Although this study found that lymphostatin was cleaved within T cells and J774A.1 cells, autocatalytic cleavage has not been proven as it has with LCTs. Although LifA likely requires a co-factor for cleavage, it unclear whether or not said co-factor is proteinaceous. It was thought that the apparent shortening of rF1 may be the result of autoproteolysis caused by the missing C-terminus acting as a conformational change, which triggers cleavage (see Section 3.11). However, the shortened form of rF1 was ~150 kDa, which is slightly larger than the N-terminal cleavage product detected in cells (c. 140 kDa). If the shortening of rF1 is caused by autoproteolysis it is unclear why cleavage would occur at a different site in vitro than in cells. Possible evidence for the autocatalytic cleavage of LifA comes from SAXS experiments. rLifA was reported to shorten after the buffer was acidified by X-ray ionisation, whereas proteins would normally appear larger due to being denatured (Walkinshaw Laboratory, unpublished data). However, this may simply be the result of pH-induced structural changes that cause the protein to adopt a conformation with
a smaller volume. This theory is supported by the fact that rLifA in acidic buffer was observed to elute at a later point than normal on a SAXS-SEC column, and the protein did not appear to fragment (Walkinshaw Laboratory, unpublished data).

The present study only examined the effects of mutating the predicted catalytic Cys1480, but the His and Asp residues of the C/H/D catalytic triad have been reported to be essential for cleavage in both C58 proteases and LCTs (Shao \textit{et al}., 2002; Dai \textit{et al}., 2008; Egerer \textit{et al}., 2007; Pruitt \textit{et al}., 2009). As such, the predicted catalytic His1581 and Asp1596 could be substituted for alanine residues by site-directed mutagenesis to determine whether these are also required for LifA cleavage and activity. Additionally, the cleavage site of LifA could be identified using the same method that was used for TcdB (Rupnik \textit{et al}., 2005). First, a suitable quantity of the C-terminal c. 225 kDa cleavage product would need to be generated. This may require using J774A.1 cells and potentially immunoprecipitating the cleavage products from the cell lysates. Western blot analysis using polyclonal anti-LifA antibodies indicates that this should be feasible as rF3 and rF5 were reactive. N-terminal sequencing of the c. 225 kDa cleavage product could then be used to identify the site of cleavage. Alternatively, MALDI-TOF/TOF analysis could be used, as was done to identify the cleavage site of TcdA (Kreimeyer \textit{et al}., 2011). The cleavage site could then be confirmed by substituting the identified residues using site-directed mutagenesis.

Despite the findings of this study, it may be that cleavage of LifA is not strictly necessary for inhibitory activity. CP domain mutants of TcdB still induce toxicity in epithelial cell lines but require a longer incubation (Chumbler \textit{et al}., 2012; Li \textit{et al}., 2013a). It is presumed that the GT domain remains bound to the surface of the endosome and is able to interact with Rho GTPases in close proximity. If the GT domain of rLifAC1480A is capable of interacting with its target, albeit at a reduced capacity, a longer incubation with T cells before ConA stimulation may increase inhibitory activity.
7.2.4 Target of glycosylation

Further work could be done to identify the target(s) of lymphostatin based on its impact on signal transduction pathways. It is hypothesised that the target(s) of lymphostatin is located between the points where ConA and PMA/ionomycin stimulate the T cell signalling cascade. The kinase array experiments performed by Dr Robin Cassady-Cain, The Roslin Institute, revealed several proteins other than Akt, which exhibited a LifA-dependent inhibition of phosphorylation. These included Erk1/2, CREB, p70 S6 kinase and p27. It is therefore possible that LifA targets a protein upstream of these in the T cell signalling cascade. Lck is a plausible candidate as it activates the main T cell signalling cascade through CD3 ITAMs (reviewed in Simeoni, 2017) and Akt through PI3K (von Willebrand et al., 1994). There is a potentially complex interplay, however, between T cell signalling through the LAT signalosome and the PI3K/Akt pathways. Studies have shown that Akt can activate PLCγ1 in COS-7 kidney cells (Wang et al., 2006), and that both Akt and ERK can inactivate tuberous sclerosis 2 (TSC2) to promote cell growth and cell cycle progression in various cell types, including epithelial, myoblast and bone marrow cells (Inoki et al., 2002; Ma et al., 2005; Wang et al., 2009; Miyazaki and Takemasa, 2017). This is further complicated by the fact that TSC2, in complex with TSC1, regulates Akt phosphorylation by enhancing mTORC2 kinase activity (experiments performed using epithelial cells; Huang et al., 2008). However, it is unclear whether these findings apply to T cells. Studies targeting candidate proteins can be limited by the availability of specific antibodies and the time required to test individual proteins. Moreover, only O-GlcNAcylation can be tested for by western blotting as antibodies specific to GlcNAc on N-linkages are presently lacking.

Several other methods exist that could be used to identify the target(s) of lymphostatin. Yeast two-hybrid screening has a variety of forms and is commonly used to detect protein-protein interactions (reviewed in Zhu et al., 2016). The simplest method was first described by Fields and Song (1989) and uses blue-white colour screening to detect interactions between two proteins. The gene encoding LifA, or more likely the GT domain owing to size, could be fused to the DNA binding domain of the transcription factor GAL4. This could then be screened
against a library of human proteins fused to the activation domain of GAL4 (or \textit{vice versa}). If LifA/GT and the putative interacting partner have a genuine interaction, and thus bring the GAL4 binding and activation domains into close proximity, a \textit{GAL1-lacZ} fusion gene will be transcribed enabling blue-white screening in the presence of a chromogenic substrate of \(\beta\)-galactosidase. However, the proteins under investigation must be small enough to allow the two domains of GAL4 to come within the required distance of each other for activation. The interaction between the two proteins must also be able to occur in the yeast nucleus. Using a mammalian cell two-hybrid system would allow for experiments to be carried out in a native environment (Dang \textit{et al.}, 1991) and using fluorescent reporter fusion proteins would allow the proteins to interact outside the nucleus (Zolghadr \textit{et al.}, 2008).

Two-hybrid systems are useful for high throughput screening but can result in high numbers of false positives (Deane \textit{et al.}, 2002). To confirm any putative interactions, co-immunoprecipitation could be used. This would involve treating T cells with rLifA then using IP to recover rLifA and any associated interacting partner. Western blotting could then be used to confirm the presence of both proteins in the IP sample (reviewed in Lin and Lai, 2017). A monoclonal antibody to rLifA may be required to improve the specificity of such IPs. An alternative may be to use far western blotting, whereby cellular proteins resolved by SDS-PAGE are transferred to a PVDF membrane, which is then exposed to rLifA. Bound protein is then detected with specific antibody and revealed by an enzyme-conjugated secondary antibody. This is not typically as specific as co-IP and can be sensitive to denaturants in the gel system. Candidate interacting partners can then be identified by mass spectrometry of tryptic fragments of proteins excised from the blot (reviewed in Hall, 2015).

Co-IP and far western blotting cannot detect transient interactions, however. To detect targets of LifA when the interaction may be transient, chemoenzymatic labelling could be employed, as it was with NleB to demonstrate transfer of a labelled GlcNAc moiety onto cellular targets (Li \textit{et al.}, 2013b). Firstly, genes encoding LifA or the GT domain and a tagged variant of the putative target protein must be transfected into an immortalised cell line where they can be overexpressed. Cells expressing these proteins are then incubated with tetraacylated
N-azidoacetylglactosamine (Ac4GalNAz), which is then converted into Ac4GlcNAz via the GlcNAc salvage pathway (Boyce et al., 2011). IP could be used against the tag of the target protein, the azide group of which would then be bonded to alkyne-linked biotin via a copper catalysed Huisgen 1,3-cycloaddition ‘click reaction’ (Nishikaze et al., 2013; Li et al., 2013b). Western blot analysis of the reaction product using streptavidin-HRP or antibodies against the target protein’s tag could then reveal whether the target protein has been GlcNAzylated. This technique could also be performed using native proteins, in which case the ‘click reaction’ would be performed using cell lysates. This may require proteins to be resolubilised after the reaction (reviewed in Speers and Cravat, 2009), which can then be isolated with streptavidin beads. One problem associated with performing this experiment in cells is that Ac4GlcNAz can be added to other proteins. This can be alleviated by pre-treating cells with tunicamycin, which inhibits N-glycosylation (reviewed in Esko et al., 2017), and inhibitors of O-GlcNAc transferase, such as alloxan, L01 or 5SGlcNHx (reviewed in Trapannone et al., 2016; Liu et al., 2017; Liu et al., 2018a). Similar to inhibitors of O-GlcNAcase (see Section 5.4), O-GlcNAc transferase inhibitors that are analogues of GlcNAc should be tested to ensure that they do not bind to and inhibit LifA. Performing the reaction in vitro would also prevent the GlcNAzylation of non-target proteins by cellular enzymes.

