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Abstract

In the formulation world, rheological properties like ow behavior and viscoelastic
response determine the quality of the product. For the �rst time, we explore
and explain the dynamic response of �lled nematic thermotropic liquid crystal
phases. We then discuss the behavior in lyotropic �lled nematic liquid crystalline
(NLCs) media and compare it with the more commonly understood �lled lamellar
phases. Conventional rheometry, coupled with polarizing microscopy, was used to
formulate an understanding of the microstructure of the colloids and their e�ect
on the ow behavior of the colloids and LCs composite.

A class of soft solids exhibiting exceptional stability is made from dispersing
PMMA microspheres in thermotropic nematic liquid crystal (NLCs). When
a microsphere induces weak homeotropic anchoring in NLCs, the director
around the colloid elastically distorts to accommodate the particle giving rise
to disclinations or defect lines. The type of defect present depends on the
anchoring strength, (W ), between colloid and NLCs, the elasticity of the NLCs,
(K ), and the size of the dispersed particle, (r ). For W r

K � 1, the colloid induces
a Saturn-ring defect in NLCs. These Saturn-ring defects remain isolated without
interacting with each other in the dilute composite. As the concentration of the
colloids in NLCs increases, the encircling loops of these Saturn-rings no longer
remain isolated but entangle to form a more stable topological structure which
holds the colloid in the defect matrix | thus forming a stable gel composite.
Dynamic moduli of these composites increase with volume fraction withG0 and
G00/ � 2, possibly because each colloid supports a two-dimensional Saturn-ring.
These ring defects can connect at di�erent points around the circumference
of the disclinations and therefore the number of percolating paths increases
quadratically with the volume fraction. For the �rst time, we show that G00

/ ! 1=2 on yielding. We derive a theory that describes this yielding behaviour is
governed by the Ericksen number,Er , associated with con�ned nematic region
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within the composites. We �nd that the frequency dependence of the composites
is independent of the volume fraction,� , indicating that it is neither an active
or passive �lled system and that the behavior of composite is determined by the
intrinsic properties of the nematic phase. The colloids merely serve to create and
support Saturn-ring defects.

The structure and dynamics of �lled lyotropic NLCs were studied for the �rst
time. Uncharged PMMA particles were dispersed in surfactant and water-based
lyotropic mesophase to form a class of composites similar to the thermotropic sys-
tem. Filled lyotropics exhibit similar rheological behavior to their thermotropic
counterpart. However, the surface charge of colloids disrupts the composite
properties in the charged micellar nematic liquid crystal system. A comparison
of micrographs showed clustered networks for the uncharged composite but a
disconnected array-like structure for anionic composites. Nematic emulsions made
from dispersing PDMS droplets in lyotropic nematics show similar rheological
behavior like the solid-sphere dispersion up to� � 0.54 but deviate near the
glass transition volume fraction.

The ow behavior of these unique NLCs composites was also examined from
steady-state measurements. The ow behavior of �lled nematic is complex, owing
to the coupling between the ow �eld and the director �eld. Both thermotropic
and lyotropic composites showed remarkable shear-thinning behavior with the
viscosity curve following power-law behavior. The breaking of the network
structure into smaller clusters further explains this exceptional shear-thinning
behavior on the application of shear. These clusters then align along the direction
of ow, thus providing less resistance to ow, reducing the viscosity, and some
evidence of shear-banding is evident. Relative viscosities (� r = � �

� LCs
) at high shear

follow Krieger-Dougherty relation for the lyotropic composites. However, the
deformable colloids (PDMS) in nematic emulsion diverts from Krieger-Dougherty
relation beyond � � � g = 0.58.

Through extensive rheological experiments and microscopy, we describe the
physical properties of a new type of gel with exceptional stability and shear-
thinning performance that could �nd wide application in the formulation
industries.
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Lay summary

This thesis, for the �rst time, studies the microstructure and ow behavior of a
new class of soft solid. These soft solids are made by mixing colloids (� 1 � m,
invisible to the naked eye) in a liquid crystal material. Liquid crystal (LCs),
as the name suggests, is a state of matter between crystalline solid and liquid.
These unique materials can ow like a liquid but can align their molecules in a
preferred direction. Nematic liquid crystal is the simplest phase of liquid crystal
made up of rod-like or disk-like molecules, thus having only orientational order.
In this thesis, we have explored the composite made from dispersing colloids
in micellar based nematic LCs. On the addition of colloids, the alignment of
nematic liquid crystal breaks to accommodate colloids in the medium. These soft
solid form stable gel-like structure when the concentration of colloids increases
beyond 20%. We suggest these soft solid may have a wide range of applications
in the formulation industry; thus, in this thesis, we explore their structure
and response to deformation using a technique called (Rheology) in terms of
mechanical strength and viscosity to formulate a fundamental understanding.

In the �rst part of this thesis, we show that the soft solid composites made form
mixing solid colloids in nematic LCs have exceptional stability in the absence of
any external force. However, on the application on the force, the microstructure
of these composites changes, giving rise to two di�erent regions: (a) stable
region - where the structure is not deformed and (b) yielding region - where
the structure has deformed and changed according to the force applied. These
two regions were further investigated by making a range of soft solid with di�erent
particle concentrations. The result suggested that the concentration of colloids
(> 20%) does not a�ect the stability of these composites but only enhances its
mechanical strength. Microscopic images of these composites show a network like
structure spanning over space. However, charged colloids disrupt the composite
properties in the charged micellar nematic liquid crystal system. A comparison
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of micrographs showed clustered networks for the uncharged composite but a
disconnected array-like structure for anionic composites. After studying the solid
colloid composites, we investigated the behavior of oil in nematic LCs emulsion
underow. It was observed that the oil droplets behave as solid colloids up to a
concentration of 54% beyond which they start to touch each other and coalesce.

In the second part of this thesis, we study the viscosity pro�le of these composites.
The viscosity of these composite in the absence of force is considerably higher
compared to colloidal suspension in an isotropic solvent. However, on the
application of force (shear), the composite viscosity decreases remarkably on the
application of shear (force). The sharp decrease in viscosity was attributed to
the breaking of the network structure into smaller clusters and their alignment
in the direction of applied force. Thus, the viscosity after the breaking of the
microstructure resembles that of dense colloidal suspensions.

Collectively, through extensive rheological experiments and microscopy, we
suggest that �lled nematic liquid crystal can o�er an alternative route to creating
a new type of formulation with exceptional stability and highly tunable viscosity
without using any polymers.
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Chapter 1

Introduction

There are no limits to what science can explore.

- Ernest Solvay

1.1 Motivation

Complex uids form an integral part of our daily life. We interact with them
in the form of our personal care products, the food we eat, in the screens
of our smartphones, television, computer, and so forth. Some of the most
common examples of complex uids include polymeric solutions and melts [56],
colloidal suspension [176], liquid crystals, and their composites [200] forming
superstructures such as gels, foams, and emulsions. Complex uids can be
distinguished from Newtonian liquids, and crystalline solid from their structural
ordering length scales, which are greater than the atomic length scales yet smaller
than the world visible to the human eye; thus, the length scales are in the
range of 1nm - 10 microns. They are used extensively in food processing,
pharmaceutical formulations, paints and coatings, personal care, and cosmetic
products. In the formulation world, rheological properties like ow behavior
and viscoelastic response determine the success and failure of the quality of the
product. Thus, the rheology of complex uids becomes a vital tool to probe
the microstructure of the formulations under external shear. In this thesis, we
couple rheology measurements with microscopy to study the structural properties
of a class of soft solid formed by dispersing colloids in liquid crystalline media.
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Liquid crystal (LCs) [149] is a mesophase between crystalline solid and Newtonian
liquid. In this thesis, we explore the interaction of colloids in both lyotropic and
thermotropic nematic LCs. We concern ourselves with the class of lyotropic
liquid crystals formed from mixtures of amphiphilic molecules in a solvent that
form liquid crystalline phases at a speci�c temperature and concentration ranges
[33],[6],[36],[57]. A lyotropic liquid crystal composed of a ternary system of
surfactant, co-surfactant, and water along with thermotropic 5CB liquid crystal
[44] is studied. Thermotropic liquid crystals are widely used in display technology
of low energy costs and many sensor devices. The study of lyotropic mesophase
is essential because of a wide range of applications in the formulation industry,
including detergents and cosmetics [54], pharmaceuticals, and drug delivery [49].
This Ph.D. project was associated with a Royal Society Industry Fellowship held
by Dr. Ti�any Wood in collaboration with The Mentholatum Company Limited.
One of their most popular products, Deep heat, is a topical cream made from
dispersing colloids in lyotropic lamellar liquid crystal to deliver an active to relieve
body pain. Thus, we hoped to develop new knowledge on colloidal dispersions
in lyotropic liquid crystalline phases to explore whether there may be alternative
routes to improve the e�cacy of topical creams. Studying the structure and
dynamic properties of lyotropic phases are very important from both fundamental
and practical points of view, especially considering their potential for applications
in the formulation industry.

1.2 Thesis outline

This thesis is divided into nine chapters. The �rst two chapters describe the
background science used in this thesis. Chapter 2 sets the context for the
materials that will be explored by introducing di�erent types of complex uids
materials, liquid crystals, and composites. Chapter 3 provides a brief description
of the experimental rheometry followed by di�erent rheology models used in
di�erent complex uids discussed in chapter 2.

Chapter 4 gives a full description of the material and experimental methods used
in this thesis.

The results of the thesis are covered in chapters 5 - 8. Chapter 5 explores
the microstructure and viscoelastic property of uncharged colloids dispersed in
thermotropic nematic liquid crystals (LCs). We have, for the �rst time, studied
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the e�ect of both hard-sphere colloids and oil droplets, which are deformable
in lyotropic nematic liquid crystals. Chapter 6 focuses on the e�ect of surface
charge on the colloidal particle has on the oscillatory rheology of colloids and
liquid crystal composite. The microstructure of charged composites is further
studied using microscopy. In chapter 7, we discuss steady-state shear rheology of
both charged and uncharged colloidal composites in nematic liquid crystals. The
viscosity curve of the composites is studied, and the e�ect of �ller concentration
is described. Finally, in chapter 8, we describe the microstructure and rheology
of colloids dispersed in the lyotropic lamellar phase to set the context with the
nematic composites.

Lastly, in chapter 9, we summarize the main �ndings of this research. Then we
discuss the potential application of the colloids, forming a gel in lyotropic nematic
liquid crystal. Lastly, we conclude by summarizing the research and its future
perspective.
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Chapter 2

Complex uids in the context of
liquid crystals

Complex uids are those with internal microstructures whose evolution a�ects
the macroscopic dynamics of the material, especially their rheology. Some of the
examples include polymer solutions and melts, liquid crystals, gels, suspensions,
emulsions and micellar solutions [12].

2.1 Colloids

A colloidal dispersion is a heterogeneous system in which particles or liquid
droplets of size 10� m or less are dispersed in a liquid medium. If the particles
are small enough to minimize the e�ect of gravity they move in a random fashion
known as Brownian motion with thermal energy,kB T. In conventional hard-
sphere colloidal dispersions, the particles often interact via attractive force such
as van der Waals forces and repulsive force such as electrostatic forces in addition
to the hydrodynamic forces. These forces are isotropic, and their range does not
usually exceed a few tens of nanometers.

Suspensions can be classi�ed as Brownian and non-Brownian. Brownian
suspensions are dilute suspensions composed of small particles (r� � m) which
can be disturbed by thermal motion. The minimum energy required to uctuate
these suspensions from their equilibrium position is equal to thermal energy,
kB T, where kB is Boltzman constant and T is the temperature. Non-Brownian
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suspension have larger particles in them. Colloidal glasses have motion within
their cagesdue to Brownian motion [122]. The transition from Brownian to
non-Brownian motion is de�ned by P�eclet number, (Pe).

Pe =
r 2 _
Ds

(2.1)

where r is particle radius, _ is the shear-rate andDs = kT
6��r the short-time

di�usion coe�cient which is dependent on the particle volume fraction,� . Peclet
number de�nes the e�ect of Brownian motion on the viscosity of the colloids.
Viscosity becomes independent of Peclet number at Pe> 103, at this regime the
hydrodynamic interaction suppresses Brownian motion [76]. The e�ect of inertia
on the viscosity of the suspension is governed by the particle Reynolds number
[182]. Reynolds number has the mathematical form given by Equation: [? ],
where � is the density of the suspension.

Re =
�r 2 _

�
(2.2)

2.2 Polymers

Polymers are giant molecules which are essential for our existence. They are the
main constituents of the formulation world, for example as starch and protein
in foods, as nylon and polyester in the clothes we wear and as thickeners
and emulsi�ers in our personal care products. They can be classi�ed as (a)
homopolymer where all monomer links are identical, (b) co-polymers which are
made up of di�erent monomers and (c) block co-polymer - made up of two
long sequences of di�erent monomer. The structure of polymer can be linear,
branched or network like with cross-links. Their larger sizes lead to much
stronger intermolecular forces leading in turn to much higher melting points,
and the characteristic properties of hardness and exibility. On application of
external force, the structure of polymer distorts like an elastic spring. The
elasticity of these polymer decreases with increasing temperature. Polymers show
strong viscoelastic properties such as shear-thinning and time-dependent rheology
because the polymers are long and easily distorted even at low stress values.

In this chapter, we review the underlying physics of liquid crystalline materials
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Figure 2.1 Schematic of phase transition from crystalline solid to liquid crystal
to isotropic liquid on increasing temperature.

and focus on the nematic mesophase before moving onto the physics of colloidal
dispersion in nematic LCs mixture.

2.3 Liquid crystalline materials

Liquid crystals are a class of complex uid intermediate between a crystalline solid
and a liquid [149, 173]. Liquid crystallinity is expected to occur in the presence of
elongated molecules like rod-shaped and disc-shaped because of their high aspect
ratio. In a liquid crystalline phase, the basic building blocks display orientational
order (e.g., ordering of molecules in nematics); however, some mesophases can
even show positional order as in smectic mesophase. A liquid crystalline phase
transition to the isotropic liquid phase occurs on increasing the temperature.
Liquid crystals (LCs) can be further classi�ed into thermotropic and lyotropic
phases. In thermotropic LCs, the phase transition is governed by the change in
temperature only. Figure 2.1 shows the transition of crystals to the liquid crystal
to isotropic liquid with increasing temperature. Thermotropic LCs are widely
used in display technology and sensory devices. Lyotropic liquid crystals, on the
other hand, are formed in a particular concentration range. Their mesomorphic
properties change with the change in the relative concentration of constituent
molecules in addition to the temperature. The basic units of lyotropic LCs studied
here are the self-assembles amphiphilic molecules, which can form shapes of rod
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and discs [5, 7, 57, 150], however lyotropic LCs phases are also found in nature in
the form of nano-crystalline cellulose and lipids [3]. The ordering of molecules in
LCs leads to di�erent classes of mesophases. In both thermotropic and lyotropic
LCs, the nematogens (building blocks) are often rod-shaped. In thermotropic
LCs, nematogens are anisotropic molecules, whereas, in the lyotropic LCs, they
can be uni-axial micelles or rod-shaped nanoparticles like clays and cellulose.
Nematogens usually have an aspect ratio greater than 3. Our focus in this thesis
will be on the rheology of both thermotropic and lyotropic LCs.

2.3.1 Lamellar liquid crystal

Lamellar liquid crystalline phases have a bilayer structure formed by amphiphilic
molecules separated by water layers and show homeotropic or focal-conic
(threadlike, mosaic or oily streaks patterns), [166], [85] texture under cross-
polarisers, see Figure: 4.8. The stability of the long range periodicity in lamellar
phases is determined by a balance between fundamental interactions such as
the van der Waals attraction, the electrostatic repulsion for charged membranes,
and the short-range repulsive hydration interactions which, for instance, prevent
phospholipid bilayers in water from coming into close contact with each other.
As one-dimensional crystals of parallel layers, the lamellae possess translational
symmetry and thus exhibit dislocations (screw and edge dislocations) [137]. They
play a crucial role in determining many properties of these materials and may be
involved in shear induced structural transformations. Lamellar phases are known
to exist in at least two con�gurations. In addition to a planar or continuous
lamellar phase, where the bilayers are ordered in sheets, lamellar phases exist
with the bilayers ordered in closed concentric shells. The structural units in the
latter phase are often referred to as \onions", multilamellar vesicles, or lamellar
droplets. These phases have a wide range of applications in the formulation
industry, thus have been studied extensively.

2.3.2 Nematic liquid crystal

In the nematic phase of LCs, nematogens align themselves in a preferred direction.
This preferred direction is called the Frank director, ~(n). Thus the aligned
molecules are free to move in three translation directions and rotate around the
director. However, the mean distance between molecules is smaller than their

8



diameter, so rotation is not completely free. These LCs are turbid in appearance
because their scattering index is 106 times higher than the isotropic uid. In the
nematic phase ~(n) and ~(� n) are equivalent and the order parameter (OP) is given
by Equation: 2.3 which de�nes the equivalence of both~(n) and ~(� n) [149].

OP =
3 cos2 � � 1

2
(2.3)

It characterizes the distribution of oriented molecules. It is de�ned as the average
over all of the second Legendre polynomial [183], where� is the angle between a
molecule and the director, ~(n). OP is equal to unity when all the molecules are
aligned parallel to ~(n) and is zero when the distribution of orientations is random,
as for the isotropic phase.

Free energy

When a force exerts onto a spring, the spring deforms by either getting extended
or suppressed. A spring has a characteristic elasticity (k) that resists deformation,
~F = k~x. Similarly, the liquid crystals are e�ectively elastic media that resist
external perturbations. When the external force exerted exceed a threshold value,
the director deforms elastically, leading to a change in the relative orientation of
LCs molecules. The molecules will be forced to splay, twist, saddle splay, and bend
as shown schematically in the Figure: 2.2. When the system is in equilibrium, it is
in the minimum energy state. The director con�guration can thus be explained
in terms of free energy. The Equation : 2.4, gives the total free energy of a
nematic LCs consisting of both surface and bulk terms. This expression was �rst
developed by Oseen, Zocher, and Frank [58, 138, 206]. This is then minimized to
get director con�guration.

Fn = Fel + F24 + FS =
Z

(f el + f 24 + f H ) d3
r +

Z
f S dS (2.4)

The �rst two terms are the elastic energy term arising from any deviation from its
spatially uniform director. And they are called Oseen-Zocher-Frank free energy
density [58, 138, 206], which consists of two parts given by Equation: 2.5 and 2.6.

f el =
1
2

[K 1~n2 + K 2(~n � r � ~n)2 + K 3(~n � r � ~n)2] (2.5)
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Figure 2.2 Schematics of characteristic deformation in a nematic LC: splay,
twist, bend and saddle splay.Taken from [111].

where K 1; K 2; K 3; K 24; denote, respectively, the splay, twist, bend, and saddle-
splay elastic constants.

F24 = �
K 24

2
[r � (~n � r � ~n + ~n � r � ~n)] (2.6)

A relation betweenK 24 follows from the Maier Saupe molecular approach [117].

K 24 =
(K 11 + K 22)

2
(2.7)

K 1; K 2; K 3; K 24 are of the same order of magnitude, an assumption only valid for
thermotropic LCs often used to simplify the equations. The surface free energy of
Rapini-Papoular is used to take into account the interaction between the director
and the surface boundary:

f S =
W
2

[1 � (~n � v̂)2] (2.8)

The unit vector v̂, denotes some preferred orientation of the director at the
surface, andW is the coupling constant or anchoring energy and has unit of
kJ per mol. By comparing the Frank free energy and the surface energy one
arrives at the extrapolation length shown in Equation: 2.9,

� S =
K 3

W
(2.9)

� S signi�es the strength of anchoring and has a unit of length, which becomes
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relevant when discussing the behavior of colloids in LCs. For example, take a
particle of radiusa in a nematic LC, which has a uniform director �eld at in�nity.
The Frank free energy of this system is proportional toK 3a, whereas the surface
energy is toW a2. At strong anchoring, i.e., for W a2 � K 3a, or � S � a, the
surface energy dominates and turns the director away from its preferred direction
~n. If � S � a, then weak anchoring occurs, where the e�ect of the surface term is
not dominant, and the bulk elasticity, K, dominates.

Nematodynamics

The ow behavior of nematics are complex compared with an isotropic uid
for two main reasons; (a) the translation motion during ow is coupled with the
inner orientation of nematic, thus changing the alignment and (b) a change in the
director alignment in the presence of external force induces ow. Ericksen-Leslie
[53, 104, 105] and Parodi were the �rst to propose a dynamic equation of the
director �eld of LCs using a macroscopic approach based on classical mechanics.
A microscopic approach has been employed by Harvard and group [32, 87], but
both the approaches give a similar equation.

Ericksen-Leslie assumed LCs as a continuum, possessing both translational and
orientational degrees of freedom. The full set of equations was derived from the
balance of linear and angular momentum and is mathematically written as a
function of velocity �eld v(r) , which de�nes the ow and ~n, which de�nes the
orientation of nematic molecules. In cartesian co-ordinates director,~n can be
written in terms of � and � as:

~n(r ) = ( nxsin�cos�; n ycos�cos�; n zsin� ) (2.10)
~v(r ) = ( u(x; y; z); v(x; y; z); w(x; y; z)) (2.11)

~P = P (x; y; z) (2.12)

Here nx , ny and nz are the unit vectors, P is the pressure of nematic uid and
~v(r ) is the velocity vector. The conservation equation is then written as:
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r : ~v(r ) = 0 (2.13)

�
d ~v(r )

dt
= r :� (2.14)

� = � P + � 0 + � 0 (2.15)

where r :� is the divergence of stress tensor (�) = r j � ij . From Equation: 2.15
it is seen that stress tensor consists of a pressure term and two other terms shown
in Equation: 2.16 and Equation: 2.17.

� 0
ij = �

@fb
@(r j )~nk

(2.16)

� 0
ij = � 1ni nj nknl ~Akl + � 2nj ~N i + � 3ni ~N j + � 4A ij + � 5nj nk ~A ik + � 6nj nk ~A jk (2.17)

wheref b is the Frank free energy term excluding surface anchoring term (f S) and
� 0 is the stress tensor due to elastic distortion. �0 gives information about the
viscous part of stress tensor,A ij is the symmetric gradient of the velocity �eld
given by: A ij = 1

2(r i vj + r j vi ), � 1, � 2 and � 3 are called Leslie coe�cient of
viscosities. Finally, the total torque on the director should be zero by balancing
elastic (� 0) and viscous (� 0) part.

~nX (� 0 � � 0) = 0 (2.18)

where

� 0
i = r j (

@fb
@r ni

�
@fb
@ni

) (2.19)

� 0
i =  1 ~N i +  2 ~A ij nj (2.20)

N denotes the rate of change of the �eld relative to the uid motion. ~N =
d~n
dt � $ � ~n, where$ = 1

2(r � ~v). And  1 = � 3 � � 2 and  2 = � 2 + � 3. The �rst
term of the viscous torque (� 0

i ) describes the viscous process due to the rotation
of neighboring molecules with di�erent anguar velocity. Thus, 1 is called the
rotational viscosity. The second term describes the torque on the director due to
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Figure 2.3 Schematic representation of three di�erent director directions with
respect to plate velocity direction.

shear ow.

In the parallel-plate geometry under shear ow, the sample ow can be described
by three di�erent cases (see Figure: 2.3). Here the upper plate moving with a
constant velocity (~v0).

The viscosity of the nematic LCs in all the cases is given by;

� 1 =
� 3 + � 4 + � 6

2
(2.21)

� 2 =
� 4

2
(2.22)

� 3 =
� 4 + � 5 � � 2

2
(2.23)

These are called Miesowicz viscosities. In the literature, 5CB has been
characterized thoroughly, the Miesowicz viscosities are� 1 = 0 :088 Pa.s, � 2 =
0:094 Pa.s and� 3 = 0 :015 Pa.s and the rotational viscosity r = 0 :081 Pa.s
[39, 83, 132, 160].

2.3.3 Topological defects in nematic LCs

Topological defects are the defects that arise from breaking the continuous
symmetry of the system and cannot be �xed by any local rearrangement of
molecules. Topological defects are important in determining the properties of
physical systems. In superuid helium, they are called vortices; in periodic
crystals, one refers to dislocations, and in liquid crystals, they are disclinations
[149]. The defect dynamics of these phases contribute to the rheological
properties. There are two types of defects found in nematic LCs. These are either
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Figure 2.4 Schematic representation of a few defects with di�erent winding
numbers. Continuous lines represent the director �eld around the
singularity.

line defects, known as disclinations (showing the discontinuity in the inclination of
molecules) or point defects (hedgehogs and boojums), where the director cannot
be de�ned. There are two important aspects of topological defects in liquid
crystals. Firstly, the topological defects are regions of reduced orientational
order of the liquid crystal molecules in addition to the strong elastic deformation
of LCs molecules. Secondly, in addition to free energy, topological defects are,
mathematically speaking, points or loops where the ordering �eld is singular, i.e.,
the �eld is not de�ned in those regions. These defects cannot be eliminated by
continuous deformation of the order parameter �eld; hence, they are topologically
stable [32]. They are characterized by strength or winding number0s0, which is
denoted by an integer or half-integer number. The strength0s0 determines the
number of times the director rotates around the singularity when one encircles
the defect core [173]. Two oppositely-charged defects can annihilate one other.
The orientation of the nematic director �eld (	) surrounding the defect can be
expressed in terms of defect strength (0s0) [149].

	 = s� + � (2.24)

where � = tanh( y=x) and � is a constant. Here, the defect strength0s0 depends
on the symmetry of the medium. In the nematic phase,0s0 is the multiple of
� 1

2 , as the director has ~(n) = ~(� n) symmetry. Figure: 2.4 shows the schematic
representation of the director structure of a few defects. Readers are directed to
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appendix 1 for a comprehensive review on line and point defects in nematic LCs.

2.3.4 Single particle in the nematic LCs

In this section we explore the director con�guration around a single particle
dispersed in the nematic solvent aligned uniformly at in�nity. This one particle
problem will be a guide to the understanding of more complex situations like
many-particle interactions in a nematic LCs. For spherical particles in a nematic
environment, elastic interactions are highly anisotropic and can lead to a host
of self-assembled structures ranging from linear and branched chains. When a
single particle is dispersed in LCs molecules, the molecules align along the curved
surface of the particle for planar alignment and perpendicular to the surface of
the particle in homeotropic alignment. The LCs molecules are frustrated, as they
prefer to align along with their director the way they do in the absence of particle.
This inability to �ll the space with a uniformly aligned nematic LCs results in a
strong elastic distortion. The director �eld around a sphere exhibits quadrupolar
symmetry for tangential anchoring and dipolar or quadrupolar symmetry for
homeotropic anchoring.

The director �eld con�guration is found by minimizing Frank Free energy. A
plausible director distribution function can be formulated with the director
deviation angle of� (a)r [97]:

� a(r ) = � �
1
2

arctan
sin 2�

(a=r)2 + cos 2�
(2.25)

where a is the radius of the disclination ring, and this reects quadrupole
symmetry as~n has its deformation in the form� ~n(r ) = a

r
2.

The Frank free energy is written in one constant approximation without the
surface term (see Equation: 2.28):

F =
Z

1
2

(r � ~n2 + ( r � ~n)2) d3r (2.26)
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Figure 2.5 (a) Particle of radius R with rigid radial boundary conditions and
a disclination ring of radius a in the plane perpendicular to n,
(b) The particle with weak radial anchoring on the surface has a
regular director distribution, which may be treated as an \image"
disclination ring with R. [97]

The anchoring energy is de�ned using the Rapini approximation [58].

FS = �
Z

1
2

W (~n � v̂)2dS (2.27)

In the next section, the director con�guration in weak and strong anchoring
conditions between colloids and the nematic host is discussed.

1. Weak Anchoring
The di�erential equation found by minimizing free energy is generally not
solvable analytically but if an assumption is made that in the case of weak
anchoring the deviation of the director �eld is small then the problem can
be linearized. In Figure 2.5, the director can be de�ned (using spherical
co-ordinates) by two principal anglesnz = cos� (r ); nx = sin� (r )cos� ; ny =
sin� (r )sin� , here � is azimuthal angle and� is the polar angle. After
applying the boundary condition on the particle surface atr = R . The
di�erential equation becomes:

r 2� �
sin 2�

2r 2 sin2 �
= 0 (2.28)

The particle is dispersed in an uniform nematic environment, hence
azimuthal symmetry is appl ied in the above equation:

��
�r

= �
W
2K

sin(� � � ) (2.29)
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Since the director deviates only by a small amount� (r ) � 1, so the
Equation: 2.29 becomes,

r 2� �
�

(r 2 sin 2� )
= 0 (2.30)

��
�r

+
�
r

=
� W
2K

sin 2� (2.31)

The general solution of the above two equations is given by Legendre
Polynomial,

� = � k
Ck

r k+1
P1

k cos� (2.32)

where P1
k is the associated Legendre Polynomial [163]. The boundary

conditions on a particle selects a particular modek=2 with Ck6=2 = 0.
Thus the director rotation angle takes the form:

� =
WR
4K

�
R
r

� 3

(sin2� ) (2.33)

if � � 1, then WR=K � 4. Weak anchoring corresponds to values,W �
10� 7J=m2, taking the typical value of elastic constantK � 10� 12 N, R �
0.5 mm. Even for anchoring as strong asW � 10� 5J=m2, R < 5-6� m will
satisfy linear approximation of the director �eld deviation satis�ed by � .
The decay rate of deformation of director �eld� = 1=r3. This is because
an assumption has been made that the particle is at the origin.

2. Strong Anchoring
In strong anchoring one cannot assume that� � 1, in the vicinity of
the particle and there is no straightforward way to obtain the solution.
One possibility is to interpolate the far-�eld behavior by comparison with
Equation: 2.34. A new trial function is chosen which gives an asymptotic
behavior, � � sin 2�

r 3 . To check the degree of accuracy of the function, the
numerical solution in one constant approximation was considered [59, 82]
for the director �eld rigidly anchored at � = � on the spherical surface
and � = 0 at in�nity. f(r) is a function of r independent of� and in far
�eld limit, f (r ) = ( r

a )3 which adequately describes the director direction at
r � a. In the other two values of r: r = R; f (r ) = 0 (i.e. for rigid anchoring
� = � and at r = a; f (r ) = 1 (i.e., disclinaton at � = �= 2).
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It has been seen that by �tting the universal function f(r) to the result
provided by the numerical solution [114, 196] an interpolated expression is
obtained, which satis�es all the above constraints and allows us to work
with the "analytical" form of � r , given by equation off(r) : where A, B,
and C are coe�cients.

f (r ) � (
r
a

)3 + A + B
r
a

+ C exp� r=a (2.34)

where A and B is given by Equation: 2.36 andC = � 4a� 3R
a� R . It is evident

from the equation, that when a ! R the function f(r) and � becomes
unstable.

A =
R3

a2(a � R)2 [R � a +
a2

R2 (4a � 3R)(
a
R

exp� R=a � exp� 1)] (2.35)

B =
R3

a2(a � R)2 [a � R + (4 a � 3R)(exp� 1 � exp� R=a)] (2.36)

After examining two limiting anchoring conditions: a) the weak anchoring
situation when the director deviations are small in the whole system, and the
exact analytical solution is possible and in the rigid anchoring case characterized
by the disclination ring. In both situations, the far-�eld behavior of director
is identical and is described by the cubic power decay of deformations. The
interesting question is to �nd out at what values of anchoring energy,W , does
the crossover between the two above regimes take place. One of the simplest ways
is by balancing surface and bulk energies when the disclination is lying on the
particle surface.

� =
WR
4K

(
R
r

)3 sin 2� (2.37)

� = (
a
r

)3 sin 2� (2.38)

This provides the estimateW � � 4Ka 3

R4 . Considering the equilibrium ring size
as a =1.25R, then (W � R=4K ) = 2. Thus the deformation energy in both the
cases is given by Equation: 2.39 and 2.40 . For weak anchoring the free energy
increases with anchoring energy asW 2 and cubically with the particle radius (r)
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and inversely proportional to K.

Fc � 0:2(
W 2R3

K
) (2.39)

For strong anchoring, the free energy linearly with elasticity of LCs (K) and
particle radius (r),

Fc � 6:7
Ka 6

R5 ! 13KR (2.40)

2.4 Interaction between colloids in nematic liquid
crystals

LC colloids are formed by dispersions of colloidal particles in the LCs host. Due
to surface alignment, the director �eld is forced to align along a closed surface of
the sphere, which results in the appearance of topological defects of the nematic
orientational �eld. These deformations result in a strong elastic interaction
between neighboring colloidal particles in the nematics. This interaction force
triggers the spontaneous assembly of nematic colloids within seconds, where
the process of pair interaction is strongly characterized by topological defects.
Topological defects are, therefore, signi�cant for the interaction of nematic
colloids. The �rst study of colloidal dispersion in a LCs solvent was carried out
by Brochard and de Gennes in 1970, where they studied a suspension of magnetic
grains in a nematic phase and the resultant director distortion [25]. A bistable
liquid crystal display was introduced based on a dispersion of silica spheres in
a nematic host [102, 161]. Chains and clusters were observed in the dispersion
of latex particles in a lyotropic liquid crystal [143, 157, 191]. Kuksenok and
Terentjev [97] �rst studied the orientation of the director �eld around a spherical
particle by both analytical and numerical models. They concentrated on Saturn-
ring and surface-ring con�guration. The experiments carried out by Philippe
Poulin and his team on an inverted emulsion with water droplets dispersed in
a nematic environment demonstrated a dipolar structure with the presence of
a water droplet [155]. Interestingly, no Brownian motion was observed in the
emulsion. This was attributed to the anchoring strength,W , between colloids
and the nematic host, being 1000 times greater than the thermal energy (kB T)
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Figure 2.6 A schematic representation of director distortion around colloid
microspheres forming Saturn-ring defects.

[1, 80]. Under a polarizing optical microscope, they saw that the water droplets
spontaneously formed chains, which were directed along with the nematic director
(the direction of the average orientation of liquid-crystal molecules). Although
uid, the water droplets did not coalesce into larger droplets but remained
separated from each other by a topological defect that was spontaneously created
in the vicinity of each droplet. This experiment was clear evidence of the existence
of a new type of force that acts between colloidal inclusions in the nematic liquid
crystals.

In the presence of small spheres, the nematic LCs director distorts homeotropi-
cally from the spherical surface to a uniform far-�eld orientation and thus forms
a ring defect structure called Saturn-ring because of their resemblance to the
rings of planet Saturn. Gu and Abbott [66] studied these Saturn-ring defects
induced by weak anchoring between microspheres and the nematic medium.
These ring defects form closed disclination loops around the particles. Figure 2.6
schematically represents the Saturn-ring defect formed around a colloidal particle.
When micrometer-diameter colloidal particles are dispersed in the nematic, the
strength of this force is typically tens of pN at a typical surface-to-surface colloidal
separation of a micrometer [89]. The force has its origin in the ordering and
elasticity of the nematic medium and, most importantly, in the alignment of the
liquid crystal molecules along the closed surface of the colloidal inclusion. The
range of the elastic forces is of the order of several colloidal diameters. The
colloidal forces in the nematic solvent are much stronger than the forces present
in colloids in isotropic solvent exceeding� 1000kB T per micron-sized particle
[89, 135]. These interactions are of long-range and in many respects similar to the
electrostatic interactions between dipoles, quadrupole i.e. long-range attraction,
and short-range repulsive. Aqueous suspension of rod-like and plate-like particles
form liquid crystalline phases with an increase in concentration. It is known that
aqueous suspension of sepiolite clay particles (rod-like) exhibit nematic liquid
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Figure 2.7 Quadrupolar colloidal chains can grow in a form of kinked (a) or
straight chains (b). (c) The quadrupole{quadrupole interaction as
a function of separation between the particles. The black squares
correspond to (a), the red circles correspond to (b).

crystalline phase [201] and aqueous montmorillonite (plate-like) suspension gel at
1% volume fraction. Duijneveldtet al. [202] studied the formation of the nematic
phase in a suspension of sepiolite and montmorillonite clay mineral particles.
They showed that at low concentration,� � 0.09, the mixture shows three phases
with nematic phase as one of them, but at high concentration, a gel was formed.
This experiment suggested that it is possible to alter the behavior of rod and
plate suspension to exhibit the nematic phase.

Isolated Saturn-ring defects

The force between the boojum quadrupolar colloids [193] in nematic LCs was
�rst measured experimentally by Smalyukh et al. [180]. Sabotet al. [89]
experimentally studied the interaction of quadrupole nematic colloids with
homeotropic surface anchoring. They used 2-4� m silica spheres covered with a
monolayer of silane. Experimentally it was observed that quadrupole-quadrupole
interaction was much weaker than dipole-dipole interaction [79, 107, 111, 135, 155,
158] and shows1

x6 dependence where x is the separation between the quadrupolar
pairs. This relation is similar to the interaction force dependence between
two electrical quadrupoles. The pair binding energy, which is the work force
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separating the particle from the bound state to in�nity, was of the order of 100
kB T [89], which is one order of magnitude less than the dipole-dipole interaction.
As a consequence, inbound quadrupole colloids in NLCs are fragile and are easily
perturbed by the ow.

Di�erent topological con�guration of quadrupolar colloids is represented in the
Figure: 2.7. These colloids form kinked chains, as well as straight chains, Figure:
2.7b at 17� angle from the direction of rubbing. In both the formations, the pair
binding energy between isolated Saturn-ring is� 1000kB T, as plotted in Figure:
2.7c. Readers can refer to [1, 78, 80, 106, 131, 179] for details on the experimental
technique used to determine interaction potential among quadrupolar and dipolar
colloids.

2.4.1 Multiple nematic colloids

In this section, we study the inetraction forces when more than one nematic
colloids con�ned between thin layer (< 100� m) glass slides. These colloids
assemble into irregular shaped connected clusters see Figure: 6.3. This
observation demonstrates the existence of an attractive long-range force and a
short-range repulsive force contrary to the interaction among hard-spheres in an
isotropic solvent. At �rst we will discuss the hard-sphere inetraction followed
by colloids in anisotropic solvent more speci�cally in nematic liquid crystalline
media.

Hard-sphere interaction

Understanding the interplay of forces between colloids and colloids and solvent
play an important role in determining the rheology and microstructure of the
composites. Colloidal forces arise from inter-particle interactions either by direct
contact between the particles or by indirect contact between the particles and
the solvent.

Interparticle forces present in isotropic suspended system are well documented
in [12, 16, 75, 164, 194? ]. These are: London-van der Waals interaction,
electrostatic repulsion, steric stabilisation and hydrodynamic forces between
colloid and solvent. The total interparticle potential between two microspheres
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Figure 2.8 Schematic represenation of two hard-spheres, where D is the
diameter of the sphere, h is the inter particle separation between
steric stabilised colloids,D i is interparticle space and� is the steric
stabilisation layer .

(see Figure: 2.8)~UT can be written as:

~UT = ~UV d + ~Uel + ~Us + ~Udep (2.41)

where ~UV d is the potential due to Van-der Waals interaction, ~Uel is electrostatic
potential in the presence of charged particles,~Us = potential due to steric
stabilisation and ~Udep is the depletion potential. ~UV d is an attractive potential
which can be expressed in terms of particle radius (r) and Hamaker constant (A)
as:

~UV d = �
A
6

�
2R2

2r 2 � 4R2 +
2R2

r 2 + ln(1 �
4R2

r 2 )
�

(2.42)

The Hamaker constant (A) is determined by the material properties of the
particles and suspension medium. At two extreme conditions. a. when particles
are close to each other (r� 2R) Equation: 2.42 transforms toUV d = � A

12( R
r � 2R )

and when particles are at large inter-particle separationsUV d � � A( 16
9 )( R

r
6).

Thus, the attractive potential becomes in�nite when particles are touching each
other at r= 2R, this creates a potential minimum near this extreme which is
greater than kB T see Figure: 2.9. Suspended particles which are not stabilised
will soon aggregate irreversibly under the inuence of these strong attractions.
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It is therefore necessary to provide some stabilisation mechanism providing
repulsion potential greater than interaction. Two approaches are common for
achieving this, electrostatic repulsion due to surface charge of particle and steric
stabilisation.

Coulomb interaction between two charged particles, one �nds a screened Coulomb
interaction which exponentially decays in strength with distance. Suppose the
particles are ionised. Overall charge neutrality will be maintained by a layer of
counterions which will be attracted to the surface by the electrostatic �eld. Some
of these counterions may be tightly bound to the surface (this layer of tightly
bound ions is known as the Stern layer), but more will form a di�use concentration
pro�le away from the surface. There will be an electrostatic potential~Uel at a
distance r is given by:

~Uel = ��� 0D 2 ln
�
1 + exp� � DL r )

�
(2.43)

where 1=� DL is the electric double layer thickness,� and � 0 is the dielectric
constant of the medium and vacuum respectively and is the surface potential.

Steric stabilisation is achieved by coating colloidal particles with layers of
polymer. Many types of polymer are used for this purpose. The water based
PMMA colloids used in this thesis were coated with PVP (MW=300,000) whereas
oil based PMMA beads were chemically grafted with PHSA layer. Because of
the di�erence in the type of polymer and chemical used for steric stabilisation
of colloids the theory of charge and steric stabilisation are di�erent. For e.g.
in presence of polymer coated colloids, the close approach of these two coated
particles causes compression of their interpenetrating polymer layers. The
resulting strong repulsive force provides the steric stability. At larger interparticle
separations, where layer interpenetration is still signi�cant, more speci�c polymer-
polymer interactions can be important. For coatings whose thickness is small
compared to the particle radii the total polymer-polymer interaction occurs over a
narrow range of interparticle spacing close to touching. Steric repulsion potential
can be written as:

~Us =
4�RkT

m
� 2

p(1=2 � � )( � � r=2)2 (2.44)

for � < r < 2� and where m is the molar volume of solvent,� p is the volume of
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Figure 2.9 Schematic of interaction potential between two hard-sphere colloids
in an isotropic solvent.

polymer molecules andkB is the Boltzman constant and� is the Flory-Huggins
parameter. Depletion interaction is considered to be negligible in our system
compared to colloid and nematic interaction. The di�erent potential discussed
above can be plotted as a function of particle separation (r), see Figure: 2.9.

Entanglement of Saturn-ring defects

In the section 2.4, the interaction energy between quadrupolar colloids in
NLCs mediated by isolated Saturn-ring defects was discussed. However, as the
concentration of particles in the nematic solvent increases, the number of defect
lines surrounding them also increases, and the Saturn-ring defects are no longer
isolated. The defects overlap, leading to di�erent possible structures. Particles
demonstrating a quadrupolar defect are weakly bound to LCs, and particle-
particle interaction is mediated by the sharing of localized topological defects.
Typically, the two colloidal particles are entangled by energy close to 10,000
kB T [89]. When the experiments with the colloidal entanglement are performed
in planar nematic cells where the liquid crystal is homogeneous, it is possible to
entangle many colloidal particles into chains or colloidal wires. Guzmanet al. [67]
studied the orientation of topological defects in the presence of two closely placed
quadrupolar colloids. They used dynamic �eld theory and numerical simulation to
�nd a completely new three-ring structure instead of two separated Saturn rings.
Araki and Tanaka followed this study further [10] and found a similar defect
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Figure 2.10 The aggregation of many quadrupolar particles dispersed in nematic
LCs. Blue lines represents the defect lines, green spheres are
colloids and particles bound by disclination lines are drawn as red
ones. Taken from [10].
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structure encircling the colloid in the form of �gure eight. They showed that the
particles are topologically arrested by a closed disclination loop and the particle
centers, and their separation is� x

2r = 1 :1. Next, they showed the aggregation
dynamics of a many-particle system, see Figure: 2.10. The simulation was carried
out on a box of size 643, a total of 50 particles were immersed in nematic LCs at a
volume fraction, � = 0.0343. At t=0, the system was quenched from isotropic to
nematic phase in the absence of an external �eld. Nematic order took place just
after the quenching with the appearance of defect lines. At t=10, particles trap
the defect lines leading to the formation of elongated and entangled structure.
However, when the elongated defect lines cannot support the tension arising from
defect and viscous drag of the trapped particles, the entangled structure breaks.
Moreover, isolated Saturn-ring defects are formed around individual particles, at
t =1000, green spheres have isolated Saturn-ring defects around them, and red
particles form topological arrested structure. It was noted that the population of
isolated Saturn-ring defects was higher for dilute composites. This is attributed
to the sizeable interparticle distance between particles exerting a higher tension
on elongated defect lines leading to more frequent disconnection.

These numerical predictions were experimentally veri�ed by using the laser
tweezer technique to position two independent Saturn rings as close to each
other as possible. Three entangled linear structures were formed with the rapid
quenching of the nematic liquid crystal with colloidal particles: ’�gure of eight,’
’�gure of omega,’ and ’entangled hyperbolic defect’. Compared to ’regular’ elastic
quadrupoles, all three provide for an order of magnitude stronger binding of
particles in the direction of entanglement with the binding potential being of a
string-like nature. Self-assembly by topological defects could be applied to other
systems with similar symmetry. Entangled colloids are introduced as novel types
of structures, where particles are topologically bound by delocalized defect loops,
producing robust and possibly chiral structures. In these controlled conditions,
the colloids assemble with defects entangling amongst each other, see Figure:
2.11.

The binding potential for the �gure of eight structure is also shown in the Figure:
2.11d, inset shows the value of the force of entanglement as a function of particle
separation (x) normalized to the particle diameter (d). It is observed that the
binding force is of� 10 pN and at the equilibrium state is the force of repulsion
balances 0 as the force of entanglement. However, the binding potential of
entangled colloids is� 10000kB T, which is ten times greater than those created
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Figure 2.11 Snapshot of two closely placed Satrun ring defect colloids (a)
entangling of disclination loop before reaching equilibrium, (b)
equilibrium entangled state forming �gure of 8 around particle, (c)
pair binding energy for the �gure of 8 as a function of particle
separation (x) normalised to particle diameter, D . [89].

by isolated Saturn ring colloid pairs. The fundamental di�erences compared to
non-entangled nematic quadrupolar colloids are: (a) defect loops that entrap
and entangle particles, (b) a defect loop that entangles several particles has
a topological charge that compensates the sum of the charges arising from all
entangled particles, (c) shearing of a defect loops yield string-like behavior of the
binding potentials, (d) an order of magnitude stronger inter-particle potentials
along the direction of entanglement, (e) the possibility to spontaneously introduce
chirality into non-chiral materials. By adding additional colloidal particles an
array of particles are formed by manipulating the defect loops to continue the
entanglement inevitably. Readers are directed to [35, 77] for a review on knot
and link theory of multiple entangled quadrupolar colloids.

In this thesis, we are concentrating on dense quadrupolar colloids composites in
nematic LCs, which gives rise to the entanglement of Saturn-ring defects, thus
providing stability to the composites.
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Chapter 3

Rheology

Complex uids, unlike water, are Non-Newtonian and exhibit viscoelastic
properties when exposed to external stresses. Di�erent rheological models, the
ow behavior of the complex uid, and experimental rheometry will be described
in this chapter. Rheological properties are extremely useful in the structural
characterization of a colloid and medium, and the determination of how particle-
particle interactions a�ect the stability of the mixture. An excellent introductory
treatment of rheology is given by Barneset al. [14]. A more fundamental
treatment of colloid chemistry, including rheology, is given by Hunteret al. [75].
A material can be identi�ed as viscous uid or elastic solid, but, in everyday
life, all materials have the property of both of these components, and they are
classi�ed as viscoelastic uid. In an ideal viscous liquid, the energy of deformation
is dissipated in the form of heat and cannot be recovered just by releasing the
external forces, whereas, in an ideal elastic solid, the deformation is fully recovered
when the stresses are released. Suspended particles in a viscoelastic material
form the basis of most of the fast-moving consumer goods. In this thesis, we are
concerned with investigating the consequences of the presence of particles on the
rheological properties of nematic liquids, in particular, the shear viscosity and the
non-linear viscoelastic properties. Before going into the experimental �ndings, a
comprehensive review of the rheology principle is given, followed by the review
of the rheology characteristics of di�erent �lled viscoelastic materials.
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Figure 3.1 Schematic representation of stress component acting on the faces of
a cube. � 11 , � 22 and � 33 are normal components of stress and rest
of � ij are tangential components.

3.1 Rheology of continua

3.1.1 Stress tensor

The stress tensor, �� ij in a continuous medium at a speci�c point under simple
shear ow can be represented by a 3 X 3 matrix, given by

� i;j =

�
�
�
�
�
�
�

� 11 � 12 � 13

� 21 � 22 � 23

� 31 � 32 � 33

�
�
�
�
�
�
�

(3.1)

Here i, j represents the orthogonal directions in the Cartesian coordinate system.
The total force acting per unit volume in the presence of stress is represented
by Equation: 3.2 wheref i is the body force [204]. The representation of various
stress components acting on a cube of side L of a continuous medium is depicted
by the Figure: 3.1.

f �
i = f i +

�� ij

�x j
(3.2)

In mechanical equilibrium condition, the total force acting on the medium
becomes zero and rendering Equation: 3.3 as

f i +
�r� ij

�x j
= 0 (3.3)
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Equation: 3.3 is also known as Cauchy relation [61]. For a Newtonian uid, this
implies steady ow; for an elastic solid, it implies that the deformation of the
body is not changing in time. In any material, the total stress tensor is the sum
of both elastic and viscous stress given by:

� ij = � p� ij + � ij (3.4)

where� i;j is viscous stress tensor,� ij is Kronecker delta and� ij =1 when i = j and
0 when i6= j and p is the mechanical pressure,p = � 1=3� ii = � 1

3(� 11 + � 22 + � 33)
[101].

3.1.2 Strain tensor

The state of deformation at a speci�c point on the application of stress is denoted
by strain tensor, � de�ned as the Equation: 3.5, where X(x,t) is the displacement
of the material element at position x relative to a reference point [9].

� ij =
1
2

�
�X i

�x j
+

�X j

�x i

�
(3.5)

It does not take into account the rotation of the medium as it does not change
the relative position of the particles. Thus, one can de�ne the strain rate tensor
� ij as

� ij =
1
2

�
�v i

�x j
+

�v j

�x i

�
(3.6)

The simplest strain and stress tensor constitutive relation for a simple shear ow
is for Newtonian liquids where Equation: 3.4 translates to Equation: 3.7.

� ij = � p� ij + 2 �� ij (3.7)

where � is de�ned as the shear viscosity of the uid. In the condition of simple
shear ow, the velocity gradient is in 1 and 2 plane (see Figure: 3.1), thus
Equation: 3.7 translates into a well known expression proposed by Newton,
� 12 = � _ [110].
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3.2 Types of uids

Fluids can be classi�ed as Newtonian or non-Newtonian depending upon the
change in the value of their viscosity upon the application of external stress.

3.2.1 Newtonian uid

The viscosity of a Newtonian liquid does not change on the application of stress,
although it depends upon other factors like temperature and pressure. Isaac
Newton was the �rst one to propose the basic relation between viscosity and stress
for an ideal liquid under ow [14]. According to Newton’s law of viscosity, the
shear stress between adjacent uid layers is proportional to the velocity gradient
between the two layers. The ratio of shear stress to shear rate is a constant, for
a given temperature and pressure, and is de�ned as the viscosity or coe�cient of
viscosity. Equation: 3.8 describes the Newtonian law of viscosity:

� 12 = � _ (3.8)

Some examples of common Newtonian uids are water (� No = 0.001 Pa.s), olive
oil ( � No = 0.1 Pa.s) and honey (� No = 10 Pa.s).

3.2.2 Non-Newtonian uid

A non-Newtonian uid exhibits a non-linear relation between the stress and strain
tensor, implying that the Equation: 3.7 is no longer valid. The shear viscosity
of these uids is dependent upon the shear rate. Polymer solutions [12, 16],
lamellar suspension, liquid crystalline suspensions [200], and molten polymers are
non-Newtonian uids. Detailed discussions on non-Newtonian uids have been
covered in several review articles and books [14, 75, 76]. A shear-stress versus
shear-rate curve comparing Newtonian and non-Newtonian uids is shown in the
Figure: 3.2. Non-Newtonian uids can be further classi�ed as shear thinning,
viscoelastic, dilatant, and thixotropic uid. In this thesis, we are focusing on
non-Newtonian uids that have yield stress and exhibit shear-thinning properties.
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Figure 3.2 Schematic stress curve of Newtonian, and non-Newtonian uid.

Shear-thinning uids

The viscosity of shear-thinning uids decreases with increasing shear rate. The
nature of the curve is concave as represented schematically in the Figure: 3.2.
Filled polymer solutions, dense, attractive colloidal suspensions [34, 76], and �lled
liquid crystalline composites are some examples of materials exhibiting shear-
thinning properties.

3.3 Experimental rheometry

A rheometer o�ers an important tool to study the viscoelastic property of the
material. Rotational rheometry also allows to control the stress and to record
the angular velocity of the mobile part simultaneously. In this thesis, the
viscoelasticity of colloids and liquid crystal composites were studied using a strain-
controlled rotational rheometer - ARES G2. A rotational rheometer can be of
two types: (a) strain-controlled where the strain rate is held �xed and the stress
is deduced from the torque transmitted by the uid, (b) stress-controlled, which
can apply a force mode to material and measure the subsequent deformation.
Figure: 3.3 shows the working principle of strain and stress-controlled rheometer
[116].
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Figure 3.3 Schematic of working principle of (a) strain controlled and (b) stress
controlled rheometer [116].

Figure 3.4 Schematic representing parallel plate geometry, with disc radius R
and gap between the disc denoted by H.

3.3.1 Parallel-plate geometry

We have used a parallel plate, (PP), geometry for all rheology experiments
because the gaps can be varied to accommodate a large size composite between
the plates, unlike the cone-plate geometry, which must be operated at the gap for
which it was designed. A schematic representing the parallel-plate con�guration
is shown in the Figure: 3.4. The sample is placed between two parallel-plates
mounted vertically. PP �xtures exhibit maximum shear at the plate edges
and zero along the vertical axis; that is, this geometry generates a radially
inhomogeneous ow �eld. Thus the working Equation for torque, (� ), stress,
� , and shear-rate, _ , in a schematic form and readers are directed to [116] for a
detailed derivation.

The torque generated on the upper disk is measured as a function of the angular
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Figure 3.5 Schematic showing stress and strain out of phase for viscoelastic
uids and parallel plate geometry used in standard rotational
rheometer.

velocity, 
, of the lower disk. The maximum shear-rate at the disk edge is:

_ r =

 r
H

(3.9)

where H is the gap between the discs. The working Equation for torque (� ) and
stress (� ) is given by:

� =
� 
 �R 4

2H
(3.10)

� =
�

2�R 3

�
3 +

d ln T
d ln _ r

�
(3.11)

It is also possible to measure the di�erence of normal stresses,N1 � N2 with
parallel plates [116].

3.4 Small-amplitude oscillatory ow

The basic principle of oscillatory rheology experiment is that a sinusoidal strain , ,
at a constant angular frequency ,! , is applied to the sample to induce a sinusoidal
shear deformation. The relation between stress,� , and strain,  , de�nes the
property of the material. In oscillatory rheology, � and  vary sinusoidal with
time with a phase di�erence of� , where 0< � < �= 2 (see Figure: 3.5) [37]. Using
a standard rotational rheometer, the sample is placed between two parallel-plates,
and a torque is applied, and a sinusoidal strain, , at a constant angular frequency,
! , is applied to the sample to induce a sinusoidal shear deformation. Thus, the
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shear-rate varies sinusoidally given by the Equation: 3.12, whereas the shear stress
varies sinusoidally as a function of frequency,! , and an amplitude given by the
Equation: 3.14. G0 and G00are linear viscoelastic material functions, respectively,
referred to as the dynamic storage and loss moduli. Storage modulus,G0, is the
elastic term that gives the measure of the amount of energy required to deform the
sample elastically, and loss modulusG00is the viscous term which gives the amount
of energy dissipated when the sample is deformed. Another term of importance
is the ratio of loss to storage modulus, de�ned as loss tangent,tan� = G00=G0.
And the ratio of loss modulus and angular frequency gives the value of kinematic
viscosity, � ke = G00

! .

_ = _ o sin(!t ) (3.12)

� = � o sin(!t ); (3.13)

� = G0! sin(!t ) + iG00!cos (!t ) (3.14)

3.5 The rheology of complex uids

The ow behavior of common complex uid categories is reviewed to provide
context for the rheology of the �lled nematic composites reported in this thesis.

3.5.1 Rheology of colloidal dispersion

Colloidal particles, dispersed in an isotropic solvent such as water and oil, have
gained a lot of attention in the past century because of their direct application in
industry. Concentrated suspensions of particles in a low viscous matrix are well
known in literature [12, 22, 34, 45, 55, 76, 84, 151, 152, 190]. They are relatively
simple system, and their characteristics can give insights on the properties of a
complex systems.

The linear viscoelasticity of dense colloidal dispersion near the glass transition
(� g = 0 :58) has been studied by Mason and Weitz [122].

36



Figure 3.6 The evolution of G0 and G00as a function of  for di�erent � of
uncoated silica spheres in ethylene glycol. The value ofG0 and G00

increases with the concentration of silica microspheres.[122]

Oscillatory sweep

The oscillatory strain sweep of a dense suspension of silica microspheres in
ethylene glycol is shown in the Figure: 3.6. The suspension starts to show elastic
behavior, G0 > G 00at � � 0.52. However, the value of yield strain, c, where the
crossover ofG0and G00occurs, decreases with increasing� . The linear viscoelastic
regime (LVR) for dense silica suspension is limited by low strain values, � 0.1.
The frequency sweep is studied within the LVR. Figure: 3.7 shows the frequency
sweep curve for silica suspension. It is observed that the storage moduli increase
with frequency before plateau near the glass transition,� g, however,G00exhibits
a de�nitive minimum at low frequency before linearly increasing with frequency,
� ! . G0 dominates G00 as the concentration increases over a certain range of
frequency,! � 10 rad/s. But at a higher frequency, the rise inG00is greater than
G0, and the viscous property takes over.

To explain the behavior ofG0 and G00, Mason and Weitz proposed a model based
on the relaxation of density uctuations of the spheres [192]. At high frequency,
i.e. at short times, the relaxation of the density uctuation reects the localized
motion of the individual spheres, entailing the full details of the hydrodynamic
interactions. However, at low frequencies and at longer times particles are trapped
in cages formed by the neighboring particles. The evolution of these cages with
concentration determines the behavior ofG0 and G00as a function of frequency.
At concentration, � < � g, cages can break slowly withG00> G 0, however at �
> � g these cages do not break leaving the system more elastic. Cage dynamics
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Figure 3.7 The evolution of G0 and G00as a function of ! for di�erent � of
uncoated silica spheres in ethylene glycol. The value ofG0 and G00

increases with the concentration of silica microspheres. [122]
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can be described by mode-coupling theory, and readers can refer to [40, 62] for
details on theory and derivation, which is based on the light scattering data from
hard spheres near the glass transition. Combining the mode-coupling theory
and the e�ects of energy storage due to Brownian motion, the expression for
G0 can be written in the form Equation: 3.15; where� D is the di�usion time,
c is the numerical constant, g(2a,� ) is the radial distribution function given
by 0:78

0:64� � [122]. The elastic modulus has a contribution from thermal motion,
the concentration of the colloidal particles (� ), and di�usion time as well on the
applied angular frequency (! ).

G0
D (! ) = c(

kB T
a3 )( � 2)g(2a; � )( !� D )2 (3.15)

The loss modulus is composed of two components and is linearly dependent on
! , such thatG00

D = G0
D + �! , where � is the suspension viscosity. It has been

shown by simulation that both G0 and G00diverge at � = 0.64, i.e. at random
close packing [? ]. In summary,

ˆ G0 > G 00with G0 / � 2 at � � 0.52.

ˆ G0 has a linear viscoelastic plateau withG0 � ! 0 when � � � g .

ˆ G00linearly increases with frequency,G00� ! at � � � g = 0.58.

Flow behavior

Three concentration regimes for determining ow properties of colloidal sus-
pension were identi�ed by Rutgers and Thomas [168]. These are (a) a dilute
regime, restricted to � < 0.1 colloidal volume fractions, the viscosity showed
linear behavior independent of shear-rate thus the rheology is Newtonian like
[110], (b) the semi-dilute regime, 0.1< � < 0.25, where viscosity showed a higher-
order dependence on� , but the behavior is still approximately Newtonian and (c)
the concentrated regime,� > 0.25, characterized by the rapid growth of apparent
viscosity and increasingly non-Newtonian behavior (particularly shear-thinning)
with volume fraction, � . Einstein addressed the viscosity behavior theoretically
for the dilute regime [52]. The equation is mathematically written as� = � o(1
+ k � ), where � is the measured viscosity,� o is the Newtonian continuous phase
viscosity, and k is called the intrinsic viscosity, which is calculated to be 2.5 for

39



hard spheres. This equation is only valid for dilute suspension at� < 0:1. The
mechanics of dilute and semi-dilute suspensions are well understood, primarily
due to the work of Einstein[52], Batchelor [18], and Batchelor and Green [19].
But, since in this thesis, we are dealing with a range of �ller volume fraction from
dilute to concentrated suspension, 0.1� � � 0.5 we use a semi-empirical relation
proposed by Krieger and Dougherty [76]. The equation form of Krieger-Dougherty
relation is given by Equation: 3.16,� m is the maximum packing fraction.

� r = [1 �
�

� m
]� k� m (3.16)

The viscosities of suspensions consisting of uniform-size rigid spherical particles as
a function of varying concentrations were measured by Chonget al and group [34].
The viscosities of colloidal suspension consisting of uniform-size rigid spherical
particles were measured by Robinson [20] and Rutgers [168]. The e�ects of
particle size distributions on viscosities have been investigated by Roscoe [165],
Luckham [112], Parkinson [144] Sweeney, and Eeson. They studied the viscosity
curve for a range of volume fraction of silica spheres in an isotropic solvent.
The plot of relative viscosity as a function of� is shown in Figure: 3.8, the
linear theoretical relation is followed up to� � 0.45. However, these isotropic
suspensions follow the Krieger-Dougherty relation up to random close packing
(RCP) fraction of dense colloidal suspension.

The stress versus shear-rate curve for large (D� 2000� m) glass-sphere suspension
at � < � g = 0.479 and � � � g = 0.579 is shown in Figure: 3.9. The curve is
�tted with a Herschel-Bulkley relation. This model was developed by Herschel
and Bulkley [71] speci�cally for describing shear-thinning uids with yield stress.
This model gives an empirical relation between shear stress� and shear-rate _
denoted by the Equation: 3.17 where� y is the yield stress, k is a constant and n
is the index< 1 for shear-thinning uid and > 1 for the shear-thickening system.
Both the hard-sphere suspensions have a value of n< 1, proving that dense
suspensions exhibit shear-thinning behavior.

� = � y + k _ n (3.17)

In summary:

ˆ The relative viscosity of colloidal suspensions follows the Krieger-Dougherty
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Figure 3.8 Relative viscosity of colloids in isotropic solvent, Straight line depicts
the linear relation between relative viscosity and volume fraction and
curved line is the curve from Kreiger-Dougharty relation. [34]

Figure 3.9 Stress versus shear-rate curve for suspension of glass spheres (2000
� m) , at intermediate and high � , the suspension viscosity depends
on strain rate (shear-thinning, n < 1); at the highest � , the
suspensions are shear-thinning, and show additionally an apparent
yield stress� 0. Graphs are �tted with Herschel-Bulkley Model [71].
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Figure 3.10 the mechanical spectrum of dynamic moduli as a function o
frequency for dense emulsion, � = 0.8, at low frequency G0

plateaus and is greater than G00 before increasing as ! 1=2 at
high frequencies, however theG00 shows a de�nite minimum at
intermediate frequency before increasing as! and overtaking G0

at higher frequencies. Taken from [120].

relation up to RCP.

ˆ Colloidal suspensions are shear-thinning, however at the highest� � 0.58
with the value of indexn � (0.70 - 0.95), there is a presence of yield stress.

3.5.2 Emulsion rheology

Emulsions are dispersions of two immiscible liquids such as oil droplets in water as
a continuous medium stabilized with the addition of an inetrfacial stabiliser, such
as surfactant [15]. Emulsion rheology plays a very important role in the processing
of personal care [127], food, pharmaceutical, and paint industry. There have been
some excellent reviews on the rheology of emulsion by Tadros [184] , Sherman
[175], Madiedo [24], Carmen [113] and Barnes [17]. In this section, we will be
discussing the rheology of concentrated PDMS emulsion.

Oscillatory rheology

The linear viscoelasticity of mono-disperse emulsions have been studied by Mason
et al. [120]. At concentration, � � � g both the dynamic moduli exhibit the
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response similar to hard-sphere glassy suspension [122] withG0 exhibiting a
plateau and G00 linearly increasing with frequency. However, at concentration
greater than the glass transition, the behavior is di�erent. Mason [120] studied
a silicone oil-in-water emulsion with� = 0.8 and size of the droplets, a = 0.5
� m over nine decades of frequency (10� 3 to 107) rad/s, see the Figure: 3.10.
The plot suggests at low frequency,G0 dominates overG00and exhibit a linear
viscoleastic plateau before increasing as! 1=2 at high frequency, ! > 105 rad/s.
the increase inG0 was explained by slipping motion of the un-packed droplet
structures [43, 109]. However, the loss modulus,G00, exhibits a de�nite minimum
at intermediate frequency because of the slow glassy relaxation in the droplet
structure before linearly increasing with frequency and �nally overtakingG0 at
high frequencies,! > 105 rad/s.

The universal volume fraction,� , dependence of the value of linear viscoelastic
plateau value ofG0 is described by:

G0(� ) = 1 :5
� �

a

�
(� � � RCP ) (3.18)

where � is the interfacial tension between oil droplets and water, a is the droplet
radius and � RCP is the volume fraction at random close packing = 0.64 [121].

Flow rheology

Saiki and group [171] studied the ow rheology of concentrated,� � 0.50 PDMS
emulsions in water. They investigated the e�ect of droplet deformation on the
shear viscosity of the emulsion made from two di�erent viscosities PDMS, 0.3 cP
and 0.45 cP. For a plot of shear viscosity as a function of shear-rate for PDMS(0.3)
emulsion exhibiting shear-thinning behavior, see Figure: 3.11. The data were
�tted using the power-law equation. The power-law model was proposed by
Ostwald [198],[141], and de Waele [140] and has since then been fully described
by Reine [162]. It relates the two parameters of the viscosity curve (� and _ )
written in the form of an Equation: 3.19 where k is called the consistency andnP L

is the power-law index calculated from the slope of viscosity curve. The power-
law index is a dimensionless quantity with a value of 1 for Newtonian liquid and
tending towards 0 for shear-thinning non-Newtonian uids. The power-law index
reects the structural changes occurring within the emulsion on the application
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Figure 3.11 Shear thinning plot of PDMS (0.3) emulsion for di�erent volume
fraction. [171]

of shear. For highly shear-thinning uid, the power-law index� 0.2 - 0.3.

� = k _ (nP L � 1) (3.19)

The power-law index,nP L , was found to be less than 1 stating that the PDMS
emulsions show shear thinning property.

The relative viscosity, (� r = � �
� media

) for di�erent � was studied and the plot
comparing PDMS emulsion with hard-sphere silica suspension is shown in Figure:
3.12. It was observed that both PDMS emulsion and silica suspension show
identical behavior at low concentration, � � 0:4 but as the concentration is
increased, the relative viscosity (� r ) deviates from Kreiger-Dougharty �t. Thus
it was concluded that at low concentration (� � 0.4) regime droplets do not
touch each other and do not get deformed. At higher concentrations, due to
particle-particle interaction and hydrodynamic stress, droplets get deformed. The
collision between droplets causes frictional forces between them in addition to
hydrodynamic interaction. The droplet deformation was quanti�ed using the
capillary number, NCa, which is the ratio of hydrodynamic stress and interfacial
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tension mathematically written as:

NCa =
� media r _

�
(3.20)

where � media is the viscosity of the dispersion media, r is the droplet size, and
_ is the shear-rate. Torzaet al. [186] have derived an empirical equation for
calculating the droplet deformability. It is based on the ratio ofNCa and � media .

L � B
L + B

=
5(19K + 16)

4(K + 1)
q

20
NCa

+ (19K )2
(3.21)

where K = NCa
� �

and L and B are the longer and shorter axis of the deformed
droplets. It can be seen the the equation is directly proportional to� � , thus
as the concentration of droplets increase the steady state shear viscosity will
increase and the droplet deformation will be higher. Now from Figure: 3.12 it
is observed that PDMS (0.3 cP) emulsion deviates from hard-spheres at� � 0.4
whereas PDMS (0.45 cP) emulsion deviates at� g = 0.58. This discrepancy was
further explained by hydrodynamic interactions in addition to collision between
spheres. The hydrodynamic force between two spheres is,F = 6�� media _r 3

H ,
where H is the particle separation and can be evaluated from volume fraction,
� . H = 2 r [ ( � max

� )1=3 � 1]. Putting _ =1000/s, � max = 0.68 and r = 0.86� m
and � =0.4 the hydrodynamic force comes out to be 10� N/m and critical
deformation force,Fcrit � 20 � N/m for PDMS (0.3) emulsion and 200� N/m for
PDMS(0.45) emulsion. Thus, the hydrodynamic forces are supressed for PDMS
(0.45 cP) emulsion and only particle interaction gives rise to droplet deformability
whereas for lower visocisty PDMS (0.3 mPa.s) emulsion, hydrodynamic forces
play a bigger role and the deviation from Kreiger-Dougharty relation occurs at
� < � g. Deformation can allow particles to move past each other easily on the
application of shear, hence the emulsion will have low viscosity as compared to
hard sphere suspension at the same volume fraction. The deviation from hard-
sphere suspension for PDMS(0.45) emulsion is at� = 0.58 = � g. � g is the glass
transition volume fraction at which particles are caged by their neighbors which
a�ects their rheology behavior.

In summary:

ˆ At � � � g emulsion shows viscoelasticity behavior similar to hard-sphere
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Figure 3.12 Curve of relative viscosity (� r ) at _ = 1000/s as a function of
� for PDMS (0.3);closed circle, PDMS (0.45);closed triangle and
silica spheres; open square. The line represent Kreiger-Dougharty
�t[171], dotted line is from the theory proposed.

glassy suspension, withG0 � ! 0 and G00� ! .

ˆ At � > � g , for frequency range (! < 105 rad/s), G0dominatesG00exhibiting
a plateau however at! > 105 rad/s, G0 � ! 1=2. G00 shows a de�nite
minimum at imtermediate frequencies before linearly increasing at higher
frequencies.

ˆ Emulsions also exhibit shear-thinning behavior beyond the glass transition.

ˆ Both hard-sphere and emulsion show identical ow behavior at low
concentration, � � 0:4, but as the concentration is increased, the relative
viscosity (� r ) of emulsion deviates from Krieger-Dougherty �t beyond� �
0.58 because of droplet deformation.

3.6 The rheology of elongated structures (polymer
and worm-like micelles).

A polymer is a macromolecule made from many repeating sub-units or monomer;
in greek polymer means ’many parts’. They can be both synthetic polymer, for
e.g. polystyrene, polyethylene, etc. and natural polymers like proteins, hemp,
silk, etc. They are viscoelastic materials and are ubiquitous in our day to day
life with a wide range of applications. For example, polystyrene is widely used in
the packaging industry, glyptal is used for making paints and coatings, bakelite
is used for making electrical switches and insulator, etc. Polymers are also used
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in the personal care industry in the form of emulsi�er, thickening agent, and
rheology modi�er [2]. Depending upon the state and concentration, polymers
can be classi�ed into:

1. Dilute solution: When a small amount of polymer, (� � 0.1), is added to
a solvent and the motion of one polymer chain does not a�ect other than
the polymer solution is diluted.

2. Semi-Dilute solution: When the concentration of polymer in the solvent is
increased, such that the dispersed polymers in solvent just begin to touch
each other at 0.1� � � 0.4.

3. Concentrated solution: When the concentration of polymer increases with
� � 0:4, they began to overlap among leading to an entangled structure.

4. Molten polymer: A state of pure polymer which has been exposed to high
enough temperature so that it melts. Molten polymers are always in motion
and full of entanglements.

Figure 3.13 Decomposition of the tube resulting from a reptative motion of the
primitive chain. The parts which are left empty disappear. [12, 60]

The elastic property of polymer melts was attributed to their entangled structure
[28], [189]. The tube model proposed by Edward and Doi in 1967 [119] was the
�rst model describing the dynamics of the entangled polymer network. According
to this model, each polymer is con�ned in a tube-like region, and its motion is
restricted by surrounding chains. A tube interaction potential was given for
topological interaction. De Gennes in 1971 proposed that polymers do not move
tangentially to the tube but move predominantly along the tube i.e., they reptate.
This is the reptation model of polymer [60]. The motion of the surrounding chains
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Figure 3.14 Curve of G0 and G00as a function of frequency for polymeric melts
[88].

leads to the reorientation of the polymers. The reptation model was applied to
the rheology of the entangled polymer by Doi and Edward. Their predictions are
in agreement with the experimental �ndings.

3.6.1 Oscillatory response

To understand the elasticity of polymers, their structure can be considered as
a spring that stretches and recoils. Recoil results from the elastic energy being
stored during the restoration process. Polymers are not completely elastic, so it
is important to study their linear viscoelastic response through rheology.

The general oscillatory response of a polymer melt system over a wide range of
frequency is shown in the Figure: 3.14 [88]. The curve has four di�erent regimes
where dynamic moduli are exhibiting di�erent frequency responses.

1. Viscous response at low frequency:
At low frequency, the response is always viscous withG00 > G 0. In this
region,G0 increase is quadratic with! asG0 � G� 2! 2 whereasG00increases
linearly with ! as G00� � 0! . This behavior is typical of Maxwell Fluid.

The Maxwell model for viscoelastic uids gives a relation between dynamic
moduli (G0, G00) and angular frequency (! ). Figure: 3.14 shows the
oscillatory frequency sweep of a typical Maxwell uid [12, 14, 16]. The
storage (G0) and loss moduli (G00) in terms of frequency are given by
Equation: 3.23, where! is angular frequency and� is the relaxation time
= �=G 00.
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G0 =
G(!� )2

1 + ( !� )2 ; (3.22)

G00=
�!

1 + ( !� )2 (3.23)

However, as the applied frequency is increased,G0 begins to dominate, and
solid-like behavior prevails. The determinant of which kind of behavior is
determined by Deborah number,De which is the ratio of the relaxation time
to the test time. The measure ofDe = !� . Hence, low Deborah numbers
always indicate liquid-like behavior, whereas high Deborah numbers mean
solid-like response. At the midpoint, whereG00goes through a maximum;
G0 = G00, and this takes place at a critical crossover frequency of! = 1=� ,
where � is the relaxation time of the polymer. Some of the most common
Maxwell uids are a polymer that is used as a thickening agent such as
hydrophobic ethoxylated urethane and worm-like surfactant micelles [181].
All polymer solutions exhibit Maxwell uid-like behavior at low frequency
but it is not always detected because some materials take a very long time
to relax back to their original shape. The relaxation time can be calculated
from the crossover ofG0 and G00.

2. Rubbery plateau:
In this region, the elastic property dominates withG0 > G 00. G0 shows a
plateau independent of! . A schematic curve ofG0 for di�erent polymer
systems is shown in the Figure: 3.15. The plateau region is clear and
pronounced in high molecular weight polymers (with entanglements) in the
concentrated solution and the melt states. Cross-linked polymers have a
wide and predominant plateau region [88]. The link between the plateau
region and the cross-linking suggests that the entanglement acts like a kind
of constraint (like the cross-links) to the motion of the polymer contour,
leading to the plateau region. Untangled melts do not have any plateau
region, and directly make the transition to the Maxwell region.

3. High-frequency cross over-region:
At high frequency also due to relaxation and dissipation mechanisms, the
value of G00> G 0 again giving rise to a second-crossover frequency where
G0 = G00.

4. Glassy region:
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Figure 3.15 G0 response at low frequency for di�erent polymers [88].

At very high frequencies, the glassy behavior takes over withG0 > G 00[174].

On a standard rotational rheometer, the range for a frequency sweep experiment is
from 10� 2 to 102 rad/s. Thus, out of the above mentioned viscoelastic behavior,
only two regions are usually seen depending upon the relaxation time of the
material. If !� � 1, then viscous response and transition to ow is observed.
But when !� > 1, a plateau region is observed withG0 > G 00and when !� < 1
viscous response always dominates withG00> G 0.

3.6.2 Flow behavior

Zero shear-rate viscosity

The zero shear-rate viscosity , (� 00), is the viscosity of the polymer when shear-
rate _ ! 0.

ˆ For dilute solution, � sp = � � � s
c� s

, where � s is the viscosity of the solvent and
c is the concentration of the polymer. It can be seen that the viscosity of
dilute polymer solutions, � varies linearly with concentration.

ˆ For semi-dilute solution, the speci�c viscosity,� sp varies quadratically with
concentration. � sp � c2.
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(a) (b)

Figure 3.16 (a) Scaling of the speci�c viscosity (� sp) with concentration of
polymers. The �rst transition denotes the semidilute regime and
the second corresponds to the entangled regime [115], (b) Schematic
of shear-thinning behavior with concentration of polymer.

ˆ In the concentrated and molten polymer state, which has entangled
structures in them, the viscosity has a higher dependence on concentration.
� sp � c3:4 [115]. Also the relaxation time,� c � c3:4. This is because the
relaxation time depends on the linear size of the polymer giving a direct
bearing to the concentration and molecular weight of the polymer.

Shear-thinning behavior

The viscosity of polymer solutions decreases with increasing shear-rate, thus
exhibiting shear thinning property. The shear-thinning rate is higher for a
concentrated solution as compared to a dilute one. Figure: 3.16 shows the
pronounced shear-thinning behavior for concentrated polymers as compared to
dilute polymer solutions [16], [12]. In a concentrated solution, polymers entangle
to form a network-like structure. These entanglements act like a node with energy
dynamics equivalent to that of a covalent bond, thus restricting the motion of
polymer. On the application of shear, these network structures begin to detangle
and align along the direction of ow, thus providing less constraint to ow and
exhibit shear thinning behavior.
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(a) (b)

Figure 3.17 (a) Schematic representing stress relaxation behavior in concen-
trated polymer solution, (b) Schematic of the Normal stress (N1)
curve as a function of shear-rate, it can be seen that the value of
N1 becomes greater than the shear stress at higher shear-rate.

3.6.3 Stress Relaxation

In the stress relaxation measurement, a constant strain is applied, and the decay of
stress to the equilibrium value is studied. A schematic diagram of stress relaxation
[88] is shown in Figure: 3.17. At the beginning of a small-time response, the
polymer shows glassy behavior with a plateau at� 0. The response is elastic at
small time scales but the solutions begins to ow at large time scales.

3.6.4 Normal stress

The normal stress has two components de�ned by;N1 = � 11 � � 22 and N2 =
� 22 � � 33, see Figure: 3.1, where 1 is the ow direction, 2 is the ow gradient
direction and 3 is the vorticity direction. The di�erence between normal stresses
for an isotropic liquid is zero. N2 is usually zero for polymeric liquids, however,
the value ofN1 can become larger than the value of shear stress for concentrated
polymer solution and melts represented in the Figure: 3.17 b. The existence
of N1 for polymer uids is because of the anisotropy in its molecular structure
under ow. For example, when a polymer is in the equilibrium position, it is
coiled up and at rest, but on the application of shear, the coiled structures recoil
and stretch to align towards the shear direction. This results in an elongated
structure with the restoring force in 11 and 22 planes to be of di�erent values.
These di�erent plane restoring forces gives rise to normal stresses.
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3.7 The rheology of �lled polymers and their
solutions.

Many di�erent types of �llers are added to modify the mechanical properties
of the material, enhanced durability, or cutting the cost of processing. Carbon
�bers are added to polymers for enhanced strength and conductivity; particles
are added in rubber to enhance its toughness, calcium carbonate is added to
toothpaste formula for whitening e�ect on teeth, silica particles are added in
cosmetic product to act as abrasives. Fillers can be metal, non-metal, organic,
or inorganic compounds. They can have di�erent shapes, sizes, surface charges,
density, conducting properties, etc. These are carefully chosen to answer the
needs of the formulation. In this thesis, we are concentrating on spherical �llers.
Readers can refer to [174] for a detailed description of di�erent types of �ller
particles, and their rheology behavior in polymer melts.

3.7.1 Active and In-active �ller

Fillers can be broadly divided into two categories: active and in-active, often
called passive depending upon their interaction with the dispersion medium.
Active �llers strongly interact with the dispersion matrix, implying a strong
mechanical reinforcement of the network, thus enhancing the gel strength [169].
The passive �ller reduces the strength [47]. The e�ect of the �ller also depends
upon the value of both the moduli,G0 and G00, the higher the elastic moduli of
the dispersion matrix, the less the e�ect of the active �ller, but the greater the
e�ect of the inactive �ller (and vice versa). This was discovered by Dickinsonet
al. [48], who studied the viscoelastic properties of heat-set whey protein emulsion
gels containing protein-covered droplets and surfactant-covered droplets.

3.7.2 Rheology of �lled polymer system

The rheology of �lled polymer composites has been extensively studied by Barnes
[16] and Shenoy [174]. Modeling of the rheological behavior of �lled systems has
been reviewed in depth by Shenoy [174], Macosko [116], and Han [69]. The
main factors a�ecting the rheology of �lled polymer composites are size, shape,
nature, surface charge of the �ller, the intrinsic viscosity of the polymer, and the

53



(a) (b)

Figure 3.18 (a) Oscillatory strain sweep of � = 0.252 of Mg(OH )2 in
Poly(ethylene-co-octene) composites. (b) Frequency sweep of
di�erent � values of Mg(OH )2 in Poly(ethylene-co-octene)
composites [118].

maximum packing fraction of the �ller.

3.7.3 Oscillatory response

An oscillatory strain sweep curve of� = 0.252 Mg(OH )2 in Poly(ethylene-co-
octene) composites is shown in Figure: 3.18 [118]. It is observed that beyond
= 0.8% =  c, the LVR regime is broken, andG0 drastically decreases whileG00

displays a maximum. All �lled polymer systems exhibit non-linear response after
a certain value of strain, c. The value of yield strain, c decreases with increasing
� . It has also been observed that as the value of� increases, the extent of the
linear viscoelastic regime decreases [31]. The value of storage and loss moduli
systematically increases with the value of� in the polymer [50, 70]. The increase
in G0 is attributed to the increase in rigidity of the composite on the addition
of solid microspheres, whereas the increase inG" is due to the more pronounced
dissipation process occurring at higher� . Faulkner and Schmidt [51] �rst gave
the relation betweenG0, G00, and volume fraction � . They conducted oscillatory
strain sweep experiments on glass beads �lled polystyrene system up to� = 0 :26
and coined the expression forG0 and G00given by Equation: 3.25.

G0(�; ! ) = G0(0; ! )(1 + 1 :8� ); (3.24)

G00(�; ! ) = G00(0; ! )(1 + 2 � + 3 :3� 2) (3.25)
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A similar relation between relative dynamic viscosity and reduced volume fraction
(�=� m ) was given by Chonget al [34] and Polinski [153] and is shown in Equation:
3.26

� r = (1 �
�

� m
)� 2 (3.26)

From the frequency sweep for di�erent values of� of Mg(OH )2 in Poly(ethylene-
co-octene) composites, it is observed that as� increases the value ofG0 also
increases. At low frequency,G0 shows a plateau at volume fraction,� > 0.126.
The plateau suggests a percolated network structure [70, 118]. The composites
with � � 0.126 present solid-gel like response withG0 independent of frequency.
At low frequency, particle-particle interaction governs the dynamic response of
the composites; however, at a higher frequency, particle-polymer interaction takes
over [118].

3.7.4 Flow rheology

Concentrated �lled polymer melts exhibit shear-thinning behavior [15], [12],
[172], [154], [74], [153]. Figure: 3.19 illustrates the ow curve for glass spheres
suspended in a thermoplastic polymer at 150degC at di�erent �ller concentration.
It is seen that the Newtonian plateau becomes shorter with increasing� . Shear-
thinning is exhibited for all concentration [153]. The shear thinning index
calculated from the power-law equation is� 0.4.

3.7.5 Structure and rheology of worm-like micelles

Worm-like micelles are elongated and semiexible aggregates resulting from the
self-assembly of surfactant molecules in aqueous solutions. When micelles grow
and become worm-like, the aggregates are much like polymers, and as polymers,
they entangle above a critical concentration. The aqueous solutions then become
viscoelastic. There has been considerable research on the viscoelasticity of worm-
like micelles [29, 68, 170, 178, 195, 199, 203]. Worm-like micelles are also
considered as models for polymers because of their similar non-linear viscoelastic
properties.

When submitted to steady shear, these viscoelastic uids undergo a shear banding
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Figure 3.19 Variation of steady shear viscosity with shear-rate for �lled-glass-
spheres at di�erent � in thermoplastic polymer. Solid and open
symbols represent data set obtained by cone-plate geometry and
capillary rheometer, respectively (Taken from [153])

Figure 3.20 Comparison between the steady state shear stress results obtained
from controlled strain and controlled stress rheometry for CTAB-
D2O wormlike micelles at c = 0.18 wt. [30]
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transition as represented in the Figure: 3.20, which is associated with a plateau in
the stress versus shear rate curve [86]. The shear banding transition is a transition
between a homogeneous and a non-homogeneous state of ow, the latter being
characterized by a demixing of the uid into macroscopic regions of high and low
shear rates. The ow curve of the for CTAB-D2O wormlike micelles at� = 0.18
by weight at T = 32 � C [30]. In the lower branch, the stress increases linearly up
to at the critical value  , followed by a stress plateau that stretches over more
than a decade in shear rates. At high shear rates, there is a further increase in
stress.

3.8 The rheology of liquid crystals

In this section, the rheology of un�lled lamellar and nematic liquid crystal followed
by the �lled liquid crystal composites will be discussed.

3.8.1 Lamellar liquid crystals

The coupling between shear ow and the internal structure in a lyotropic lamellar
phase, is both of practical and fundamental interest. Shear ow deformation
is known to induce many structural changes in the mesoscopic order. Firstly,
a change in orientation of the layers [46, 205] and secondly shear induced
formation of multi lamellar vesicles (MLV) [103, 137, 145]. There are some
excellent reviews by Duke and Chapoy [51] on the rheology of lamellar phases,
by Bohlin and Fontell [23, 99] for small oscillatory shear experiments on lamellar
mesophases. The rheology of the lamellar mesophase formed by hen-egg lecithin
and water was studied by Bourgoin and Shankland [41]. Hirschet al. [72]
studied the ow properties of a lamellar mesophase formed in a quaternary
anionic surfactant/alcohol/hydrocarbon/water or brine system. They reported
shear thinning behavior in quaternary lamellar mesophase. The transient viscous
ow of the lamellar mesophase was analyzed by Gallegoset al. and Franco et
al. They ascribed the stress decay with shear time not only to the orientation of
liquid crystalline domains but also to their breakdown in smaller ones. McKay
et al. [123] reported linear viscoelasticity results obtained by small-amplitude
oscillatory shear for the lamellar mesophase formed by a double tail anionic
amphiphilic lipid at a composition located on the border with a dispersion region.
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Figure 3.21 Scaled loss tangent (tan� /M) as a function of the dimensionless
frequency (! ) for di�erent NLC polymer. [108]

He only described the behavior ofG0as a function of frequency. His work was then
carried forward by Robles Vazques [129], who characterized the entire viscoelastic
spectrum of the lamellar phase. Oswaldet al. [142] studied the rheology of a
lyotropic lamellar phase, where they showed under shear the ow of how the
dislocation loops cross and connect the layers and disturb the ow. Awadet
al. have investigated the structure and rheology of an aqueous/fatty alcohol and
anionic surfactant mixture. The resulting gel system was suggested to serve as a
model system in the formulation industry. In the gel phase, the defect mobility
is strongly reduced resulting in a high zero shear viscosity however the value of
yield stress was not identi�ed. The elastic modulus, measured from small linear
deformations, decreased with increasing SDS content, suggested that SDS acts as
a plasticizer. With increasing SDS, the increased disorder in the chain packing
results in a softening of the bilayers and a decrease in the elastic modulus [11]. The
rheology of colloidal particle in lyotropic hexagonal LCs were studied by Kulkarni
and group [177]. They demonstrated that the rheology and the microstructure of
colloidal particle in hexagonal composites depends on particle concentration ,� ,
shape and kinematics of phase transition. The value of the storage moduli,G0,
increased with the concentration of particles.
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3.8.2 Nematic liquid crystals

Using the Leslie-Ericksen theory, Burghardt described the linear viscoelastic
response of a nematic monodomain under small amplitude oscillatory ow for
homeotropic anchoring at the substrates. One of the key characteristics of
nematic LCs is the strong dependence of their viscoelasticity on the orientation of
the director which is reected in the anisotropy of the Meisowicz viscosities. The
Ericksen number describes the competition between ow-induced and boundary-
induced orientation within a nematic monodomain and is given byEr = � _L 2

K ,
where K is the Frank elastic constant of the 5CB NLC, L is the relevant length
sale, _ is the strain rate and� is generalised viscosity. Reorientation of the director
can occur whenEr > 1. In both the low and high frequency limits, the response
is entirely viscous since the director rotates in phase with the shear rate at low
frequencies and rotates in phase with the applied shear strain at high frequencies.
At intermediate frequencies the response becomes viscoelastic because the Frank
elasticity resists distortion of the director [27]. Lima and Rey generalised the
Leslie-Ericksen director-ow model using di�erent superposition schemes for low
and high frequencies, validating their approach against experimental data sets
for a range of material parameters (including thermotropic and lyotropic LCs
and ow-aligning and geometries including capillary, Poiseuille and simple shear
ow and for bend, twist and splay distortion modes. It was observed for
nematic monodomains the viscous response always dominates the elastic response
[42]. Rey et al. provided a universal theoretical description of the dynamic
rheological response of all nematic liquid crystals, valid for a broad range that
included ow-aligning and tumbling, polymeric and lyotropic nematic materials
[108]. Superposition through appropriate scaling of the moduli revealed identical
viscoelastic response behaviour for which the loss modulusG00 is greater than
the storage modulusG0 at all frequencies and the ratio tan� = G00=G0 � ! � 1 at
low frequencies before increasing with tan� � ! 1=2 above a resonance frequency
! r = 18:65, a value that is independent of materials parameters, see Figure: 5.2.
In 1990, Burghardt warned that ‘in the presence of monodomains, the estimated
time scale for director relaxation becomes short enough that distortional elastic
e�ects may contribute signi�cantly to the macroscopically observed viscoelastic
response’ [27].

59



Inuence of �ller

Nematic colloids form gels due to the dynamic arrest of the motion of colloids
in the LCs matrix, such as jamming and percolation [188]. There have been
several reports on the formation of gels by dispersing colloids in nematic LCs
[4, 124, 200]. These gel possess mechanical properties associated with the long-
range ordering and the elasticity of the LCs phase. These properties make them
of interest in several applications. The making, mixing, and transfer of such
materials generally require knowledge of the possible variation of viscosity with
shearing rates as well as with concentration and particle size distribution. So,
it is essential to understand the behavior of viscosity as a function of shear
rate. However, despite the importance of the problem, few experimental data
exist for the e�ects of solids concentration and particle size distribution on the
rheological properties of concentrated suspensions in nematic LCs. Zapotocky
et al. investigated the e�ect of about 1 � m silica particles in cholesteric LCs
[159]. From the rheological studies, they showed the e�ect of the network of
disclinations connecting the bigger clusters of particles. Meekeret al. have found
an unusual soft{solid-state in 5CB (pentyl cyanobiphenyl) LC colloids prepared
by dispersing PMMA (polymethylmethacrylate) nanoparticles (250 nm) [124].
Nanoparticles were mixed into the isotropic and then cooled, and the interface
drives the clustering of colloids, thus forming solid cellular structures. Petrovet
al. showed that solid cellular structures are formed in these systems, and the
morphology of these cellular networks was studied by Anderson [8]. Poon and
coworkers [124] dispersed PMMA-PHSA particles in 5CB LCs and demonstrated
that slow cooling of the dispersion led to nucleation and growth of nematic
domains and expulsion of the colloids ahead of the growing phase boundary. The
growth of the nematic domains was arrested upon jamming of colloids between
the domains.

Wood et al. conducted a study on concentrated �lled thermotropic nematic
composite [200]. They dispersed micron-sized PMMA-PHSA particles in nematic
5CB for a range of volume fractions, 0.005� � � 0.5, and performed oscillatory
rheology. Figure: 3.22 shows the dependence of storage modulus on the volume
fraction of the composites. It can be observed that beyond� > 0.18 there is a
rapid increase in the value ofG0 consistent with the function; G0 � � 2. They
showed that it was due to the formation of a percolating network structure
of disclination lines in the nematic structure. These lines are entangled with
the particles giving a self-quenched defect glass state of line defects at� >
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(a)

(b) (c)

Figure 3.22 (a) The value of maximum G0 for �lled nematic compoistes as
a function of volume fraction, Simulation showing (b) isolated
Saturn-ring defects at dilute (� < 0.2) concentration as compared
to (c) entangled Saturn-ring defects for concentrated composites,
� � 0.2.[200].
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0.2. A simulation in the dilute and concentrated regime (see Figure: 3.22
b and c) con�rms the entanglement theory in accrodance with the prediction
by Araki et al.. In the dilute concentrattion, the Saturn-ring defects remain
isolated without interacting among them, however with concentration these ring
defects come in close proximity with each other and entangle to form percolating
network structure of defects. The microstructure is di�erent from those formed
by dispersing particles in istropic phase and cooling them into nematic phase
[124]. Thus, providing certainity that topological defects play a crucial role in
the bulk rheology of the composites.

A third pathway for the formation of the nematic colloidal gel was proposed
by Bukusoglu, Abbott, and co-workers [26]. They reported the formation of a
nematic colloidal gel by spinodal decomposition of colloids in an isotropic phase
followed by nucleation of the nematic domain. On the cooling of dispersion,
the onset nematic domain occurs. These nematic phases were observed to
nucleate and grow within the pre-existing cellular microstructure formed during
the quenching of isotropic to nematic phase. The nematic domain growth almost
ceases when the nematic phase had �lled each cell of the microstructure, thus
forming a gel. This is in contrast to the previously described mechanism of
formation of a CLC gel in which the microstructure of the gel formed during the
isotropic-to-nematic transition.
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Chapter 4

Materials and methods

Surfactant allow us to protect water surface and to generate these beautiful soap
bubbles, which are delight for our children.

- Pierre-Gilles de Gennes

In this chapter, we focus on the speci�c colloidal particles and liquid crystal
system studied in this thesis. Details on the characterization of colloids are
presented, followed by the rheological protocol used for characterizing the colloid
and liquid crystal composites. This chapter is divided into two sections, (a)
Materials and (b) Methods.

4.1 Materials

The f iller particles used in this thesis were selected based on their shape, size,
density, charge, and compatibility with the solvent.

4.1.1 Solid spheres

A solid sphere colloidal dispersion is an assembly of impenetrable spherical
particles that cannot overlap each other when suspended in a continuous medium
- uid [14]. They do not change their shape or spatial con�guration when
dispersed in the uid. Four types of micron sized solid spheres colloids were
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Table 4.1 Physical properties of colloids used in this research.

Colloids Grafted Polymer Refractive index � (g/ cm3) at 25� C

PMMA PHSA 1.500 1.188
PMMA PVP (MW:360,000) 1.500 1.188
Ani PS negative charge 1.580 1.040
Cat PS positive charge 1.580 1.040

studied in this thesis. These are (a) poly-methyl-methacrylate (PMMA) spheres
sterically stabilized by grafting a layer of short polymer chain onto their surface
[65], (b) PMMA particles stabilized by PVP [147], (c) Anionic Polystyrene (Ani
PS) spheres stabilized by the negative charge and (d) Cationic polystyrene (Cat
PS) spheres stabilized by the positive charge. Table: 4.1 lists the physical
characteristics of these particles. A schematic of charged and uncharged colloids
is represented in the Figure: 4.1.

1. PMMA-PHSA particles

Polymethylmethacrylate (PMMA) microspheres are often referred to as
acrylic microspheres. PMMA polymer is an amorphous, transparent, and
colorless thermoplastic that is hard and sti�. We have used two di�erent
solubility PMMA particles, (a) oil-based and (b) water-based. The choice of
solvent plays an important role in determining the inter-particle interaction
between colloids.
Oil-based PMMA spheres were stabilized by covalently-grafted poly(12-
hydroxystearic acid) (PHSA), which was synthesized in house by Andrew
Scho�eld following the procedure of Antlet al. [73]. The covalently grafted
PHSA chains provide repulsive steric stabilization and have a thickness of
10 nm [64]. The PMMA-PHSA particles were initially dispersed in a density
matching solvent - decalin. To obtain dry particles, the decalin suspension
was centrifuged and washed with hexane several times. After several trials,
it was found that eight washes were su�cient to wash away all the solvents
from the particles. The particles were then dried in a vacuum oven for
65� C for two days. To check the monodispersity of the particles, we imaged
the particles under a Zeiss confocal microscope. Figure: 4.2 shows the
confocal micrograph of PMMA particles in decalin which is a refractive
index matching solvent (ndecalin = 1.48 and nP MMA = 1.50). PMMA
particles are less hydrophobic than the charged polystyrene. The density of
these beads, 1.188 g/cm3, is considerably heavier than polystyrene particles,
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Figure 4.1 Schematics of (a) PMMA particles sterically stabilised by grafting a
layer of short polymer chain onto their surface, (b) Ani PS stabilised
by negative charge and (c) Cat PS stabilised by positive charge.

allowing more rapid separation and making them easier to concentrate by
centrifugation. The particles typically have a hydrophilic anionic surface
with a refractive index of 1.5 g=cm3 at 20� C. Particle-size distributions
were determined on dilution using a dynamic light scattering (DLS) [128]
set-up and the diameter,d , was found to be (1.165� 0.121) � m.

2. PMMA-PVP particles

Water-soluble PMMA particles were sterically stabilized with polyvinylpyrroli-
done polymer having a molecular weight of 360,000. These particles were
also centrifuged and washed with deionized water eight times before drying
them in a vacuum oven at 40� C for two days before use. The diameter (d)
of water-based PMMA-PVP particles was calculated to be (1.250� 0.034)
� m.

The zeta potential (� ) [164] of both - oil-based and water-based PMMA
particles were measured using a Malvern Nano Z series zeta sizer. However,
we were not able to get a de�nite value because the measured value was
very low and not consistent as the particles were sterically stabilized.
The PMMA particles were dyed with a uorescent dye, NBD (4 chloro-7
nitrobenz-2 oxa 1,3 diazole), which absorbs radiation at 488 nm and emits
uorescent light at 525 nm.

3. Anionic and Cationic Polystyrene particles

Water-based polystyrene beads stabilized by positive (Cat PS) and negative
(Ani PS) charges were used to form charged composites in NC1 LCs. Prior
to use, they were centrifuged eight times in water and then dried in a
vacuum oven at 40� C for two days. The dried powder was dispersed in NC1
to form composites. The zeta potential of the charged polystyrene beads
was measured and the surface charge was calculated by Gouy-Chapman
model [136]. Table: 4.2 summarises the size, zeta potential (� ) and surface
charge (q) of the colloidal particles.
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(a) (b)

Figure 4.2 (a) PMMA particles dispersed in decalin as seen under confocal
microscope, (b) Ani PS in water as seen under confocal microscope.
The white spheres are particles and black medium is the solvent.
Scale bar is 10� m.

Table 4.2 Measured size, zeta potential (� ) and surface charge (q) of colloids.

Colloids Diameter (2r) � m � mV � (�C=m 2)

PMMA - PHSA 1.165 � 0.121 0.112� 0.091 -
PMMA- PVP 1.251� 0.178 - 0.087� 0.079

Ani PS 1.389� 0.113 -54.63� 2.84 -29.42� 1.51
Cat PS 0.915� 0.045 +44.18� 3.68 +24.13� 2.14

4.1.2 Deformable colloids - PDMS- Polydimethyl Siloxane

The deformable colloids here refer to the colloids which can change their shape
within the dispersing medium e.g., emulsion droplets. To make emulsions in the
nematic solvent, we used PDMS - Polydimethylsiloxane. Two di�erent kinematic
viscosity (0.05 and 0.5) Pa.s PDMS (polydimethylsiloxane) materials were
purchased from Sigma Aldrich and were used without any further puri�cation.
The emulsi�cation process for making nematic emulsions will be covered in the
sample preparation section.
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Table 4.3 Thermodynamic property of 5CB LCs.

M (g/mol) � (g/ cm3) TXN � C TNI � C

249.358 1.0024 24 35

4.1.3 Liquid crystals (LCs)

Out of the wealth of the liquid crystalline mesophases, we chose one of the
well studied and characterised thermotropic nematic LCs, 4-cyano-4-pentyl-1,1-
biphenyl (C18H19N) - 5CB. For the lyotropic system, we chose a ternary mixture
surfactant, co-surfactant, and water liquid crystalline system. Nematic and
lamellar lyomesophases are studied in this thesis.

1. Thermotropic nematic liquid crystals - 5CB.

The thermotropic liquid crystal used in this thesis is 5CB. 5CB is the single
component thermotropic nematic liquid crystal called 4-cyano-4-pentyl-1,1-
biphenyl (C18H19N ). It was purchased from Kingston Chemicals (UK) and
used without any further puri�cation. The molecular structure of 5CB
(Figure: 4.3) consists of two consecutively bonded phenyl rings attached to
a cyano group (CN) on one end and a �ve-carbon alkyl chain (pentyl,C5H11)
on the other end. While the former renders the molecule strongly polar, the
latter contributes to making it highly anisotropic in shape. The attachment
of the nitrile and pentyl groups at the farthest relative separation results
in the molecular length (around 2 nm) being much longer compared to
its transverse dimension, which is 0.4 nm, leading to an evident shape
anisotropy with an aspect ratio greater than 3:1. In the literature, 5CB has
been characterized thoroughly and exhibits only the nematic phase at room
temperature. It remains nematic between (22.4 to 34.5)� C and transitions
to isotropic phase at transition temperature,TNI = 34.5� C. All the rheology
experiments were conducted at T = 25� 1� C to maintain the sample in its
liquid crystalline phase. The thermodynamic properties of 5CB nematic
LCs are summarised in Table: 4.3. Table: 4.4 enlists the splay (K 11) , twist
(K 22) and bend (K 33) elastic constants and di�erent Miesowicz viscosity
coe�cients of 5CB at T = 25 � C [83, 132, 160].

2. Lyotropic liquid crystals.

The lyotropic mesophases chosen were composed of a ternary mixture of
sodium dodecyl sulfate (SDS), an anionic surfactant, 1-decanol, and water.
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Figure 4.3 5CB moleculal structure - two consecutive phenyl rings attached to
a cyano group.

Table 4.4 Elastic constant and viscosity coe�cient of 5CB in nematic phase at
T= 25 � C.

K 11 (pN) K 22 (pN) K 33 (pN) � 1 mPa.s � 2 mPa.s � 3 mPa.s

6.4 3.2 9 22 123 43

Figure 4.4 Partial phase diagram of lyotropic liquid crystals showing di�erent
mesophases as a functon of relative SDS and Decanol concentration.
The phases of interest are NC1 (nematic calamitic) and L �
(Lamellar) phases.
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Table 4.5 Amount of SDS-Decanol and water in wt%.

Phase SDS Decanol Water

NC1 24.8 4.8 70.4
L � 25 8 67
Iso 23 2 75

One of the reasons for choosing this lyotropic liquid crystalline system
because its phase-diagram has been thoroughly studied and is very cost-
e�ective to make in bulk. Several reviews by independent authors have
established its phase diagram independently, and readers are directed to
[5{7, 81, 150] for detailed calculation. This ternary mixture exhibits a
succession of di�erent lyotropic liquid-crystalline phases. The type of
liquid-crystalline structure formed depends on the curvature adopted by the
interface between the aggregates and the surrounding solvent. Lamellar,
hexagonal, nematic calamitic (NC1), nematic discotic (ND), and cubic
phases are usually seen in these systems. The anisotropic liquid crystalline
phases appear when the concentration of amphiphilic molecules is increased
to a value larger than the critical micellar concentration (CMC). For
example, in the case of the SDS/pure water mixture, CMC = 0.008 M, and
liquid crystalline phases are present for SDS at a concentration of> 0.2 M
[7] which is two orders of magnitude higher. The theory of micelle formation
has predicted the shape of the micelles. They could change from spherical
to ellipsoidal at a speci�ed concentration of the amphiphile. A partial phase
diagram of this lyotropic system is depicted in the Figure: 4.4. Our focus
is to characterize nematic lyomesophase of type NC1 (nematic calamitic
1), which forms cylindrical micelles with an aspect ratio of> 3:1. The
largest micelles size in the nematic phase is of order of nanometer [57]. The
lamellar phase (L � ) form alternating layers of water and surfactant forming
bilayers structure. And these phases are observed in the presence of a
high concentration of amphiphilic molecules when the interface tends to be
planar having large shape anisotropy [6]. Table: 4.5 shows the concentration
of SDS, 1-Decanol, and water in weight% to form di�erent lyotropic liquid
crystalline phases.

A special precaution should be taken when preparing lyotropic liquid crystal
because the lyomesophase is very sensitive to the relative concentration of
amphiphilic molecules, a precision of at least 0.02 wt% is recommended.
SDS � 99% and 1-decanol 98% were purchased from Sigma Aldrich (U.K.)
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Figure 4.5 (a) Proposed sketch of prolate ellipsoid or cylinder-shaped with two
surfactant molecule - SDS (black) and Decanol (brown), (b) Sketch
of the micellar order in NC1 phase.

Figure 4.6 Predicted micelles shape and structure (a) spherical micelles present
in the isotropic phase, (b) as the concentration of decanol increases
the micelles become cylindrical like in the nematic calamitic (NC1)
phase, (c) continuous bilayers are observed in lamellar (L � ) phase.
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Table 4.6 Thermodynamic property of NC1 LCs [21].

LCs � (g/ml) TXN degC TNI degC

NC1 1.0315 23 32
L � 22.3 35

and were used without any further puri�cation. To prepare NC1 LCs,
24.8 � 0.2% of SDS and 70.40� 0.19% deionized water in weight% were
thoroughly mixed using a vortex mixer for 120 seconds. Then, 4.80� 0.04
% in weight %of 1-Decanol was added to the mixture and was thoroughly
mixed. The addition of fatty alcohol (1-decanol) gets rid of some amount of
bubbles formed from mixing SDS and water. NC1 phase remains nematic
from 23 to 32� C and the transition temperature ofL � is from 22.3 to 35� C.
The mixture is then sonicated for 10 minutes to remove any remaining
bubbles. When the mixture looks thoroughly homogeneous, it is left to sit
on the shelf for 24 hours before using them for any experiment. Sample
vials were sealed with para�n to avoid any mass loss of constituents.

For preparing the lamellar phase,L � , the same protocol was followed by
changing the relative concentration of SDS to 25� 1 %, 1-decanol to 8�
0.8% and rest 67� 0.4 % to water. In the lamellar phase, amphiphilic
molecules are organized as supermolecular aggregates, forming layers with
a large shape anisotropy. The surfactant molecules form a bi-layer structure
separated by solvent layer. The thermodynamic properties of micellar LCs
are summarised in table: 4.6. Figure: 4.6 shows an illustration of the
expected micelles shape and structure (a) spherical micelles present in the
isotropic phase, (b) as the concentration of decanol increases the micelles
become cylindrical as present in the nematic calamitic (NC1) phase, (c)
continuous bi-layer structure is observed in the lamellar phase. Like all the
anisotropic phases, lyotropic nematic and lamellar liquid crystal exhibit
distinct optical texture when con�ned between two parallel glass slides
and observed under cross-polarisers. Figures: 4.7 and 4.8 show the defect
structures observed in both phases. Schlieren texture is observed for NC1,
whereas streaky texture is observed in the lamellar phase.
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Table 4.7 Elastic constant [13, 96] and viscosity coe�cient of NC1 in nematic
phase at T= 25� C.

K 11(pN) K 22 (pN) K 33 (pN) � 1 mPa.s � 2 mPa.s � 3 mPa.s

2.1� 0.1 3.2 2� 1 N/A N/A N/A

Figure 4.7 Schlieren texture observed in NC1 phase of lyotropic liquid
crystalline system composed of SDS-Decanol and water.

Figure 4.8 Streak like defect lines observed inL � phase of lyotropic liquid
crystalline system made up of SDS-Decanol and water.
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4.2 Methods

4.2.1 Sample preparation

Solid-sphere nematic composites

A class of soft-solid is formed when spherical colloids of concentrations (� > 0.18)
are dispersed in the nematic liquid crystal [200]. In this thesis, we study the soft
solid composites formed by dispersing hard-sphere colloids in both thermotropic
and lyotropic nematic liquid crystal. To make PMMA-PHSA composite in 5CB,
thoroughly dried PMMA-PHSA particles with desired concentration were added
to 5CB. The mixture was sonicated at room temperature for 10 minutes to get
a homogenous mixture. Prior to performing any experiment, the samples were
manually stirred with the spatula.

The relative concentration of colloidal particles in the liquid crystal was quanti�ed
using volume fraction. The volume fraction,� , % was calculated using:

� % =
vp � 100

VT
(4.1)

wherevp is the volume of colloidal particles andVT = vLCs + vp is the total volme
of the composites. The mass of the particles to be added were calculated by
multiplying the vparticles with their density, for 5CB density used was 1.0024 g/ml
and for NC1 andL � LCs the value of 1.0351g/ml [21].VLCs = vtotal � vparticles and
the mass of LCs added isVLCs multiplied by its density. Concentrations of �llers
are preferably measured by volume than by weight due to the wide variations
in the densities of available colloids. The weight percentage is preferable when
volume fraction is di�cult to measure.

Composites in lyotropic nematic phases were prepared using a slightly di�erent
method. At �rst, dried PMMA-PVP particles were dispersed in deionized water
using a vortex mixer. Then the desired amount of SDS and Decanol were added
to the mixture and manually mixed using a spatula. The composites formed were
sonicated for 5-10 minutes to get rid of any bubbles present. Sample vials were
sealed using para�n to avoid any loss of constituents masses. The same protocol
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was followed to prepare composites of Ani PS in NC1 and Cat PS in NC1. A
wide range of volume fraction of the sample was made from 0.05� � � 0.5.
Figure: 4.9, 4.10, 4.11 shows the images of the prepared PMMA-PHSA in 5CB
composites, PMMA in NC1 composites and Ani PS in NC1 composites.

Figure 4.9 Soft solid composites of di�erent volume fraction � formed by
dispersing PMMA-PHSA particles in 5CB liquid crystal.Pink color
is due to the dyed PMMA-PHSA particles.

Figure 4.10 Soft solid composites of di�erent volume fraction � formed by
dispersing PMMA particles in NC1 liquid crystal. Pale yellow color
is due to NBD dyed PMMA particles.

ˆ Stability test for the composites.
A sedimentation experiment over a period of 30 days was conducted to
check the stability of the composite against phase-separation.

1. Liquid crystal composites

A sedimentation pro�le was recorded for� = 0.2 of PMMA composites
in both 5CB and NC1 nematic liquid crystal as well as lamellar
composites. At the beginning of the experiment, all three composites
were a homogenous mixture of colloids and LCs. Figure: 4.12 depicts
the homogenous sample in the vials at the start of the experiment.
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Figure 4.11 Soft solid composites of di�erent volume fraction � formed by
dispersing Ani PS particles in NC1 liquid crystal. Pale yellow color
is due to NBD dyed Ani PS particles.

(a) (b)

Figure 4.12 (a) Di�erent LCs composite sample at the beginning of experiment,
(b) Unstable composites after 15 days of experiment.
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(a)

(b)

Figure 4.13 (a) Partial phase diagram of lyotropic LCs with points denoting
the di�erent deep nematic concentrations studied, (b) Sample
vials with the PMMA �lled lyotropic nematic at the beginning
of experiment, the cross-polariser images of the pure lyonematic
phases corresponding to each sample, scale bar is 1 mm.

The pro�le was recorded every 10 minutes interval for a total of 30
days. The onset of phase separation starts in lyotropic nematic (NC1)
composites after 15 days, with colloids sedimenting at the bottom and
pure nematic LCs at the top. However, the thermotropic composites
remain stable with no phase separation recorded. However, for the
lamellar phase, the composite did not show two clear phase separation,
but the instability of the composites was prevalent with the colloid and
LCs mixture separating.

2. Exploring stability of nematic composites.

The lyotropic nematic composites were not stable as the thermotropic
composites as discussed in the previous section. A selection of four
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(a) (b)

Figure 4.14 Sample vials with the PMMA �lled nematic calamitic composite
after (a) 15 days and (b) 30 days.

di�erent nematic calamitic LCs (NC1, NC1a, NC1b, and NC1c) was
chosen by varying the concentration of SDS and Decanol around NC1
within the nematic region to test their stability. A partial phase
diagram with points denoting di�erent nematic calamitic LCs phases
is drawn in �gure: 4.13a. The defect structure present in these LCs
phases was imaged under cross-polariser, and the resultant texture
is presented in �gure: 4.13b. From the cross-polariser images, the
evidence of multi-phase co-existence is prevalent forNC1b and NC1c

phases. PMMA particles were dispersed in these nematic LCs at a
volume fraction of 30%, and stable homogenous composites were made.
These composites were tested for any sedimentation for 30 days. From
the sedimentation pro�le, it was concluded that theNC1a composite
is most stable, followed by aNC1 composite. But the onset of phase
separation starts earliest in 10 days forNC1b and NC1c composites
followed by NC1 and NC1a after 15 days. However, all the four
samples phase separate in the 30 days. Keeping the instability of our
sample in my mind, freshly prepared (within 48 hours) samples were
used to perform rheometry and microscopy studies on them. And
for the future study, we propose to use a density matching solvent to
prolong the stability of these composites.

Nematic emulsion

The nematic emulsions are made by dispersing PDMS (polydimethylsiloxane)
droplets in NC1 LCs. The surface anchoring of PDMS droplets stabilised by SDS
is similar to that of PMMA microspheres, thus making it possible to investigate
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Figure 4.15 The amount of SDS in wt % added to make nematic (NC1)
emulsion and Lamellar (L � ) emulsion for 0.01 � � � 0.74. Dark
blue for nematic emulsion, light green for lamellar. Here we have
considered droplet radius (r) 1 � m, surface adsorption of SDS is
3:5E � 10molcm� 2.

the e�ect of deformable droplets on the rheology of emulsion. Since emulsions
are not at thermodynamic equilibrium, their preparation requires energy to create
large interfacial areas. The large interfacial areas is provided by mixing the oil,
water and surface mixture using Silverson high shear mixer. The time duration
and rate of mixing determine the size and shape of emulsion droplets.

We have prepared four batches of emulsions using 0.05 Pa.s and 0.5 Pa.s of PDMS
and at two di�erent shear mixing rate, 3000 rpm and 6000 rpm for 120 s. For
preparing di�erent volume fraction of nematic emulsion, the desired amount of
water and SDS were added to the vial, and PDMS was added in batches then the
mixture was mixed using a shear mixture. Since the NC1 phase has SDS as one of
the main constituents, the amount of SDS required to stabilize the interface of the
emulsion was calculated separately. It is known that the minimum concentration
of SDS required for stabilizing PDMS emulsion is 0.001 M in water [134]; thus, the
amount of SDS added to make emulsion was 0.001 M in addition to the amount of
SDS required in NC1 phase. When the mixture was completely homogeneously
mixed, the required amount of 1-Decanol was added to make the NC1 phase.
The �gure: 4.15 shows the amount of SDS in weight % added to make nematic
(NC1) emulsion and Lamellar (L � ) emulsion for di�erent volume fraction, 0.01
� � � 0.74. The nematic phase was con�rmed by imaging the emulsion under
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Figure 4.16 Size comparison of droplet diameter for two di�erent viscosities of
PDMS (0.05, 0.5 Pa.s) in NC1 emulsion. 0.05(3) = 0.05 Pa.s
PDMS in NC1 emulsion at a shear rate of 3000 rpm, 0.05(6)=
0.05 Pa.s PDMS in NC1 emulsion at a shear rate of 6000 rpm,
0.5(3)= 0.5 Pa.s PDMS in NC1 emulsion at a shear rate of 3000
rpm and 0.5(6) = 0.5 Pa.s PDMS in NC1 emulsion at a shear rate
of 6000 rpm.

crossed polariser. The rate and time of mixing were adjusted to make an emulsion
with droplet diameter close to the size of our hard-sphere colloids. Figure: 4.16
shows the size distribution of emulsion droplets for 0.05 Pa.s and 0.5 Pa.s PDMS
depending upon the rate of shear mixing. After comparing the droplet sizes from
di�erent mixing rates, it was identi�ed that emulsions which were shear mixed
at 6000 rpm had droplets diameter of 4.15� 1.89 � m. All the emulsions used
in our experiments were thus prepared by following the 6000 rpm protocol. As
mentioned in previous chapters, the droplet size inuences the volume-to-surface
area ratio: the increase of diameter leads to a more pronounced e�ect of the ow
inside the drops.

4.2.2 Rheology protocol

Investigation of the rheology of our composites plays a crucial role in determining
their properties and predicting their long-term stability. All the rheology
experiments were performed on either a stress-controlled - TA-DHR rheometer
and strain-controlled, ARES-G2 rheometer. Schematic diagrams of the working
principle of both stresses controlled and strain-controlled rheometer are shown

79



(a)

(b) (c)

Figure 4.17 (a) Schematic of the parallel plate geometry used in our
experiments, (b) Sand-blasted and (c) Cross-hatched surface
texture.

in the �gure: 4.4. The samples were placed on a plate and the other plate, of
the parallel-plate geometry was lowered to (see �gure: 4.17) a constant gap of
500 � 10 � m. There were two di�erent types of plate surface texture used, (a)
sandblasted and (b) cross-hatched parallel plate see �gure: 4.17 b and c. The
rheology results were dependent on plate texture and gap. The temperature of
the system was controlled using a constant temperature bath and was kept at T
= 25 � 1� C. This temperature is well within the range of the nematic region for
both 5CB and NC1 liquid-crystalline media. A solvent-trap was used to prevent
evaporation from the sample. A pre-shear of 0.1/s was applied for 10s before each
experiment.

Oscillatry strain-sweep

In the oscillatory strain sweep, the evolution of storage modulus (G0) and loss
modulus (G00) was recorded for the applied strain, = 0.1 to 100 % at a constant
frequency of 1 Hz. In the low strain regime, we study the rheological behavior
of non-perturbed liquid-crystalline and composite structure, while higher values
produce results due to structural modi�cation. The low strain region where
there are no changes in the magnitude ofG0 and G00are referred to as a linear
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Figure 4.18 Maximum dynamic moduli values for di�erent LCs at two di�erent
surface texture, circle - sand-blasted and square - cross-hatched.

(a) (b)

Figure 4.19 (a) The evolution of G0 and G00 as a function of applied strain
 for PMMA-PHSA in 5CB composites at ! = 1 Hz with G0

and G00showing a plateau up to 0.1% (Region 1) and then starts
to yield (Region 2) with yield strain,  c = 2.47 � 0.79 %, (b)
Frequency sweep curve of PMMA-PHSA 5CB composites at =
0.6% with transition from solid to liquid-like' for the range of
applied frequency.
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viscoelastic regime (LVR). The value of critical strain ( c) was calculated where
both G0 and G00divert from their linear behavior and cross over. Reverse strain
sweep was carried on the sample to check whether the sample has fractured or
are recoverable. Each sample was measured at least three times, and the data
plots represent the average of all the runs.

Oscillatory strain sweep using both sand-blasted and cross-hatched surface
texture parallel plate is shown in Figure: 4.18. The value of moduli from sand-
blasted surface texture is higher as compared to cross-hatched texture. Thus,
we have used sand-blasted plate for all our rheology experiments to avoid any
discrepancies.

Frequency sweep

The dynamic response of the composites was probed by conducting a frequency
sweep. The frequency sweep was recorded for low as well as high, strains to probe
the LVR (Region 1) of the sample as well as the yielding region (Region 2). The
angular frequency was applied from (0.0001 to 600) rad/s to the PMMA-PHSA
in 5CB composites at di�erent strain  values from 0.01 to 10%. For colloids
in NC1 composites, the applied frequency was changed from 0.1 to 600 rad/s.
Low-frequency, the sweep was not possible for NC1 composites as they dried
during the large experimental runs leading to the discrepancy in the measured
value. Figure: 4.6 shows a standard curve of (a) oscillatory strain sweep and (b)
frequency sweep for dense colloidal suspension in the nematic liquid crystal.

Steady state ow rheology

Shear viscosity (Pa.s) as a function of the applied shear rate was measured in the
steady-state ow experiment. A shear - rate, _ , of the range 0.1 up to 1000/s
was applied, and the resultant change in the viscosity and stress values were
measured. Figure: 4.20 shows the viscosity curve obtained from steady-state ow
measurements for dense composites of PMMA-PHSA particles in 5CB nematic
liquid crystalline media.
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Figure 4.20 Viscosity decreases as a function of applied shear rate (1/s)
showing shear-thinning behavior. The measurements shown are for
� = 0.3 PMMA-PHSA in 5CB composites.

4.2.3 Microscopy

The orientation of the director was resolved using a cross polariser optical mi-
croscope, and a three-dimensional microstructure of colloids in liquid crystalline
media was studied using a confocal microscope.

Polarising optical microscopy

A Nikon optical microscope was used to image the defect lines in the liquid
crystalline phases and to also image the defect around the colloids in dilute
nematic composites. A high sensitivity CCD camera was used to record the
image of cross polarised light passing through the sample. A polarizer and an
analyzer are oriented in a perpendicular directions. When unpolarised visible light
is passed through the �rst polariser; it only allows the light of that polarisation
to pass through. When this linearly polarised light hits a birefringent sample
such as LCs, it splits into two rays (a) ordinary and (b) extraordinary rays
forming elliptically polarised light. The elliptically polarized light passes through
the second polarizer, whose axis is perpendicular to the �rst one, before being
recorded by CCD camera. Depending upon the region of interest and the optical
resolution desired, a range of di�erent air objectives were used: 5X, 10X, 20X,
40X. Figure: 4.21 shows the working principle of polarising optical microscopy.
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Figure 4.21 Schematics showing working principle of polarising optical micro-
scope.

The Schlieren textures presented in Figure: 4.7 evolve due to di�erent orientations
of the nematic director possessing random anchoring conditions induced by the
susbtrate.

Confocal microscope

Confocal microscope has become a well-established method for studying the
microstrucure of soft matter systems. Compared to conventional optical
microscopy, a confocal microscope has a better resolution and optical sectioning
capability; only light coming from a given focal plane is collected at a any time,
thus it is possible to scan deep into the sample and construct a three-dimensional
images. In the time sweep mode, it is possible to lock the image on to a speci�c
sample feature and record structural changes in time. Readers are referred to
[126] for mathematical description of confocal imaging and to [197? ] on their
principles and applications.

The �gure: 4.22 represents the working principle of confocal microscope. Laser
light is shone on a dichroic mirror which reects it along the optical path. The
incident beam is then scanned across the sample by a pair of mirrors, passes
through the microscope objective and excites the uorescent specimen. The
emitted uorescent light (green line) returns along the same optical path but
passes through the dichroic mirror and before reaching the photomultiplier tube
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Figure 4.22 Diagram showing main composnents an working principle of laser
scanning confocal microscope.

and is �ltered by a pinhole. By construction, the aperture in front of the detector
sits on the conjugate focal plane (hence the name confocal) of the illuminated
spot in the sample. The right wavelength laser to illuminate the sample was
chosen from the emission spectra of uoroscence dye. For both NBD and Nile
red dyed sample, 488 nm wavelength of laser was used.

Image analysis

The majority of image analysis was performed using standard macros available
with an open-source image processing package, FIJI. The size of the colloid
cluster was analyzed using the particle tracking method. The spacing between the
colloidal particles was analyzed using a routine called radial pro�le distribution.
The extent of director distortion around the particle in NLCs was calculated by
taking a line pro�le across the diameter of the particle.
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Chapter 5

Structure and dynamic response of
�lled thermotropic nematics.

What I cannot create, I do not understand.

- Richard Feynman

The viscoelastic behavior of colloidal �lled thermotropic nematic liquid crystal
composites was explored. The �ller term used in this context refers to micron-
sized PMMA hard-sphere, which was dispersed in the 5CB liquid crystalline
matrix. Wood et al. conducted a study on concentrated �lled thermotropic
nematic composite [200]. They dispersed micron-sized PMMA-PHSA particles in
5Cb for a range of vol fraction, 0.005� � � 0.5, and performed oscillatory
rheology. They have suggested an increase in the storage modulus with the
increase of �ller concentration, forming a stable gel-like structure beyond� � 0:2.
They showed that it was due to the formation of a percolating network structure
of disclination lines. These lines are entangled with the particles giving a self-
quenched the defect glass state of line defects. Thus proving that topological
defects induced by the particles play a crucial role in the bulk rheology of the
composites. These defects, as discussed in chapter 3, were induced mostly due
to the spontaneous anchoring of the molecules on the particle’s surface. A class
of soft solid was formed by the combination of dense colloidal suspension and
liquid crystal. The exceptional dynamic properties of these uniquely structured
composites are, for the �rst time, explored via rheological studies. First, the
oscillatory strain and frequency response of pure 5CB NLCs will be discussed,
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(a) (b)

Figure 5.1 (a) Oscillatory strain sweep of thermotropic - 5CB NLCs at a
frequency of 1 Hz at 500 � m gap size, (b) Frequency sweep
thermotropic nematic - 5CB at 1 and 10 % strain at 200 � m gap
size. Te gap was reduced to 200� m for frequency sweep because
the pure 5CB LCs behaved more uid like. Closed symbol represents
storage modulus (G0) and open symbol represents loss modulus (G00).

followed by the structure and dynamics of �lled NLCs composites of varying
concentrations.

5.1 Rheology of a thermotropic nematic liquid
crystal - 5CB.

Before composite behaviour is studied, it is important to understand the rheology
of the pure NLCs phase.

Figure: 5.1 shows the oscillatory strain sweep of 5CB NLCs. The value ofG0 and
G00are equal, showing a plateau with a value ofG0 = 0.039 � 0.014 Pa for strain,
 % � 10% at 500� m gap. But as the strain value increases % > 40% the
viscous property dominates withG00> G 0. The frequency sweep was carried out
on the same geometry with the same experimental condition. Angular frequency,
! , was varied from 0.1 to 600 rad/s, and the evolution ofG0 and G00was mapped.

At �rst, we plot the dynamic response of un�lled thermotropic liquid crystal -
5CB at two di�erent strains,  %= 1 and 10 % at 200� m gap, see Figure: 5.1b.
At low frequency, ! < 10 rad/s, the value of storage modulus (G0) for 5CB is
independent of! and exhibits a constant value of 0.12� 0.04 Pa and 0.49� 0.18
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Figure 5.2 Tan� = G00=G0 as a function of angular frequency,! , in rad/s for
di�erent value of strains,  % = 1 and 10 % for 5CB NLCs. Tan �
increases linearly with frequency.

Pa for  = 10 % and 1 % respectively withG0 > G 00. The prolonged viscoelastic
relaxation at the low-frequency regime, indicative of the plastic behavior, can
be attributed to the presence of defect structures in pure nematics. But it is
clear from the graph that the value of loss modulus, (G00) increases linearly with
frequency,G00/ ! , as expected for a Maxwellian uid [16]. The magnitude ofG0 is
inversely proportional to the applied strain such thatG0( 10) = G0( 1)  1

 10
, where

1% and 10% are strain values. The value ofG00also decreases with strain, but
the change in magnitude is less signi�cant at a higher frequency, thus revealing
an increasing dominance of the viscous regime. However, the crossover frequency
! c whereG0 = G00remains same for both the strain values.

Another important value to consider is the frequency dependence of loss tangent
- tan � , which is the ratio of loss to storage modulus. Figure: 5.2 represents the
plot of tan � for pure 5CB LCs at two di�erent strain,  . Tan � grows linearly
with ! for both strain values for 5CB NLCs, reecting the liquid-like nature of
the liquid crystal.

89



5.2 Inuence of �ller on the microstructure and
rheology of thermotropic nematics.

Confocal micrographs of two PMMA-PHSA in 5CB composites at� = 0.05
and 0.25 are shown in Figure: 5.3. PMMA-PHSA particles form disconnected
clusters at low volume fraction,� = 0.05, however they form a dense network like
structure at high concentration, � = 0.25. As discussed in section 2.5, micron-
sized PMMA-PHSA particles induce Saturn-ring defects when dispersed in 5CB
NLCs. Weak homeotropic anchoring condition withW r

K � 1 induces a defect line
(or disclination), which encircles the colloid at an orientation normal to the local
director orientation [66]. At low colloidal concentration, these Saturn-ring defects
remain isolated without interacting with each other, but as the concentration of
colloids increases in the composites, these Saturn-rings come in proximity and
entangle with a range of possible topological con�gurations [10, 89, 135]. These
entangled disclinations lead to a percolating defect network structure in three
dimensions. A series of simulations were carried out on a similar model system
with hard-sphere colloids of 1� m in diameter in nematic liquid crystal by Davide
Marenduzzoet al. [200] and the result showed up to� c < 0.18 a large number of
Saturn - ring defects remains isolated but begin to form a large stable entangled
structure at � > � c.

To con�rm the entanglement theory, we have imaged defect structures in the
composites at high volume fraction sandwiched between two glass slides. Figure:
5.3 shows the entanglement of defects around the PMMA particles in 5CB nematic
solution [200]. The dark spherical region represents PMMA-PHSA particles,
whereas the dark gray lines surrounding the particles are the defect lines.

The dynamic behavior of the composites can yield information on the interaction
between �ller and dispersing solvent. The kind of �llers which enhance the
stability and mechanical strength of the composite are termed active �llers [48],
whereas a �ller which weakens the strength of the composites is termed as a
passive �ller. For the �rst time, we explore the dynamic rheological response of
composites formed from 5CB NLCs with PMMA particles.

90



(a) (b)

(c)

Figure 5.3 Confocal micrograph of (a) � = 0.05 and (b) � =0.3 PMMA-
PHSA particles dispersed in 5CB. The scale bar is 10� m, (c)
Entangled defect network around PMMA particles dispersed in 5CB
LCs. Courtesy Wood et al. (dark circles are particles and grey lines
are disclinations).
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Figure 5.4 Strain amplitude sweep of� = 0.3 5CB (blue) composite depicting
two regions, (1) LVR regime and (2) non LVR regime before yielding
as compared to pure 5CB LCs (black).

5.2.1 Oscillatory strain sweep

From manual inspection, it was observed that at� > 0.2, the composites became
a stable gel, as reported in the Figure: 4.9. These gel were stable against
sedimentation for more than three months. Figure: 5.4 represents the oscillatory
strain sweep for � = 0.3 (blue) of PMMA-PHSA in 5CB NLCs composite as
compared with pure 5CB LCs (black). The addition of �ller particles enhances
the value ofG0 and G00of the composites by �ve orders of magnitude from 0.039
Pa to 3000 Pa. For� = 0.3 composite, bothG0 and G00have a constant value with
G0 > G 00up to  � 0.1%, this region of low strain shows the presence of the linear
viscoelastic regime (LVR) where the structure of the sample is not deformed on
the application of strain. But on the continuous increase of strain, bothG0 and
G00begin to decrease, with the former dropping faster than the later eventually
crossing and giving way toG00> G 0. The crossover ofG0 and G00gives the value of
the critical yield strain,  c.  c gives us the maximum strain value beyond which
the microstructure of the composite gets deformed. The value of c is 2.47� 0.07
% for � = 0.3 composite. Thus, it becomes important to specify the value ofG0

and G00 in linear viscoelastic regime (LVR), and they are denoted byG0(LV R)
and G00(LV R) here.

We compare the strain sweep for two dense nematic composites at� = 0.2 (circle)
and 0.3 (square) in Figure: 5.5 a. It is observed that the critical value of yield
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(a) (b)

Figure 5.5 (a) Oscillatory strain sweep for � = 0.2 (black) and � = 0.3 (gray)
showing two di�erent yield strain, (b) Yield strain (  c) as a function
of � for PMMA-PHSA in 5CB composites.

strain decreases with the volume fraction of the composites,� . However, the LVR
ends at the same strain value (see Region 1). A plot of c as a function of� for the
composites is plotted in Figure: 5.5 b. The plot reveals that as the concentration
of particles in the nematic media increases, the yielding starts to occur at a lower
strain. This is explained by the di�erence in the length of disclinations with� .
As the concentration of particles increases, the size of nematic domains decreases
up to x

2r = 1 :1, wherex is the separation between the particles and 2r is the
diameter of the particles [10]. With the increasing volume fraction, as the value
of � x

2r < 1:1, the particles are no longer entangled by Saturn-ring but began to jam
and arrange themselves in a random packing making the overall composites weak
and fragile; thus a lower value of is required to break the composite structure
[95].

The value ofG0 and G00as a function of volume fraction ,� , is plotted in Figure:
5.6. Inset graph shows that there two region, (a) at low volume fraction,� � 0:1,
where G00> G 0 and the composite is uid like and (b) beyond� > 0:2 where
composites exhibit a solid-like response withG0 > G 00. In the graph, � = 0.001
denotes theG0 and G00value for just the liquid crystalline medium. A detailed
plot of G0 and G00as a function of � for � � 0.2 is shown in Figure: 5.6. At�
� 0.2, G0(LV R5CB ) increases rapidly with � , with a functional form consistent
with:

G0(LV R5CB ) � G0
5CB 0

= ( � � � c)n (5.1)
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Figure 5.6 G0 and G00as a function of volume fraction, (� ) of PMMA particles
dispersed in 5CB nematic liquid crystal. The rapid increase in the
value ofG0 for � � 0.2, for PMMA-PHSA in 5CB is consistent with
the functional form of G0

LV R (� ) / (� )n , with n = 2.04 � 0.11. Inset
shows two regimes for the evolution ofG0 and G00 for � � 0.01,
beyond� � 0:2 the value ofG0 and G00for �lled nematics shows a
rapid increase. The line is a guide to eye.

where n = 2.04 � 0.11 and � c = 0.18 � 0.02. However, the generation of
reliable and consistent data in the case of �lled NLCs systems depends to a large
extent on the preparation of the sample for the rheological test; thus, the same
protocol was followed for sample preparation and data was collectively collected
for six di�erent runs. The error in the plot is random error estimated from
the standard deviation of the accumulated data. Interestingly, a similar trend
is observed for loss modulus (open symbols), indicating that the storage and
loss moduli are intimately linked. Both G0 and G00/ � 2, possibly due to each
colloid supports a two-dimensional Saturn-ring. These ring defects can connect
at di�erent topological con�guration with the defects, and therefore the number
of percolating paths increases with the volume fraction. A similar dependence on
the volume fraction was observed for colloidal suspension above glass transition
(� � 0.58) [122], however in our nematic composites this behavior occurs at
considerably low volume fraction,� � 0.18. Thus, due to the colloidal particles
being arrested by disclination in nematic LCs, a stable gel-like structure is formed.
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5.2.2 Dynamic response of �lled thermotropic nematics.

Frequency sweep measurements were conducted for PMMA-PHSA �lled ther-
motropic 5CB NLCs composites with the same experimental condition as used
in the amplitude sweeps. The frequency sweep pro�le was recorded at di�erent
values of strain from 0.1 to 10 % over �ve decades of frequency, 0.001 to 600 rad/s.
The data for frequencies between 0.001-0.01 rad/sec were found to have larger
scatter and signi�cant deviations from the higher frequency trends. Hence, the
data range was restricted between 0.1 - 600 rad/sec, and the relative storage and
loss moduli values were determined. From oscillatory strain sweep, two regions
(a) LVR and (b) yielding were identi�ed, see Figure: 5.4.

Region-1

(a) (b)

Figure 5.7 (a) G0 and G00as a function of angular frequency! in rad/s at low
strain,  � 0:2% in the LVR (region 1) where G0 and G00remains
constant as compared with % = 0:6% where the microstructure of
the sample has deformed with decreasing value ofG0 and G00, (b)
Tan� as a function of ! in region 1.

The LVR for � = 0.3 composites were restricted to � 0.1 %. The frequency
sweep pro�le was recorded for the strain values below 0.1% is reported in the
Figure: 5.7. Both G0 and G00increase with frequency with! 1=3. The plot of tan
� reveals that the composites behave as an elastic solid with tan� < 1 for the
entire frequency spectrum.
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Figure 5.8 Storage modulus (G0) and loss modulus (G00) as a function of angular
frequency ! at  % = 0.6% for � = 0.3 of PMMA in 5CB NLCs
(blue) as compared to 0.05 of PMMA in 5CB NLCs (black). G0 is
in closed symbol andG00in open symbol. For � = 0.3 composite, G00

grows as! 1=2 at higher frequency,! > 70 � 12 rad/s.

Region-2

The yielding region for the nematic composites was de�ned for strain values,
> 0.1%. The frequency dependence of high (� = 0 :3)(blue) and low (� = 0 :05)
(black) volume fraction for PMMA-PHSA in 5CB at  = 0.6% is shown in Figure:
5.8. This strain of  = 0 :6% is beyond the LVR but lower than c. The geometry
with 500 � m was not suitable for measuring the frequency sweep of pure 5CB
NLCs since it was too uid-like. Thus for comparison, we have plotted theG0

and G00for � = 0.05 composite. The mechanical spectrum ofG0 shows a plateau
region, which is related to the formation of the elastic structural network due
to the interaction between colloids and nematic domains. However,G00shows a
weakly negative slope, but gentle yielding is observed above a critical frequency,
! c with G00/ ! 1=2. For � = 0 :05, G00/ ! 1 for all measured frequencies consistent
with the high-frequency regime for a nematic liquid crystal without inclusions
[108].

Another important expression to understand is the frequency response of loss
tangent or tan � = G00

T
G0

T
. Figure: 5.9 a and b show the value of tan� for �lled

nematics at two di�erent strain,  , a) 0.6% which is less than c and b) 4% which
is greater than yield strain c. Tan � value for di�erent concentration suspension
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(a) (b)

Figure 5.9 Tan � = G"/ G0 as a function of angular frequency! in rad/s for
di�erent volume fraction � of PMMA in 5CB at (a)  = 0 :6% <  c
and (b)  = 4% >  c. The red line has a slope of 1/2. It is seen
that samples of di�erent volume fractions collapse onto one average
curve (purple) and at ! > 70 � 12 rad/s tan � has a slope of 1/2
as a function of angular frequency. This behavior is observed for all
strain values.

can be collapsed into one master curve, as shown in dark-purple; this behavior
could be replicated at all values of applied strain in the yielding region. Thus,
it was concluded the value of tan� is not dependent on the �ller concentration
beyond � = � c � 0.2 for the thermotropic nematic composites,� c = 0 :18 is the
onset of stable gel formation. A negative slope of -0.101� 0.003 for tan � at
low-frequency,! � 10 rad/s, suggests strong glassy elastic behavior. However, at
a critical frequency, ! c, the viscous behavior becomes dominant and, above this
value, tan� increases as� ! 1=2. Initially, the observed independence of volume
fraction is surprising since the form ofG0 increases with� 2, but this increment
with � is also observed forG00; hence tan� which is the ratio both the moduli
becomes independent of the volume fraction of colloids.

In a colloidal composite in an isotropic solvent, we would expect tan� to be
dependent on the volume fraction as the concentration of particles a�ects the
interparticle distance. In a nematic solvent, however, disclinations percolate
because colloids are excluded from larger nematic regions and are located close
to one another, bound by entangled disclinations. The dynamic independence
suggests that the nematic phase determines the elastic and viscous properties
of the composite, and its interaction with the colloids does not alter as the
volume fraction is increased. Colloids, merely, give rise to disclinations, and
the volume fraction increases the density of disclinations in the system, thus
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(a) (b)

Figure 5.10 (a) Tan � = G00/ G0 as a function of angular frequency! in rad/s
for all di�erent vol fraction � of PMMA in 5CB averaged for  =
0:1� 10%. tan� has a slope of 1/2 at! 70 � 12 rad/s, (b) critical
frequency, ! c = min(tan � ) as a function of  %, ! c = A  � 1, with
A = 0.779 � 0.023.

increasing the strength of the composites. The dynamic behavior suggests
there are no colloid-colloid interactions as the volume fraction is increased up
to � = 0 :45. Experiments were not performed above this limit since samples
were di�cult to handle as they started to crumble, indicating the composite
character was changing. At� = 0 :45, we expect the interparticle separation
reduce tor=d � (0:64=0:45)1=3 � 1:12 (presuming colloids touch at random close
packing � = 0 :64). This value is approaching the ratio of particle radius to the
interparticle distance, r=d � 1:1, between colloids entangled by disclinations,
reported through computer simulations by Arakiet al. [10]. Thus it appears that
insu�cient solvent is available to create a disclination-dominated composite at
higher volume fractions.

The tan � values of PMMA-PHSA in 5CB composites as a function of frequency,
! , for di�erent strain,  = 0 :1 � 10% averaged over all volume fraction (0.2� �
� 0.4) are plotted in Figure: 5.10 a. The plot reveals that the value of tan� is
directly proportional to  . The more liquid-like character of the PMMA-PHSA
in 5CB composites are reected at higher strain, e.g. = 4% where tan � > 1
beyond 1 rad/s, with tan� � ! 1=2. This is because the suspension has yielded
and nematogens have reoriented in the direction of ow at higher >  c. At
lower strain, for example at = 0.4, the value of tan � < 1 at low frequencies
because the suspension structure is still not broken withG0 > G 00. It is clear
that the frequency dependence of PMMA-PHSA suspension is independent of
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the concentration of the �ller present in the 5CB NLC but depends on the strain
and applied angular frequency.

Thus, we conclude, the curve of tan� is non-linear, with tan � showing slight
negative slope at lower frequency and an increase with! 1=2 beyond a critical
frequency,! c. We de�ne ! c, as the frequency where the value of tan� = minimum.
The plot (Figure: 5.10 b) of ! c as a function of strain,  shows their inverse
dependence. Next, we propose a theory to explain the unique dynamic behavior
of the thermotropic composites.

5.3 Theory for viscoelasticity of �lled nematic
composites

To describe the unusual behaviour,G00 � ! 1=2, we have observed we present a
new theory to describe the viscoelastic behaviour. We break down the description
into elastic, G0 and viscous,G00parts.

5.3.1 Elastic contributions

The storage modulus describes the elasticity of the material and is the sum of two
di�erent contributions G0 = G0

Rey + G0
d. G0

Rey describes the elasticity of a nematic
liquid crystal owing between parallel plates. It was described by Alexandro Rey
[108] and at high frequencies was given by,

G0
R =

�
(
� 2

 r
)2(2!� bendK )

� (1=2)

(5.2)

where� 2 is Leslie viscosity co-e�cient = - 0.085 Pa.s for 5CB, r is the rotational
viscosity is known to be to be 0.081 Pa.s for 5CB,� bend is the bend viscosity =
 r � � 2

� 2
= 3.117 Pa.s for 5CB , K is the average elastic constant of LCs, taken to

be 5.5E-12 N for 5CB and! is the applied angular frequency. For 5CBG0
Rey �

10� 5Pa.

The elasticity of a liquid crystal, caused by the presence of disclinations, was
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(a) (b)

Figure 5.11 Strain dependence of the theoretical contributions toG0 and G".

described by Weitzet al.

G0
d = (

T
dnet

)2 (5.3)

G0
d describes the elasticity of a liquid crystal across which defects span at an

average separation,dnet . We modify this expression for our composite toG0
d =�

T
dnet

� 2
p(� )2 because we know from experiments thatG0 � � 2 (see Equation:

6.1). Saturn-ring defects can connect at multiple points around the ring, and
therefore the number of percolating paths increases with the volume fraction.

In our case the colloids are separated by �x = 1 :11r whereD = 2 r is the diameter
of the particles. We assert that disclinations yield at a critical strain of c = r c

1:1D

where r c is the radius of a disclination. The radius of disclination for 5CB LCs
is 5 nm [139]. Above this strain disclinations yield such that the density of the
disclinations increase asdnet = � x n where  n = (  c+ 

 c
). The contribution form

both the elastic terms are shown in Figure: 5.11 a.

5.3.2 Viscous contributions

The viscous behavior of the composite is determined by two contributions
G00= G00

Rey + G00
d. The viscous behavior of the composite is determined by the

Ericksen number - the ratio between viscous and elastic forces on the sample.
The Ericksen number is de�ned byEr = L 2  r _

K , whereK is the elastic constant,
 r is the rotational viscosity, _ is the shear rate andL is the relevant length scale.
Disclinations and particle surfaces behave as walls that con�ne the nematic liquid
crystal. