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Abstract

We present a Bayesian formulation of locally
weighted learning (LWL) using the novel concept
of a randomly varying coefficient model. Based
on this, we propose a mechanism for multivariate
non-linear regression using spatially localised lin-
ear models that learns completeéhdependenbdf
each other, uses onlgcal information and adapts
the local model complexity in a data driven fashion.
We deriveonline updates for the model parameters
based on variational Bayesian EM. The evaluation
of the proposed algorithm against other state-of-
the-art methods reveal the excellent, robust gener-
alization performance beside surprisingly efficient
time and space complexity properties. This paper,
for the first time, brings together the computational
efficiency and the adaptability of 'non-competitive’
locally weighted learning schemes and the mod-
elling guarantees of the Bayesian formulation.

Introduction

Locally weighted projection regression (LWPRJijayaku-

the model selection guarantees that Bayesian methods pro-
vide while retaining the flexibility provided by nonparametric
localised learning.

One of the most attractive characteristics of LWPR-like lo-
calised learning schemes is its independent learning rules for
each individual local model, which combines or blends the
outputs only at the stage of prediction. In addition to avoid-
ing negative interferencéSchaal and Atkeson, 19B8this
property also allows asynchronous learning of local models
leading to improved efficiency. We preserve this property in
our model by building a generative probabilistic model for
each individual local model and derive corresponding learn-
ing rules. We show that our novel formulation performs ro-
bustly in estimating local model complexity, competes with
the state-of-the-art methods in generalization capability, can
be extended to learn tnuly incremental fashion, i.e., without
storing data and is surprisingly efficient in both computational
complexity and space.

2 Randomly Varying Coefficient model

Modelling spatially localized linear models using a proba-
bilistic framework involves deriving a formulation that allows
to model thefit, in our case a linear fit, and thEndwidthat

maret al, 2009 is a prime example of recent developments

in the area of localised learning schemes that have resulted 8 particular location in the input space. Each of these local

werful non-linear rearession alaorithm ble of ; t|_ﬂodels can then be combined to provide a prediction for a
powertul no ear regression algo S capable of operat | gata. Additionally, in order for the local models to be

ing in real-time, high dimensional, online learning Scenar!osindependent, each of them should be capable of modelling
They have been proven to work on many real world applica

. ; . A : . the entire data by learning the correct bandwidth that parti-
tions including, for e.g., supervised learning of sensorimoto

S X NOtO%ions the data into two parts — one which corresponds to the
dynamics in multiple degree of freedom anthropomorphic roy;,0.5 - ragion of interest and the other which does not. In
botic systemgVijayakumaret al, 2004. :

! X . this paper, we accomplish this by formulating a probabilis-

All locally weighted schemes (including LWPR) have 10 ol called Randomly Varying Coefficient(RVC) model

determine a region of validity of the local models, i.e., an i pilds upon the idea of a random coefficient model
adaptive local distance metric, in a data driven fashion. Th'TLongford 1093

is usually achieved by minimising some sort of cross vali-"" g2 acally linear region centered arounda generative
dation cost on the fit using gradient descent methods. HoWgs,odel for the data points can be written as:

ever, the initialization of the local complexity parameter or
distance metric, the forgetting factor and the learning rates
involved in the gradient method necessitate careful hand tun-
ing of multiple open parameters in existing methods. Thiswherex; = [(x; — x.)”,1]" represents the center sub-
may not be trivially achieved in many real world problems tracted, bias augmented input vectay,= [gi(l) N ,gi(d“)]T

with limited prior domain knowledge. Also, there exists no represents the corresponding regression coefficient and
proper probabilistic formulation of the local weighted learn- A/(0, o2) is the Gaussian mean zero noise with a standard de-
ing framework — a necessary development in order to exploiviation o. The data is assumed to have been generated in an

yi =B xi+¢ @)


Sethu
Text Box
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI '07), Hyderabad, India (2007)


Region of locality higher confidence over larger regions of the data. Therefore,
we use a Gammeegularizerprior over the bandwidth para-
meters such that it favors relatively small values pfeading
to more localised models:

b ¢ 2
h; ~ Gammday, b;) ()]

We shall further assign noninformative Normal prior
N (u,S) for the parametes and a noninformative inverse

B Gamma prior with hyperparametetsandd for . We as-
sume a uniform prior for the regularizer hyperparametgrs
andb;. Fig. 2 summarizes the resultant probabilistic model

N /\ for asinglelocal model.
In this model, one can marginalize out the hidden variables
3, to obtain

Figure 1: Variation of prior with the location of the input
P(ilB.o.hr - hasn) = [ PuilBTxi,0%)P(8.18, C1)as,

=y ~ N(B xi,xTCix; + 0°)
(5)

It is interesting to note that the form of likelihood in Eq. (5)
corresponds to a heteroscedastic regression and will be used
in later sections for prediction. In the next section we deal
with computing the parameter updates and the resultant en-
semble posteriors in an efficient manner.

3 Learning

Our objective is to learn the posterior over the paramefers
h;, o and to obtain point estimates for the hyperparameters —
aj, bj. The joint posterior is given by:

Figure 2: The ‘local’ generative model Ply.fih boe.d. u.S)
a ,9,n,0,a,0,¢a, 1,
P(h?/870|y7a7 b7c7 d’l”’7s) = yp(y a b c d IJ, SI;

IID fashion. Crucially, we allow the regression coefficient to 9 — (6)
be a random variable with a prior distribution given by: where we have usddto denote the vectdh ... k7, ] and
. y denotes the training dafg; ... yn]%, a = [a1 ... ag1]T

Bi~N(B,Ci) @  andb = [b1...bg1]T . However, the posterior over the

where we have assumed that eaghis generated from a parameters is rendered intractable due to the difficulty in

Gaussian centered arouBdwith the confidence being repre- €valuating the denominator of Eq. (6). This necessitates
sented by the covariand®;. The covariance itself is defined the use of variational Bayesian EM to evaluate the posterior
to be proportional to the distance xf from the center. This P(h, 3,0y, a,b,c,d, 1, S) and learn the regulariser hyper-
has the effect that for points that lie close to the center, the disarametera andb.

tribution of 3, is peaked aroun@ resulting in a linear region o . .

around the center. This has been illustrated schematically ig.1 Variational approximation

Fig. 1 where point is the center of the local model: for a To learn the parameters of the model we can maximize the
pointa that lies close ta we assign a prior that is fairly tight marginal log likelihood with respect to the parameters treat-
around the mean whereas for a pdirthat lies away front  ing 3, as the hidden variables. The marginal log likelihood is

the prior is much broader. One can consider various distancgiven by:

functions to index the variation of the covariance maftix

Here, we restrict ourselves to a diagonal version, each diagdc = InP(yla,b,c,d, p,S)

nal element varying quadratically withas: _ IH/P(y,,Bl---ﬁ]\]7hyﬁ7g‘avb7p‘78’c7 d)dg, ...dBy
Cili,d) = (¢ = %) (i = xo) + D/ =xxi /- (3) oy
g

where h; is the bandwidthparameter of the kernel, which i
defines the extent of the locality along thi¢h dimension. _ ln/
This choice of the kernel parametrization allows us to use a
c?njlugate Gamma prior oveér,. 'rl;he higf?er valuesddaj im-

esser variation amongst the coefficiefits and hence, 2 A 2
I%?/ger regions of Iinearity.g Although the bvg?ldwidth modu- Hp(h-”aj’bj)P(ﬁ'“’S)P(a e, d) | dBy ... dBy
lates the bias-variance tradeoff, an unconstrained likelihood ’ .
maximization will, in general favor largk; since it implies a dhi ...dhgr1dBdo (7

HP(y¢|6i7a)P(ﬁi|ﬁ,h1,...hd+1)



Using Jensen’s inequality, the objective function that lower S = (Z (Cy P +8H (16)

bounds. is given by: i
7= [[@®,...Bxb.8.0Y p=S(C) rit ST an
1w PO:BL- By b, B.0%la b, .S, c.d) 4B, ...dB,, aj = a; + N/2 (18)

Q(By---By:h,B,0?)
dhdBdo? :
(8)  Here,v, ; andfi, ; denote thej-th element of the respective

The optimal value for Q(ﬁl...ﬁN,h,&a) that  vectors andz; ;; andej denotes thg-th diagonal element.
makes the bound tight is given by the joint poste- 3

rior P(B;...8y,h,3,0ly) but since this posterior ¢=c+N/2 (20)
is intractable, we make an approximation by assum- d=d %) +xTGx, | /2 21
ing that the posterior over the variables is indepen- +Z[(yz Vi) o+ xi ZXZ}/ (1)

dent and can be expressed @43, ...Ay.h.B.0) = We also need to learn the point estimates for the regulariser
2 3 2 i

IT; QUBily) IT; Q(h71y)Q(Bly)Q(o"ly).  This form of  nermarameters; andb;. Maximum likelihood value for

apprpXImatlon IS pften Cal!Ed aensembla{arlatlonal ap-  the hyperparameterﬁj and bj can be found by maximiz-

proximation, details of which can found ifBeal, 2003. ing the boundF,,,,,.. given by Eq. (9) with respect to these

Substituting the factorised approximation in Eq. (8) we get: hyperparameters keeping the posterior distributigrisced.

2

Fappros = Z [<1nP(y¢|ﬂi, U)>Qﬁi«,Q‘,2 Considering only the terms involving the hyperparameters:
R 5=/Q(h?@vBj)lnp(h?|aj7bj)dh?
+ (0 P(8;18, b1 .. hat)) ]
@8 QnyQnasn @y Maximising £ with respect to the hyperparameters is equiv-

2 4 alent to minimising the KL divergence between the distrib-
+Z (In P(h;las,b:)) s <ln P(ﬂ‘”’s)> . @ tionsQ and P. Since the posteriof) and prior P share
’ ‘ the same parametric form, KL divergence is minimised when

+ (In P(c°|e, d))Q - Z <ln Q3 > the parameters of these distributions match. This leads to the
25 i Qp, simple update rule for the hyperparameters given by:
—> (mQu), - <anB> — (1nQu2)g 0 =5 b=b (22)
j J QB

The hyperparameteys, S, c andd are initialised such that the

where (.), denotes the expectation with respect to the dis ¢ X X ; i
corresponding priors are non-informative. An initialisation of

tribution ). The optimal values of the posterior probabili- . _ ~
ties can be computgd iteratively by maxire]izing thepfunctionall" =0,5=10 °xIc=10"" andd = 10° ’ ensures sucha
Fupprow With respect to each individual posterior distribution condition. Or_l t_h_e (_)ther hand the r_egularlser hyperparameters
keeping the other distributions fixed akin to an EM procedurea andb are initialised such that it encourages sniall A
Such a procedure can be shown to improve our factorised apyalue ofa = 1 and a sufficiently large value fds ensures
proximation of the actual posterior in each iteration. Skippingsuch a bias. These are the settings used by RVC for all the
the derivation, such a procedure yields the following posterioevaluations carried out in Sec. 4.

distributions:

Q(B;ly) ~ N(vi, Gy) (10) 3.2 Prediction using the committee of local models
QBly) ~ N(jx,S) (11) We have dealt so far with building a coherent probabilis-
R - tic model for each local expert and have derived inference
Q(hjly) ~ Gammdaj, b;) (12)  procedures to estimate the parameters of individual model.
Q(o?ly) ~ Inv-Gamméz, d) @13)  Given the ensemble of trained local experts, in order to pre-

dict the responsg, for a new query poink,, we take the

where normalised product of thpredictive distributionof each lo-

Gi = (xix /(o%) +(C:) )7 cal expert. This is close in spirit to the paradigm of Product
(Cy) xix] (C)) (14)  of Experts[Hinton, 1999 and the Bayesian Committee Ma-
=(C;) — 02 +x7 (Cihx: chined Tresp, 2000 The predictive distribution of each local

where the second part has been derived by making use 8f<pert is given by:
the Sherman-Morrison Woodbury theorem. Hé@;) = . R ) .
diag(x]xi/ (h3) 5 2)) and{a®) is the expectation with re- P(yqly) = /P(yqlﬂm h)Q(Bly)Q(c"y)Q(h|y)dhdBdo
spect toQ),z. Furthejrmore, using results from Eq. (14), N (3)
P 0’? — Gulyx/ (o) + (Cg>‘1 i) a- (14) where P(y4|8,0,h) has the form given by Eq. (5). We
P e K can further integrate ou8 from Eq. (23), but cannot do
- <C¢; Xi (yi *erﬂi) s the same forw? andh. Hence, we approximat®(o?|y)
((o2) +xi (Ci) xi) andQ(hly) by a delta function at the mode which implies

(15)




Q(?y) = 6,2 andQ(hly) ~ dy2 . The final predic- ~ Algorithm 1 Training a local model

tive distribution for thek-th local model is: 1: Initialise hyperparameter®o = {u, So, co, do, a0, bo }
Yoo ~ N %q 0, Xk (Sk + Chnyyye ) Xak + Tonode) 2: fori=1to N do

wherex, j refers to the query point with the-th center sub- 3 Inputx;, y;

tracted and augmented with bias. Blending the prediction of 4 repeat

different experts by taking their product and normalising it 5: Estimate posterior hyperparametérsusing®, and
results in a Normal distribution given by: Eg. (14), (15) and Egs. (24) - (29).
3 kit Xg k 1 6: Estimate values of the hyperparameterandb of
ya ~ N(u,¢*) where = ka O’jk =, = T the regulariser prior using Eq. (22).

Here, » is a sum of the means of each individual expert /- until convergence of posteriors
weighted by the confidence expressed by each expert in its3:  ©iy1 = ©;

own predictionay, ¢2 is the variance and;, is the precision 9: end for

of each expert:

ar = 1/(xgx(Sk +Cr)xqr +0k), Cr = diag{xqrxerx/hix} 3.4 Complexity analysis
3.3 Online updates The time complexity of the algorithm is dominated by the

The iterative learning rules to estimate the posteriors over p computation of; in £g. (14). The equations that U& are

. . ! . (27) and Eq. (29) and these can be rewritten to avoid ex-
rameters given the appropriate prior and the data, represent cit( co)mputat%n(of();i. Eq. (27) requires only the diagonal
by Egs. (16)-(21), can be rewritten in the form of online UP- elements of3; which can be computed iR (d) since

dates by exploiting the Bayesian formalism. In a batch mode

of posterior evaluation, we have Gi(j,5) = Ci(4,3) — (Cilj, 5)%i(j))*/(0* +7:)  using Eq. (14)
N

posterior, = H (likelihood;) x prior,

The same can be expressed as a set of online updates:

wherey; = x7 C;x; which can also be computeddd) due
to the fact thalC; is diagonal. On the other hand, Eq. (29) re-
quires the evaluation o{iTGixi which in turn can be written

. . i _ down as:
posterior, = likelihood; x prior;; prior,,, = posteriof, T o2y
Therefore we can transform the batch updates that we had xi Gixi = 25 + v
derived earlier into online updates given by : and can also be computed @(d). Furthermore, the ma-
Si=(C) " +8;H)! (24)  trix inverses in Eq. (24) and Eqg. (25) can also be computed
i, = S:((C) " i+ ST ) 25 N O(d) due to the fact tha8, and C; are diagonal matri-

o 1/2 26 ces. Therefore the overall time complexity per online update

@ij = aij +1/ (26) s O(dM) whered is the number of dimensions ard the

bij = bi; + [(ym - f‘m)2 +Gijj+ gm.j] /(2x7x;)  (27) number_ of local models. The algorithm doesn’t require any
data points to be stored and hence, h&¥(a/) space com-

G =ci+1/2 (28)  plexity for the sufficient statistics stored in the local mod-
d = di + [(yi —uTx,)? +X?Gixi:| /2 (29)  €ls. The independence of the local models also means that
] ) _ we could bring down the effective time complexity &(d)
We repeat above updates for a single data pfinty; } till  if we had M parallel processors. The time complexity for

the posteriors converge — hef@,represents the posterior of prediction isO(dM) including the evaluation of mean and
©. For the(i + 1)-th point, we then use posterior tth step  the confidence bounds. We can see from this analysis that
as the prior as illustrated in Algorithm 1. the algorithm is very efficient with respect to time and space
(in fact it matches LWPR'’s efficiency) and hence, is a strong
andidate for situations which require real time and online
arning.

Addition/deletion of local models
The complexity of the learner is adapted by the addition ancf
deletion of local models. When the predictive likelihood for a €
new data point is sufficiently low then one can conclude that .
the complexity of the learner needs to be increased by addiné Evaluation
a new local model. This leads to the simple heuristic for theln this section, we demonstrate the salient aspects of the RVC
addition of a local model wherein a local model is added atmodel by looking at some empirical test results, compare the
a data point when the predictive probability for the particularaccuracy and robustness against state of the art methods and
training data is less than a fixed threshold. The data poinévaluate its performance on some benchmark datasets.
serves as the center for the added local model. Fig. 3(a) shows the local linear fits (at selected test points)
When two local models have sufficient overlap in the re-learned by RVC from noisy training data on a function with
gion they model, then one of them is redundant and can bearying spatial complexity. Such functions are extremely
pruned. The overlap between two local models can be detehard to learn since models with high bias tends to oversmooth
mined by the difference in the confidence expressed in theithe nonlinear regions while more complex models tend to fit
prediction for a common test point. The addition and deletionthe noise. One can see that the linear fit roughly corresponds
heuristics that have been used here is similar to the ones uséalthe tangential line at the center of each local model as ex-
in [Schaal and Atkeson, 19P8 pected. A more significant result is the adaptation of the local
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Figure 3: (a)Local fits and bandwidth adaptation. Fit and confidence bounds learned by (b) RVC model and by (c) GP model.

bandwidth. The bottom section of Fig. 3(a) plots the con-we have used RVC in the batch mode using the updates that
verged locality measure computed @®duct of the band-  we derived in Sec. 3(c.f. Egs. 14 - 21). The subsequent eval-
width parameters along each input dimension - nicely illus-uations in this section make use of the online updates derived
trating the ability to adapt the local complexity parameter inin Sec. 3.3.
a data driven manner. Note that for this illustration, we have
placed local centers in a dense, uniform grid in input space.

In the next evaluation, using the samic function, we
compare the fits and confidence bounds learned by RVC and
Gaussian Processes (GRYilliams, 199§ in Fig. 3(b) and
(c). Itis important to note that we have deliberately avoided
using training data in [5.5,6.5] and the confidence bounds of
RVC nicely reflect this. Our next experiment aims to illus- >

Motorcycle data: GP
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Figure 5: Fit and confidence bounds for the motorcycle
dataset learned by the Gaussian Processes model

-100¢ N\ ,| © Datapoints 1 To compare the online learning characteristics, we trained
oaf ey Learnt fn. the three candidate algorithms on 500 data points from the
° - - - Confidence bounds

sinc function corrupted with output noise:~ A(0,0.052).
After each training data was presented to the learner, the er-
ror in learning was measured using a set of 1000 uniformly
distributed test points. The RVC model was allowed only a
Figure 4: Fit and confidence bounds for the motorcyclesingle EM iteration for each data point to ensure a fair com-
dataset learned by the RVC model (local models were cenparison with LWPR. The resulting error dynamics is shown in
tered at 20 uniformly distributed points along the input) Fig. 6(a). In this comparison, GP exhibits a sharply decreas-
ing error curve which is not surprising considering that it is
trate the ability of RVC to model heteroscedastic data (i.e.essentially eébatchmethod and stores away all of the train-
data with varying noise levels). Fig. 4 illustrates the fit anding data for prediction. When we compare RVC with LWPR,
the confidence interval learnt on theotorcycle impactlata  we find that RVC converges faster while using roughly sim-
discussed ilRasmussen and Gharamani, 2DQQotice that ilar number of local models. This can be attributed to the
the confidence interval correctly adapts to the varying amounBayesian learning rules of RVC that estimates the posterior
of noise in the data as compared to the confidence intervaver parameters rather than point estimates. Since the poste-
learnt by a GP with squared exponential kernel shown in Figrior is a product of likelihood and prior, in the event of sparse
5. This ability to model non-stationary functions is anotherdata (as in the initial stages of online learning), the prior en-
advantage of RVC's localised learning. In these evaluationssures that the posterior distributions assigned to the parame-

10 20 30 40 50 60
X
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Figure 6: (a) Comparison of online learning dynamicssdatc function (b) Comparison of generalization error

ters and in turn the predictions of the learner are reasonabléon performance of LWPR while avoiding cumbersome pa-

Also the optimization of the regularizer hyperparameters forrameter tuning for initialization. It achieves competitive per-

every data pointimplies a faster adaptation and hence, a fasttarmance compared to GP — essentially a batch method, while

convergence. being much more computationally efficient (linear in number
In the next evaluation, we compare the generalization perof training data and input dimensionality as opposed to cubic

formance of the algorithms on artificial as well as real worldin training data for GP). The space and computational effi-

datasets. Theinc function, air dataset described[iBruntz  ciency of RVC coupled with the ability to grow model com-

et al, 1974 and the Boston housing dataset from the UCIplexity in a data driven fashion makes it a strong candidate

repository were used as benchmark datasets. The air(ozonky practical online and real time learning scenarios.

dataset which is a three dimensional dataset with 111 data

points was split into 83 training and 28 test points. The 13References
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