7.2.5 Cell cycle analysis

If lymphostatin causes T cells to pause in a particular phase of the cell cycle, this could be detected using flow cytometry using DNA-binding fluorescent dyes, such as propidium iodide, DAPI or Hoechst 33342 (Krishan, 1975; Belloc et al., 1994). This allows for the distinction between cells in the G0/G1, S and G2/M phases. Since doublets of cells in the G0/G1 phase contain the same quantity of DNA as single cells in the G2/M phase, these must be excluded (Wersto et al., 2002). Cells may first have to be synchronised to the G0 phase, which can be reversibly achieved by serum starvation (Griffin, 1976), although this may not be necessary as is it has been reported that peripheral T cells from humans are predominantly in this phase (Witkowski and Bryl, 2004). Such methods have previously been used to
characterise a number of bacterial toxins and Type III secreted effectors termed cyclomodulins (Marchès et al., 2003; reviewed in Taieb et al., 2011).

7.3 Lymphostatin homologues

There are a number of homologous proteins to lymphostatin in A/E E. coli and other bacteria (reviewed in Klapproth, 2010), but few studies have been carried out with regards to the function of these proteins. Abu-Median et al. (2006) did not observe inhibitory activity against PBMCs with lysates of *efa1* and *toxB* EHEC O157:H7 85-170 NalR mutants. However, it has recently been shown that ToxB does in fact possess lymphostatin activity against bovine peripheral T cells (Cassady-Cain et al., 2017). This is consistent with earlier observations that showed the EHEC O157:H7 lysates could inhibit IL-2 production by ConA-stimulated human PBMCs in a manner dependent on the c. 92 kb pO157 plasmid that encodes *toxB* (Klapproth et al., 2000). A number of LifA homologues were described in *C. trachomatis* that exhibit cytotoxic activity (Belland et al., 2001). A LifA homologue from *C. pecorum* has recently been shown to inhibit ConA-stimulated T cell proliferation, without causing direct cytotoxicity (Stevens Laboratory, unpublished data). Given that *Chlamydia* species are obligate intracellular pathogens, it is unclear how such proteins would escape infected cells to target T cells. The extracellular elementary bodies of *Chlamydia* are metabolically active (reviewed in Elwell et al., 2016) but are not known to secrete virulence factors. *C. pneumonia* have been shown to infect T cells (Haranaga et al., 2001), although they do not possess any LifA homologues. However, if other *Chlamydia* species are capable of infecting lymphocytes, this may allow them to secrete LifA homologues either directly into the host cell cytoplasm via the T3SS or into the phagosome, where the protein may then cross the membrane.

Few studies have so far investigated the role of LifA-like protein from EPEC E2348/69 (Cepeda-Molero et al., 2017; see Section 7.4), while the slightly different LifA-like protein from EPEC O111:H- strain B171-8 has never been studied. However, if data from the Kenny Laboratory is correct, and EPEC does inhibit Akt1 Ser473 phosphorylation in a LifA-like-dependent manner, this suggests that LifA-like
protein may target the same protein(s) as LifA. It would therefore appear that LifA is merely one protein in a larger lymphostatin family with some redundancy of function. Many of the same experiments used to study LifA could be performed with these homologues and/or of particular interest would be whether they use the same sugar substrates and have the same target(s). The biggest limitation to studying these proteins is likely to be obtaining sufficient quantities of the proteins, as purified rToxB and the recombinant *C. pecorum* homologue were obtained in much lower quantities than rLifA (Stevens/Walkinshaw Laboratory, unpublished data). It may be possible to obtain larger quantities of protein using an alternative expression system, such as *Bacillus megaterium*, which were used to produce LCTs as they are expressed poorly in *E. coli* (Burger et al., 2003; Yang et al., 2008). Given that the LifA-like proteins from EPEC E2348/69 and B171-8 lack the C-terminal 867 and 668 amino acids of LifA respectively, it would be of interest to determine whether these proteins can enter cells in the same way as LifA. If inhibitory activity against T cells could not be detected with exogenously applied LifA-like proteins, using the acid pulse method (see Section 4.9) may reveal activity, as analysis of these proteins with TMHMM v2.0 predicted that they also contain C-terminal transmembrane helices. It is also possible that the LifA-like proteins may be directly secreted into cells via the T3SS, meaning that phenotypes may only be evident after bacterial infection.

Perhaps the most peculiar of the LifA homologues is Efa1’, as it is unclear whether efa1’ encodes a functional protein or is merely a pseudogene. Given that a DNA vaccine of efa1’ has been reported to confer protective immunity against EHEC O157:H7 in mice (Riquelme-Neira et al., 2016), this suggests that the protein is functional. However, studies using single and double efa1’ and toxB mutants of *E. coli* O157:H7 in calves did not reveal a significant role for the proteins in intestinal colonisation (Stevens et al., 2004). If both open reading frames z4332 and z4333 are transcribed via ribosome frameshifting, then the full-length Efa1’ protein would include a portion of the LifA GT domain, including the DXD motif. Abu-Median et al. (2006) did not attribute inhibitory activity of lysates of EHEC 85-170NalR to Efa1’, however, we cannot preclude the possibility that it may require Type III secretion into host cells for activity. Transfection of the Efa1’ protein or the gene
encoding it into cells could be used to determine whether this protein possesses lymphostatin activity. The dedicated study of lymphostatin homologues may reveal insights into how these virulence factors evolved and lead to effective therapies against the pathogens that produce them.

7.4 Other potential activities of lymphostatin

The genes encoding lymphostatin from EPEC E2348/69 (lifA) and EHEC factor for adhesion (efa1) from EHEC O111:H- E43035N were described in the same year and are almost identical (Klapproth et al., 2000; Nicholls et al., 2000). A number of studies have reported that lifA, toxB and efa1’ mutant EPEC and EHEC strains have reduced adherence to epithelial cells (Nicholls et al., 2000; Tatsuno et al., 2001; Stevens et al., 2002 and 2004; Badea et al., 2003; Deacon et al., 2010). Immunofluorescence microscopy of EPEC O127:H6 strain JPN15 also reportedly detected LifA associated with the perimeter of the bacterial outer membrane (Badea et al., 2003). However, the deletion of these genes in some strains has been reported to affect the expression and secretion of Type III secreted proteins that are required for adherence (Tatsuno et al., 2001; Stevens et al., 2002 and 2004; Deacon et al., 2010). This suggests that the role of LifA and its homologues in adherence may be indirect, at least in some strains. The fact that the effect does not appear to occur at the level of transcription (Stevens et al., 2004) leads to the hypothesis that the mutations may affect translation of the proteins while docked at T3SS complexes or the hierarchy of secretion of T3S proteins (Wang et al., 2008; Mills et al., 2013). This suggests that A/E E. coli strains possessing lifA or its homologues may be more virulent, as observed with atypical EPEC strains (Afset et al., 2006; Narimatsu et al., 2010; Slinger et al., 2017). To determine whether the role of LifA in adherence is direct, laboratory-adapted strains of E. coli could be mixed with rLifA or buffer and applied to epithelial cell lines. A count of the microcolonies would reveal whether LifA can enhance bacterial adhesion independently of other effector proteins, unless another protein is required to interact with LifA, similar to the intimin-Tir interaction (see Section 1.1.3.6). A precedent exists for proteins to bridge an interaction between bacteria and host cells in this way, as the Type I secreted 595 kDa SiiE protein from
Salmonella associates with both the bacterial surface and glycan moieties on host cells (Morgan et al., 2007; Gerlach et al., 2007; Wagner et al., 2014). Alternatively, rLifA could be conjugated to fluorescent carboxylate-modified latex beads and cells with bound beads could be detected by flow cytometry, as was performed with intimin (Gonçalves et al., 2003).

Recently, it was reported that LifA and LifA-like protein have an accessory role in A/E lesion formation that is masked by other Type III secreted effectors (Cepeda-Molero et al., 2017). This function was independent of effects on other effectors as the secretion of T3S proteins was normal in strains lacking LifA and LifA-like protein. Identifying interacting partners of these proteins from epithelial cells may help to elucidate the underlying mechanism of LifA/LifA-like-mediated pedestal formation. Other studies also suggest a potential role for LifA in non-lymphocyte cells. If observations by the Kenny Laboratory are correct in that EPEC inhibit Akt1 Ser473 phosphorylation in a LifA/LifA-like-dependent manner in J774A.1 cells (see Section 6.1), this may indicate a role for LifA in modulating a plethora of Akt-dependent cellular processes. The extent to which LifA and its homologues may modulate innate immune responses in other cell types also merits study, given the number of other Type III secreted effectors that target this.

7.5 Concluding remarks

This study significantly contributes to our understanding of the mode of action and molecular biology of lymphostatin, an important virulence factor of A/E E. coli. However, while this research has revealed new insights from rLifA-treated bovine T lymphocytes in vitro, it does not demonstrate the relevance of lymphocyte inhibitory activity during the course of A/E E. coli infection in cattle or other animals. Various studies have previously shown that LifA is an important colonisation factor (see Section 1.3.4) but none have investigated the effects of LifA on the host immune response. One experiment that could be performed to investigate the effects of LifA on the adaptive immune response of the host would be to generate an E. coli strain that overexpresses a model antigen, such as ovalbumin, in the presence or absence of lymphostatin. This may allow the impact of LifA on the
induction of ovalbumin-specific antibody or effector cells to be quantified, however, disentangling the contribution of LifA to the modulation of host immunity from its role in gut colonisation may be challenging. It is possible that this could be overcome by repeatedly reapplying the bacteria, or recombinant proteins, directly to an accessible site of immune priming in cattle, such as follicle-associated epithelium in the terminal rectum. This is a key site of persistence of EHEC O157:H7 in cattle and cellular immune responses can be quantified by studying phenotypes of cells from lymph nodes draining this site (Corbishley et al., 2014 and 2016). Given that LifA is also produced by C. rodentium and RDEC, mouse or rabbit models of infection could be used as alternatives.

Also worthy of consideration is how lymphostatin reaches its target cells given that the frequency that A/E E. coli come into direct contact with lymphocytes in vivo may be low (see Section 1.3.3). It may be that LifA is directly injected into intraepithelial lymphocytes or is secreted into the extracellular milieu and diffuses to reach intraepithelial lymphocytes. Alternatively, LifA may be translocated across the epithelial cell layer to gut associated lymphoid tissue or into the bloodstream, where it acts on circulating lymphocytes before they reach the site of infection. Future research could seek to determine whether LifA production and/or translocation could be detected in the gut of infected animals using reporter fusions, as was carried out for Salmonella Type III secreted proteins (Geddes et al., 2007). Studies could also seek to determine whether LifA might be transported through the blood stream in microvesicles, similar to Stx (Ståhl et al., 2015). A ligated intestinal loop model previously failed to detect lifA-dependent effects on bovine intraepithelial lymphocytes exposed to EHEC in situ (Menge et al., 2004b), however, the model is constrained by the relatively short time that the animals were maintained under terminal anaesthesia. A model in which loops of gut formed by end-to-end anastomoses of ileal segments could be inoculated with strains and the animals then recovered to enable longer exposure may be useful (Coombes et al., 2005). Similar to experiments with Stx (Kolling and Matthews, 1999), outer membrane vesicles from A/E E. coli could also be examined for the presence of LifA protein or nucleic acids encoding LifA and homologous proteins to determine whether this is a possible method of lymphostatin delivery.
There have been few vaccine studies with LifA and its homologues and these have had mixed results (van Diemen et al., 2007; Riquelme-Neira et al., 2016). However, a greater understanding of the molecular basis of lymphostatin activity may allow for the creation of novel forms of the protein that act as more potent T and B cell antigens as they do not possess inhibitory activity. This follows a similar strategy to the development of detoxified variants of *E. coli* heat labile toxin or cholera toxin, which are immunogenic but lack the capacity to cause pathology (Holmgren et al., 1993; Douce et al., 1999; Sánchez et al., 2002). Continued studies also have the potential to reveal novel aspects of lymphocyte activation, which may lead to new therapies against lymphocyte cancers and autoimmune diseases.
References

Belland, R. J., Scidmore, M. A., Crane, D. D., Hogan, D. M., Whitmire, W.,
Associated with Complete and Partial Cytotoxin Genes. *Proceedings of the National
Academy of Sciences of the United States of America* 98, 13984–13989.

Belloc, F., Dumain, P., Boisseau., M. R., Jalloustre, C., Reiffers, J., Bernard, P. and
Lacombe, F. (1994). A Flow Cytometric Method Using Hoechst 33342 and
Propidium Iodide for Simulataneous Cell Cycle Analysis and Apoptosis

Berger, C. N., Crepin, V. F., Baruch, K., Mousnier, A., Rosenshine, I., Frankel, G.
(2012). EspZ of Enteropathogenic and Enterohemorrhagic *Escherichia coli*
Regulates Type III Secretion System Protein Translocation. *mBio* 3, 1–12.

Mechanisms Used by Enteropathogenic *Escherichia coli* to Control Filopodia

Berin, M. C., Darfeuille-Michaud, A., Egan, L. J., Miyamoto, Y. and Kagnoff, M. F.
(2002). Role of EHEC O157:H7 Virulence Factors in the Activation of Intestinal
Epithelial Cell NF-κB and MAP Kinase Pathways and the Unregulated Expression of
Interleukin 8. *Cellular Microbiology* 4, 635–647.

Membrane and Phagosome Localisation of the Activated NADPH Oxidase in
Elicited Peritoneal Macrophages of the Guinea-Pig. *The Journal of Pathology* 136,
241–252.

273

Appendix 1: Composition of buffers and reagents

Red blood cell lysis buffer was composed of 1 L dH2O with 100 mM KHCO3, 1.5 mM NH4Cl and 10 mM EDTA. It was made up to pH 8 using NaOH and HCl split into 10 x 100 mL aliquots and autoclaved.

NP-40 lysis buffer was composed of 100 mL dH2O with 250 mM Tris, pH 7.4, 150 mM NaCl, 2 mM EGTA, 50 mM NaF, 1 mM EDTA, 1 mM Na3VO4 and 1 % (v/v) NP-40. One protease inhibitor tablet (Roche) or 100 µL of Halt™ protease inhibitor cocktail (Thermo Scientific) was added fresh to 10 mL of lysis buffer before use.

To make 300 mL of NZY+ broth, 2 g of NZ amine, 1 g of yeast extract and 1 g of NaCl was dissolved in dH2O and made up to pH 7.5 using NaOH and HCl. The media was autoclaved then 2.5 mL of sterile 1 M MgCl and 1 M MgSO4 was added along with 0.4 % (w/v) glucose.

IMAC buffer A was composed of 500 mL dH2O with 20 mM NaH2PO4, 300 mM NaCl, 5 % (v/v) glycerol and 0.1 % (v/v) Tween 20. It was made up to pH 7.6 using NaOH and HCl and 1 mM fresh DTT was added before use. It was kept on ice or at 6 °C when not in use.

IMAC buffer B was composed of 200 mL dH2O with 20 mM NaH2PO4, 300 mM NaCl, 5 % (v/v) glycerol, 0.1 % (v/v) Tween 20 and 500 mM imidazole. It was made up to pH 7.6 using NaOH and HCl and 1 mM fresh DTT was added before use. It was kept on ice or at 6 °C when not in use.

SEC buffer was composed of 1 L dH2O with 10 mM NaH2PO4, 50 mM NaCl, 5 % (v/v) glycerol and 0.1 % (v/v) Tween 20. It was made up to pH 7.6 using NaOH and HCl and 1 mM fresh DTT was added before use. It was kept on ice or at 6°C when not in use.
The low salt buffer used for anion exchange chromatography was composed of 1 L dH$_2$O with 10 mM Tris or 10 mM NaH$_2$PO$_4$, 50 mM NaCl, 5% (v/v) glycerol and 0.05% (v/v) Tween 20. It was made up to pH 7.6 using NaOH and HCl and 1 mM fresh DTT was added before use. It was kept on ice or at 6 °C when not in use.

The high salt buffer used for anion exchange chromatography was composed of 200 mL dH$_2$O with 10 mM Tris or 10 mM NaH$_2$PO$_4$, 1 M NaCl, 5% (v/v) glycerol and 0.05% (v/v) Tween 20. It was made up to pH 7.6 using NaOH and HCl and 1 mM fresh DTT was added before use. It was kept on ice or at 6 °C when not in use.

Assay buffer was composed of 200 mL of dH$_2$O with 15 mM NaH$_2$PO$_4$, 150 mM NaCl and 5% (v/v) glycerol. It was made up to pH 7.6 using NaOH and HCl and 1 mM fresh DTT was added before use. It was kept on ice or at 6 °C when not in use.

CD buffer was composed of 200 mL of dH$_2$O with 15 mM NaH$_2$PO$_4$, 150 mM NaF and 5% (v/v) glycerol. It was made up to pH 7.6 using NaOH and HCl and 1 mM fresh DTT was added before use. It was kept on ice or at 6 °C when not in use.

The α-cyano-4-hydroxycinnamic acid matrix was composed of 400 µL dH$_2$O with 10 mg/mL α-cyano-4-hydroxycinnamic acid, 0.3% (v/v) trifluoroacetic acid and 50% (v/v) acetonitrile. The solution was mixed thoroughly after the addition of each reagent then centrifuged at 5000 rpm for 1 minute in a benchtop centrifuge. The supernatant was used for spotting with samples on the MALDI plate.

X-Gal staining mix was made from reagents provided in the Beta-Glactosidase Staining Kit (Clonetech Laboratories Inc.). It was composed of 10 µL of X-Gal Solution, 2 µL of each of Staining Solutions 1, 2 and 3 and 184 µL of 1 x PBS.
Appendix 2: Nucleotide sequences of the lifA fragment genes

Sequences contain start codons, polyhistidine tags and stop codons.

lifA F1

```
ATGAGACTGCCAGAAAGTTTCTTTTTCTCTCTGTCACTAGTGGCCTGTCAGGGCAGGAAAA
ACAAAAAAAAGCAGAGACATTACCGGATTTCAGGAAAATTATCAACAGGAAAAACCTCT
CTGGAGATGTTTCTTTTCTTGGTGAAATGATGCTGAAAGAAAACTCT
CTGGTACTGCAAAATGTTTATAATGAGCTGGAAGAAACAGAAATCCTCAACTCTTTCCAGGA
GATGGAATATAAAAGTACGACTCTCTTTTTAGAGAATCTGACAGCTTACAAAGACACAGTCC
TTGGATCTGCAAAATGTTTATAATGAGCTGGAAGAAACAGAAATCCTCAACTCTTTCCAGGA
GATGGAATATAAAAGTACGACTCTCTTTTTAGAGAATCTGACAGCTTACAAAGACACAGTCC
TTGGATCTGCAAAATGTTTATAATGAGCTGGAAGAAACAGAAATCCTCAACTCTTTCCAGGA
GATGGAATATAAAAGTACGACTCTCTTTTTAGAGAATCTGACAGCTTACAAAGACACAGTCC
```

371
CAGAAAAAGGCTTTATCAGTCTTTAACAGAAATACATCAGCATCTCACAGGATTACCAACTATTG
CCGATGCAACCCTTTCATTACTTTCTGTTGGATTACCTGGTACGGGAAAACTATTGCGTTTATTCA
CAGCTCAGTTACTTATTTATCAGTACGATGGTTCGAAATGGCTAAAGGATATGGAAGCCAGAATATTGATTTTC
ACCCCTAGTCCTCTATGGTAAACCCAGAAGGACGCTGTATGGGATTAGCCTTACTTTATTTAT
CAGACTGAAGAATACTGCTCATTATAGCATTTCAGGGAAAACCTATAATGGACTGTGAGTGCACT
TCATCAAGCCAGTAATCGGCTATAGAGCTTTATTCTGATGACACCAT
TGATGAGCTTAAAACAAAATATGCAAATGAAATTATAGAGATAAAAAGAATAATGGGAGAATACAATCTTTTACCGGATAAAAACAGTCGTAATGGTCTAAAACTTCTACAGAAGCAAGCTGATTACTAAAAATAATCATGGAGGATACCTCCGTTACAGAAAATACCTTTAAAAACATAGAGATAGCTATAA
CAGATATAAAAAGGGAGTACTATTCGCATACAGTTGATATTGAGAAAAATATTC
ATGCCATATGGGTTGCGGTTCCTCCCACCCTGAAGACATTTCCAGACTATATTAAGACCTTTTCTC
AAAACCTACAAGAGGTTTACTTACTTATCTTTGGTGATGAAAAAGCATTGGGACCGCCGAA
ATTAGTCGTTCTTAAAACAAAATGTGTTTTAGGCTATAGGACACATATCATACAGCAGAATA
CTCCACAAAAATATGTGGTTTATTATTAAATCTATATAATGAATAAAGGAGAAATACACAAAC
ACCCCATGGGACACAGAGTACTACTAAAAACAAACTCAGAGAGGTTTATGCTACTTATCAAAA
AATATCCACCCTTCTGAACACATGTTTTAATCTTTTTTTTAGAAAAAGATGATTTAAAACCTC
AGGATAATTCTTTTTCAACTAT TTGGCATTGCAAGGAGTTACAGAGATTAATGATGAGTTACG
ATAAACATCTATTTAAAAGTTAAAATGTCAAACGTGCAGATGACGTGATTTACG
ACCCCTCAGATGACATGATCACACCACAGATACAGAGCTTTATATCCGCTTCTTTCCAAATGCAGAAAATAT
ACCATTAAGGACATGTTGATTTATTACAGCAAGACATATGCATGACCTTCTTATGGTATTT
CAGATATAGGTGTTGCAAGTCATCCTGCTGCGGCTTCAGACACCGTCAG
GATTATATCTCTAAAAGAGCATGTTGTTGATTTTTATACAGACACAGATATGAGCCTGCATACT
CTAACAAGTAATTTTTAAATATTGATGCGAGAACAACGGGAGATAACATGCGTTTCTGGAAAGAT

lifA GT

ATGCATCATCACCACCATTACACTCGTTAACACCAGAAAAATTGTTGTCGAAGAAAAATTTACTTAG
TGATGAGCTTTAAACAAAATATGCAAAAGGAATATTAGAGATAAAAAAGAATAATGGGAGAATACAATCTTTTACCGGATAAAAACAGTCGTAATGGTCTAAAACTTCTACAGAAGCAAGCTGATTACTAAAAATAATCATGGAGGATACCTCCGTTACAGAAAATACCTTTAAAAACATAGAGATAGCTATAA
CAGATATAAAAAGGGAGTACTATTCGCATACAGTTGATATTGAGAAAAATATTC
ATGCCATATGGGTTGCGGTTCCTCCCACCCTGAAGACATTTCCAGACTATATTAAGACCTTTTCTC
AAAACCTACAAGAGGTTTACTTACTTATCTTTGGTGATGAAAAAGCATTGGGACCGCCGAA
ATTAGTCGTTCTTAAAACAAAATGTGTTTTAGGCTATAGGACACATATCATACAGCAGAATA
CTCCACAAAAATATGTGGTTTATTATTAAATCTATATAATGAATAAAGGAGAAATACACAAAC
ACCCCATGGGACACAGAGTACTACTAAAAACAAACTCAGAGAGGTTTATGCTACTTATCAAAA
AATATCCACCCTTCTGAACACATGTTTTAATCTTTTTTTTAGAAAAAGATGATTTAAAACCTC
AGGATAATTCTTTTTCAACTAT TTGGCATTGCAAGGAGTTACAGAGATTAATGATGAGTTACG
ATAAACATCTATTTAAAAGTTAAAATGTCAAACGTGCAGATGACGTGATTTACG
ACCCCTCAGATGACATGATCACACCACAGATACAGAGCTTTATATCCGCTTCTTTCCAAATGCAGAAAATAT
ACCATTAAGGACATGTTGTTGATTTTTATACAGCAAGACATATGCATGACCTTCTTATGGTATTT
CAGATATAGGTGTTGCAAGTCATCCTGCTGCGGCTTCAGACACCGTCAG
GATTATATCTCTAAAAGAGCATGTTGTTGATTTTTATACAGACACAGATATGAGCCTGCATACT
CTAACAAGTAATTTTTAAATATTGATGCGAGAACAACGGGAGATAACATGCGTTTCTGGAAAGAT
TTGAAACTACGTCGCAATATCTGATGTTGATTTAAGATATGTGTTAATAACCAAAATATTGAGTAAATGGAACAGATAAACTCAGATGAGATATACATTACAGGATATCTCTTCGCAGAC
AAATACTTTGATAATGGCCGAGATAGTATATTTTACTAAGATACATAACAGGATATCTTCGCAGAC
ACAAATGCCCATCTTCGTCGTATTACACTGCCTGCTGATGATGCTGTTCTCGGCGAC
TTGATTTCTACACATCAAAGGTAGTGAAGTGAATGTGCTTATCAGGCGAACACATATC
AGGCTTACAGGGAACATTAGAAAGATAAGATAATATTACTAGATGAAATATTCAAAACCA
AGCTATGGAATTGTCTTCTCAGATATAGGAAGATGCTTAAACCCCGAGACCTTGAGCA
CCTCCAGATATACAGTTCTCGACTTGATTTCAAGATAADAGTGTGGCAATTTCTACAG
CTGAGATAGTAAAACCTGCAACGGGAAATATGACTGGTTAACCCCTGAATCGTCGGCC
TTAATG
ATGGGGGACTGGCAAATTCGTGAGAAGGTGGGGTATGCCAACAGTATCAGTCCCTACTCTTC
TCTGGCGCACGGTTACGCCAACAGTAAATGGCCACGAACAATACCGAAAATTCCCTCGGGAG
AATATGACACCATAATTCTGGGCTACGGTCACCAGTATCAGGCCAATACGGAAATAGAATAT
CTGTCTAACTGGATTGTATGGCGGGAAGCCGTACCAGACAGTACTTCCCGCCACAAACGTCC
TCCTCTGGAGGTTCTTAATAGTCAGTGTACTGTGATAGCTGGAGAGCGTAAAACCACAGTAC
TTCCCCTGAGAGTGCTCAGCGATCTGACACCG
GAATGCACAGAACAGGCTATATCGTTAAAA
GATTATAAATTACTGAGAGGGGGAAGCGGTGGGCTGGCTGTTCAGGTCGGTGGCGCGGG
ATATTATGATATTGATGCAAATCTTGTGGCAAAAGAAAATACGCTCTCTTTTCGCGGGCTAC
CGGAAGAGTTTTCCGCTACCTTGGATTATCACAACAAAACACAGTCTCGGTATGCTGAAAAC
CCAGACGATGAGGTGCGGTAAATGACCATATTCCCCAGAAGCTACACTGTTAGTAC

lifA F3

ATGGGGGACCTGGCAATATCTCGTGAAGTGGGTATGCCAACAGTATCAGTCCCTACTCTTC
TCTGGCCACCGTTCAGGGCAACCAGTAAATGCGCCGAAACATACCAGAAATCTCCCGGGAG
AAATATGACCCATATAATCTCGGCTACGGTAGGCAATACCGGAAATTAGATATAT
CTGTCGAATTTCTTTGCTGCAATCCATGCAAATGTCACAGTACTTCTCCCGCCAACAGTCC
TCCCTGCGAGGTCTTCTCAGGGAACATTAGAAAGATAAGATAATATTACTAGATGAAATATTCAAAACCA
AGCTATGGAATTGTCTTCTCAGATATAGGAAGATGCTTAAACCCCGAGACCTTGAGCA
CCTCCAGATATACAGTTCTCGACTTGATTTCAAGATAADAGTGTGGCAATTTCTACAG
CTGAGATAGTAAAACCTGCAACGGGAAATATGACTGGTTAACCCCTGAATCGTCGGCC
TTAATG
ATGGGGGACTGGCAAATTCGTGAGAAGGTGGGGTATGCCAACAGTATCAGTCCCTACTCTTC
TCTGGCGCACGGTTACGCCAACAGTAAATGGCCACGAACAATACCGAAAATTCCCTCGGGAG
AATATGACACCATAATTCTGGGCTACGGTCACCAGTATCAGGCCAATACGGAAATAGAATAT
CTGTCTAACTGGATTGTATGGCGGGAAGCCGTACCAGACAGTACTTCCCGCCACAAACGTCC
TCCTCTGGAGGTTCTTAATAGTCAGTGTACTGTGATAGCTGGAGAGCGTAAAACCACAGTAC
TTCCCCTGAGAGTGCTCAGCGATCTGACACCG
GAATGCACAGAACAGGCTATATCGTTAAAA
GATTATAAATTACTGAGAGGGGGAAGCGGTGGGCTGGCTGTTCAGGTCGGTGGCGCGGG
ATATTATGATATTGATGCAAATCTTGTGGCAAAAGAAAATACGCTCTCTTTTCGCGGGCTAC
CGGAAGAGTTTTCCGCTACCTTGGATTATCACAACAAAACACAGTCTCGGTATGCTGAAAAC
CCAGACGATGAGGTGCGGTAAATGACCATATTCCCCAGAAGCTACACTGTTAGTAC

374
AGCCGCCGTAAAGACCGATAAAGCACAATACCTTCCCATACAAAGCTCTG
GGGCCGTACAGCTCAGCAGCTCTGCAGTACATTACTCTTCTCTCTCTCCAGAAAC
AACCCCTAGCTGAATATTTAAAAACCTCTGCGCCCTTTTGAGCTGAGAAGTTTCTAAGTTGACGAT
TTCATTATGTAATGTTTACACGCTGGAGACCTGTCGCTAGTTTACTACCGGAGAAATAGTTCTACGCTGAGAAT
CCATACGCGACAGGCTGATGATAATGGGCTGAGTCTGAGACACAGAAGTACGAGTCTCAGGAAGACACCAAAATACCTGAG
GGAGAAACACAAGTCAGCTATGATCCCCTGACTCGTCAGCTCGTTTACCAGCTTCAGGCGCG
TTACTCTGAGTATCCCGGTTGGCCGTAGTGGCACCACGCTGTAAACCGGAACCTCGG
GAAGCCGATAACATATACGATAGAAGGCAAGGCTAACACACATACGAGATAGGCTGAGTCTCAGGAAGACACCAAAATACCTGAG
GGAAAAAAGACAAAAACAGCTGATATTACATTACAGGAT ATTGTAATACATTACACCAT
TGACAATATCCGGGATCGAAGAATCGCTGCCCGAGACAACCCGTGTGGCAATTCAGCCTCAG
GATACCCGTTTACTGGGATAGCTACTCCTGGAGTCTTACCAGATAATGGTAACTGGGTGGGGAT
TTTCCGAGATGTTCTCATACCAACACGTTAAACCGGGCTGAAATTTGATGGCAGTAATCAGG
TAATGACGTTCCTGCCGGGTATCCGGAAGTGCAGAGTATTATGCTCTGAAACCTTGCGAAACCTA
GCTGTCGTATCTGTATTTTGAGAAAAATAATAGTGTGCTAGCGATAGTTAAGTACATGCGATCT
CCGTTGAATAAACATCCCCGAGAGGATGCTGAGTTATCTCTCGGAAACACGAGGA
ACATATTATTGTCAGCCCAGAAGCAAGCGCCCTCTCATTAAATATCTAGTGAATTTGCTCGTT
TCACCTATCTCAGCTAAACAAATATTTTCTTTATACAGGATAGGATGAGTACGAGT
ATGCCATCTGTGGTAGAAGATGCCATTATGACCACTACTGTCACAACAGATTCAGGTGAACT
ATTCCCTACCTTCACCCTGTTGATATAGATATTATCTCCAGGCTTAATAGGAGAGCTCTAAG
TGGAGAAAGAGCTGAGACCAATTCTGATAGGAGATACACACCGCTTTATCAACCGCTGATAC
AAAAATCATCTGAAATATCCACGTAGGAGATGCCTGCTGAAATCTCCAGGACATTGTTGGCAG
ATACGCCCCGATATTCCAAAGGAGAAACATCAAATAATATGTATCATATATCAAGGTGGCATGA
AAAAAAAACAGATGGCACTATCATCCACCACCTACATAA

lifA F5

ATGCCATCTGTGGTAGAAGATGCCATTATGACCACTACTGTCACAACAGATTCAGGTGAACT
ATTCCCTACCTTCACCCTGTTGATATAGATATTATCTCCAGGCTTAATAGGAGAGCTCTAAG
TGGCAAGAAAAGCAGATATCTTGTATACCTACCTTCAGCAGAAATAGGTGATCTCATACGATAATATAT
CAGGTAGCTACAAATAAGGTGAATCAGCGATGGTATTTATACCTGCAACTATTCCCAATTAGA
GTGGGAAAAATATAATTTTAAAGCATCTTTATCCGAATTCCCTCAGAACAATAATAATCTGGTTGAC
ATTCAATTCCTCAGGTTAAATGGCACCACATGCGTGCACAAATTTGACTCGAGAGGAAACG
GATGAAAAAATCCCATAGTATCTTTTCAGATACAAACCTTCTCATCAATGGTGAACAGATGT
GACTGAGCTCGCATTCATCAGGGCAGGTCTATTTCCAGAGAAGAATATATGATGGGGGAT
TGACGCAAGGCTATCGAGAAGTCCAGGCTGCGCAGACACAGGTACTCGTGTGATGGATGCA
GCGTAAAGAAACGGGAAATGGGAAGATCGACACCAGAATTATTTACGTCACACACACCAGGGATATAT
CCGGAGTACGTTATCGAAATGGTACAGAGATGGCTGAAACCAGCACAATACTTCAGACTC
CAGAAGACAGAAATACGGATGTATACCTGACTACATACAGAAAAATGTATTTAGTCGTCA
GGGGCGGCTACCAAAGTGTATTATCGGATTGATGGAATGGCTGGTGCGGATATAGCGGATAA
TGACGCAAGGGAACCAGTCACCCGCTGCACCCCTCAGGCCGACATGTTTGAAGTGAACAGGTGG
ATGAAAGGCAATTATGAGGCTAATATCATTGTTATGCTAGCTGAAAACCTGTGGCTGGAGCCGA
AATGGCCAAGCAAACGGCCGAATTGGTACACATTTTTTAAACATCAGCTACACACCACCTACTA
A
Appendix 3: Peptide map of recombinant LifA fragments

Sequences in red denote peptides identified by MALDI-TOF mass spectrometry.

rF1

<table>
<thead>
<tr>
<th></th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MRLPEKVLFP VTSGLSGQE KQKKPKSITG FQENYQRNIR PIKTASEARL</td>
</tr>
<tr>
<td>51</td>
<td>RFFDKMVSEK NSLEDVDVSLG EMIQKEIEYG EQRTFSPVH TGNWKSJLLE</td>
</tr>
<tr>
<td>101</td>
<td>NALLGLANY NGLRDVGLN TFRNDEGIKT NSQRDEDLTQ TTRPRDNFEE</td>
</tr>
<tr>
<td>151</td>
<td>GIKHPEHATI PYNDNIESNK LLAASGDUGN ADEQSDHQIPL</td>
</tr>
<tr>
<td>201</td>
<td>SDKFLKRKKR SPVAEDKVQN SLETFQVFQK ISLSDSLTK YANIMIEIRK</td>
</tr>
<tr>
<td>251</td>
<td>IMAGEYNLLPD KNSRNGKLLE QKQADLKLII MEDIKSVTENT FKKIEIAITD</td>
</tr>
<tr>
<td>301</td>
<td>IKREYYSHTV DIENKHIAW VAGSPPESSY DIYKFLKTV KEFYYLWVD</td>
</tr>
<tr>
<td>351</td>
<td>EKAFGAAKFT SVLQIAFDL ACRTIQNTP QKNIDPFLY NEIRKMKYNN</td>
</tr>
<tr>
<td>401</td>
<td>FSGQGQYLNK LRELVTYQK INSTLHKMFN SFFLMKILK QDNFFNYCIV</td>
</tr>
<tr>
<td>451</td>
<td>KGVTENDEL RNYLKVNIK LSDDDDIGNYQ RTINDKDRV KLHLDLQLKQ</td>
</tr>
<tr>
<td>501</td>
<td>FGENRISIKD VNSLTSLSKS ENNHNYQTEM LLRWNYPAAS DLLRMYLKE</td>
</tr>
<tr>
<td>551</td>
<td>HGMYTDQDTM MPASYSQVIF KIMMQTNGDN RFLEDKLRR AISDGVLRYV</td>
</tr>
<tr>
<td>601</td>
<td>NNQINDEVNY NEISDADKNI IKKIITKEI SPMEDFTKI NTRPRDTPMP</td>
</tr>
<tr>
<td>651</td>
<td>ILRRYHLWPD GWNIRGRLGFL MSHKGESEVI DAVIAGQINQA YRLELRIRD</td>
</tr>
<tr>
<td>701</td>
<td>IHSEYIFQKT DELSSLPDTD KIGGILVIKY LSQSLFQSR FRQDIITEALS</td>
</tr>
<tr>
<td>751</td>
<td>TLQISGPDLLIQ RMQLQFRRS RGVLGEEEFIN ERKLSKAYI GYKTTGTGK</td>
</tr>
<tr>
<td>801</td>
<td>YDWTLPESIG VNDTPADES TWCIGKGRCL DDFFLKQDST LKTENLELF</td>
</tr>
<tr>
<td>851</td>
<td>LKTIDTDQF SQWSTKTKK LQKKIQDQTV RYNELESDDT IDFKNYEIEID</td>
</tr>
<tr>
<td>901</td>
<td>QLMHMIMLEM NDIAKRSFQ SLQVQIAEKI RRMTTPVDNI INIYIPDLHKK</td>
</tr>
<tr>
<td>951</td>
<td>NDNDLMSIK GFLASNPHTIK INILYSNKTE HNIFKLDLFS FAVMENELRD</td>
</tr>
<tr>
<td>1001</td>
<td>IINNMSKSDT PENWGMKRT QRYLELKMKD HSLQSSQEAP NEFLEISTF</td>
</tr>
<tr>
<td>1051</td>
<td>YENFLREKIK EAVKNNMKSH ELYFEKIEK QNTQDQDT LQKQLQKLK</td>
</tr>
<tr>
<td>1101</td>
<td>KEISGNTEKD SHYDRRLDAF FKKHENDHNF IKQRIKDEFK EYSVVAIHH</td>
</tr>
<tr>
<td>1151</td>
<td>DKVIFQGQTL DRLYHEGQTL SDINTLSRTY LHLGLGTVQ TEENLLPAPS</td>
</tr>
<tr>
<td>1201</td>
<td>SSLINIILKE YNEDEISAKL PLAYDYILNKE KESSSIPVEI LNKSELPPP</td>
</tr>
<tr>
<td>1251</td>
<td>EELLTPFLQGH VNPLGMYSY DNGKITEQVI VSGADGQDNP ISGLYITYLE</td>
</tr>
<tr>
<td>1301</td>
<td>DLYNIIHRMR EGTINQSNLR QLLENSVSSC FLTEQSSINL LSEAEKRPQY</td>
</tr>
<tr>
<td>1351</td>
<td>SLTIEHQHHTL GLPIQADATL SLLVSGLPGT GKKLRQDQY GRPFPVATQD</td>
</tr>
<tr>
<td>1401</td>
<td>STFLPVNYPQ GIGFNDIIS SAPVASSLHF IAEDAKYTLI SWPEFYRHH</td>
</tr>
<tr>
<td>1451</td>
<td>QRFEMAKGQY GSSQTDDIPQ SLLTVQEGRC MGLALYQLT EDAHYSIQ</td>
</tr>
<tr>
<td>1501</td>
<td>ENLMTVSAHQT QSNDRKLPQ SDKDDNSLMTR YSLIEMLQY QGKNYITNES</td>
</tr>
<tr>
<td>1551</td>
<td>LLHKTAWNQIE RITLLEFNEK VKRALISTPN HTLVLQQLED IYRLTDPNF</td>
</tr>
<tr>
<td>1601</td>
<td>HADFLSPIDA LKFIEAMIQL HHHHHH</td>
</tr>
</tbody>
</table>
rGT

1 MHHHHHSLT PENFVQKISL SDELKTKYAN EIEIEKRMG EYNLLPDKNS
51 RNLGLKLLQK ADLLKIIIMED TSVTENTFKN IEIAITDIKR EYSHTVDIE
101 KNIHAEVSPP VSESSDYI KTFKLTYKEF TYYLWDEKA FGAAKFTSVL
151 KQITAFDLACR TIQONTPQKN IDFINLYNEI RKKYNNPFSG QQEEYNKLRE
201 LYATYQKIST PLKHMNSFF LENMIKLOQDN FFNCIVKGV TEINDELIRN
251 YLKNVIKLD DIGNYQKTI NDNKRVKKL ILDLQKFQGE NRISIKDVNS
301 LTSLKSENHN HNYQTEMLLR WNYPAAASDLR RMYLKEHGG YITDDOMMPA
351 YSKQVFIPKIM MQTNQDNSRL EDLKLRRAL DGVLRYYYYQ NDIEVNYNEI
401 SADADKNIK ILTEISKME DSIPTKINTR IPRTDMPILR RYHLWPDGWN
451 IRGLNGFMLS HKGEVIDAV IAGQNQAYRE LRRIRDNHIS EIYFQETDEI
501 SSLPDTDKIG GILVKKYSLG SLSKFRQDT IIPEALSTLQ ISQPDLSIRK
551 MLQFFRSRGV LGEFIFERK LSDKAYIVGYY KTTGTYKDWR LTPESIGVND
601 VTPADESTWC IGKRGCVVDDF LFKDVSTLKT ENLPEFLTID IDTDTFQKAR
651 STKTKKDLQK KIQDQINIRY ELIDISSTDF KMLNYEQVOM HMMILEMND
701 IAKRSLSFLQ VQISEKIRRM TIPVDNIINI YPDHYKKDN DLSSISKGPL
751 ASNPHTKINI LYSNKEHNI FIKDLFSFAV MENELRDIIN NMSDKKTPEN
801 WEGRVMLQRY LELKMKDILS

rF3

1 MGDWQIREKV GYANISYP SISLHAGYANK WPRTIPKIPS GEYDTILGY
51 GHQQYQANTEI EYLHNNIVWR EAVPDSTSRH KRPPLEVLNS QCTVIAGERY
101 TTVLPLRVL S DLTEPECTQA ILSKDYKIFIL RGGSGLAVQ VGGAGGYIDD
151 ANLVAKENTL SSFRLPEEFPP LTFDLSKQTQ SMLKTPDDE VPVMITQKQG
201 INTLGTAAG KDFLRINDK NTFHSTSGGG TVISGGGNNR YIIPRDLKTP
251 LTLTLLSNVS SHEIIFRPITT LAELKPVAFE LSLIYWAGNN INVQPEDEAK
301 LNHFAENFVR HTREMSMTLA VSRENGRIQLA ISLCDVQFWQ AVYPEEENNRP
351 DAILDRLHDG GWSLTPEVRF QGGETQVSYD PLEQQLVQLY QARYSEFQAL
401 GSRHHTTAV GTPGSRYIIM KPVTQIQILPT QIIILAGDNID PETIDLEAS
451 FVILVEGKKDK NSVILTIEI QYSLQTLISG IESLPEITTR VAIQPDFTDL
501 LGDVRLRLPD NNNGVQIFRFS GHTPTVNRLE NLMALQVVM FLPFSIRGSAE
551 QVCLCLNEG VKRGGEVSAEG SGKLKGKAAW EGEPTVPVNI SDLSIPSYPR
601 LYLIFEKGN VLLRNSKHHAA PLKITSAGEM QLQERQQQQQ EHIIVKPDNE
651 APSLILSEFR RFTISDKTF SLKLMCHQGM VRIDRSLSV RLFLYREQFQG
701 IGSLIRTFRD FPEETVMDTD REILEKELRP LILIDTDRFI NAAKYNHLNI
751 QLGDGVLNLAL DIVAEXYARIQ KEETSILYIF YQGAMKKKTD GHHHHHHH

rF5

1 MPSVVEDAIM TTTVTTTDSGE LFPFHPWTY DDLGGRYKSV PMARKADTYL
51 HLTPKGDQLI IYQVATKMV QAMIVSLPNY RHEWEKNLIS ILSEIPQNNN
101 TVVHSLRNV GPTMQVTRID YRGTDENPNI VSFSDTTFIN GEQMILSYDSH
151 SSSGVRSYE YMMWHELQY SEASSARTQD YWLMDAAVRN GEWKTPEEL
201 RHHTGPYIRST VSKWIRGWLK TGIQLQTDPE RNTDVYLLTI QNNVFQSRQQG
251 GYOYVYRIGD MAGADIADNA PGETRCTLRP GTCFETVSD ERHYEWNNIY
301 VTLKTCGWSR NGQSKTPNIG NLFNHNNHHH

378
Appendix 4: Nucleotide sequence of the lifA1480A gene

The sequence contains the polyhistidine tag and stop codon. The substituted C1480-encoding codon is highlighted in yellow.

ATGAGACTGCGAGAGAAGTTTTTTTTCTCCCTCTGTCACTAGTGCGCTGTACAGGGCAGGAAG
ACAAAAAACCGAGACATTACCCGATTTTCCAGAAAAATTATCAACGGAATATACGGCCAAA
TCACACAGCACTAGAGGCCGACTACGCTTCTTTGATAAAATGTGTTTCAAGAAAGAAAACTCT
CTGGAAGATGTGTTTCTTTTAGGTGAATAGTCAGAGAAGAAATTTATGAGGCATGAAACAG
AACATTTTCCACCAGTCTCATACAGGTAACCTGGAAATCATGCAATGCGCTCC
TTGGTCTGGAAGATGTGTTTCAAGAAAGCAGGAAAGATAGCTGTTGACATTTCAAATCCTACACT
GATGGTATAAAAAGATCTAACTCTTTTAGAGATAGCTGTAACATCGAAGAAATTTAGTGAAG
GAAATTTATGGGCAATGAAACAAAGAACATTTTACCCAGCTACAGAAGCCCGACTACGCTTTTGA
GAAATAAAAAGGAATGCGACATCAAATCTCCCCACTCCGTAAGAAATGGTCTCAGAAAAG
GAAAGAGCTCTCTCTGTAAGCTGAGATCAAGAGAAAATGCTCCAACTACCCGTTACAGAAATA
CTTAAAAACATAGAGATAGCTATAACAGATATAAAAAAGGAGACTATACGATACAGTT
GATATGGAAAAATATTCTATGCGCATATGGGTGCTGCCACTGAAACACATCGTGATGGCTCGGA
CTATATAGACTTTTCCTAAAAACCTACAAAAAGAGATTCTTACTTACTATCTTTGGGTGATGAAA
AAGCATTGGAGCCGCATAATTACAGCGTCTTTAAAAAACATTTGCAATTTGATATTAGCAGTCG
AGAACTATAACGAGAATATCCTCACAAAAAATATTGTTTTAATTCTAATATAATGAAAT
AAGGAGAAATCATCAACACACACCACGCGGACAAACAAGATCTTAAACAACACTCAGAGAGC
TTTATGCTACTATATAAAAAATATCCACCTCTGAAACACATGTTTTATTTTTTTTTTA
GAAACTGATAAAAACCTGCAGATTTTTCTTTTCTCAACTAATGTGCTGGATTGATGTTACAGAGA
GATTAGGATGAGTACGAAATAAACACTCCCTAAAAATGTAAAAAACACTCAGAGACGTA
TTGGTAATACGAGAAAACATTAACGCAATAGAGATAGTAAAAAAAACATTATCTCTGTGAT
TTACGAGAACAAATTTTGCGAAAAACGCCTTTCACTTAAAGATGTGTAACCTTTAACCCTCCT
TTCAAAATCAGAAAATAATCATCAAACTTACAAGATTTTGCTTCCGATGAGCACTACCTCG
CCGGCTCAGCCCTCGCTACGATGTTATATCTTTTAAAGAGCATGGTTGTTATATACAGACAA
GATTAGTACGCTGCTACTCTAAACAGTAAAATTTTTAAAAAATATGATACGAGACAAACCGGGA
TTAATCGTTTCTTGGAGATTTGGAACACTACGTCTGTCATGAAATCTCTAGTTGATGTTATGAT
TTAATAACAAATATTGATAGGTATATAACTTAAAAGTTATACAGGCTAAATACATCTTACGAGAAG
GATCTGGGGGACTGCAAATTCGTGAGAAGGTGGGGTATGCCAAC
AGTATCAGTCCCTACTC
TTCTCTGGCGCACGGTTACGCCAACAGTAAATGGCCACGAACAATACCGAAAATTCCCTCGG
GAGAATATGACACCATAATTCTGGGCTACGGTCACCAGTATCAGGCCAATACGGAAATAGAA
TATCTGTCTAATCTGGGTATGGCGGGAAGCGGTACCAGACAGTACTTCCCGCCACAAACG
TCCTCCTCTGGAGGTTTCTAATAGTCACTGTAICTGTAGTATGCTGAGAGCCTGTAAMASSACAG
TACTTCCCTGAGAGTCTGTCAGCTCACCAGGAAAATGCAAGAACAGTACCTCTTCTTCCGCAG
ACACCAGAGTCTGAGGCTGCGTAAATGACCATATTACCCCAAGGGAAAACACCCCCCTTGATGG
TACAGCCGCCTGAAAGACCAGACTAATCGTGAACAGGACAATAACACTCTTCCATAACAGCT
CTGCCCAGCTGTCAGCTGATCTGGGAGGAAAAATGTAATTACATGCTCAGAGCTCTGCTAGGC
GAGGAGAAACACAAAGTCAGCTAGATGACTCCCTGACTGCTACGACTGTTTACCAGCTTCAAG
GCCATACGTGAGCCGACTAGATGAGGGGGAAGCGGTGGGCTGGCTGTTCAGGTCGGTGGCGC
GGGATATTATGATATTGAGAATATGACACCATAATTCTGGGCTACGGTCACCAGTATCAGGCCAATACGGAAATAGAA
AAAACGCCCTTGGACACTGAGCCTGCTCCAGTAACTCAGTCTCCTCAGGAATAATTTTCTGGCAG
AACACCaATGCTGATAAAAACCTGTGCGCCTTTGAGGACTGAGTGTGATTTACTGGGCAGGGA
ACACCATAAAATGTTCAACCAAGGAGGAAACAAAACACTGACACCTGCGGAAAACCTCAGG
GTGCCATACCCGCTGTAGGCCATGACTTGGAGGAGGTTTCCCGGGTTTCCCGGAAAATGATTACTCGGC
GATTTCTATATGTGATGTTAACGCTGAACTTTGCCGGAAATTTCAGG
GTGCATACCCCGAGCTGAGCCTGCTCCAGTAACTCAGTCTCCTCAGGAATAATTTTCTGGCAG
GCTTACTCGGAAATCCAGGATGCTGACTTGGATTTTTTACGCTGAGTGTGATTTACTGGGACCG
GGGAGAGCCTGAGCTAATGACCATTCCCGGAACGATGGATTTTACTGAAAGCCTAGCTCTGTCTGGT
TGAAGGGGAAAAAGACACGCTATTCTGGTCTATTGCTACGAGCTAGGTCAAAC
CTAGTTGGGTGTAAGAAAAAGATGGGAGGGAGTTACTGCTAGGAGGCTGAAAGGCTGAGT
GAAACCCAAAAGTAGCTGCTGACTTGGGAAATTATATCCTGAGATGTTAACATGCCCTTATT
CAGTCTGTATCTGATTTTTGGAAGGGAAAATATGTTGGTCTACGAGTAAAGTACATGCA
GCTCCGGAAAAATACACTCCGACAGGAGAGTGCTAGTATCTGAAGGGCAGTGCCCAACAGCA
GGAAACATATATTGTCAAGGCGGACAAACGAAACGGCCCTATTAATATCCAGGAGGTTATGGC
GTTTCACATTCTCACTGGTTTAAAACATTTTTTTAATTAAAACTGATGGCTGCCATCAGGGTTATGGTC
GCATCGGACCGAGACTATATCGCTGAGATTGTTCTTATCTGCTGTAACAGGCAAAGGTATCCG
CAGTTTACGCTGACCGTAGGAGATTTTTTTCTACGAAGATGGTAGGATCCAACGGGAAAGGAAA
TTCTGGAGAAGAGACTGAGACCAATTCTGATAGGAGATACAACACCGCTTTTATCAACGGCTGCA
TACAAAAATCATCTGAATATCCAGTTAGGAGATGGCGTTCTGAATCTGGCAGACATTGTTGC
GGAATACGCCCGTATTCCAAAAGGAAGAAACATCAAAAATATTGTATCAATATCAA
TTACAGATAATATATACGGTAGCTACAAAAATGGTGAATCAGGCGATGATTGTATCCCTG
CCAAACTACCACACGAGTGGGAAAAATATATATTTAAGCGATCTTTATCCGGAATCCCTCAAA
CAATAATGCTGTGACATCTCAGGGTTAATGGCCCAACACGAGGTGCACAA
TGACTACAGAGGAACGGGATGAACCAACTCCATAGTATCTTTTCAGATACAAACCTTCATC
AAATGTTAAACAGATGTGTTTATGACTCAGCATTCTCAGGGCAGTCATATCCAGAGAG
ATATATGATATGGGAATTGCAACAGGGTACAGAGCTTCCAGTGCCCCGACACAGATT
CTGCGTGTGATGCACGCGCTAGATGAACATGCCTTCCAGGTAGCTACAAAAATGGTGAATCAGGCGATGATTGTATCCCTG
GCCCACCGGATATATCGGAGTCGGGATTACAGGATACGGTATCGAAATGGTCCAGAGGATGGCTGAAAACCGG
CACAATACTTCAGACTCAGAGACAGACAAATACGGATGTATACCTGACTACCATACAGAAC
ATGTATTTAGTCTGTCAGGGGCGCTACCAAGTATTATCGGATTGATGGCTGGT
GCGGATATAGCGGATAATGCACCAGGGGAACCCCGTTCACCCTCAGGGCCGGAACATGTTT
TGAAGTGCAAGTGTGAGTGAAGGCTATGATATCATATTTATGTCACGCTGAAA
CCTGGGCTGAGGGGACTAATTTATCGCGAATGCAGATCTTCTTTTTAACCATT
CAGCACCAGCAGCAGTTAC
Appendix 5: Electronic files

The attached CD contains the following:

1. Files with detailed information on the proteins/peptides identified by liquid chromatography mass spectrometry (LC-MS). Note that Calpain 7 is referred to as CAPN7 in the file ‘LC-MS_rLifA + cells_Uniprot_Cow’.

2. Files with detailed information on the proteins/peptides identified by shotgun mass spectrometry.

3. A copy of a draft manuscript for publication based on work from Chapter 4.

4. Word document and PDF copies of this thesis.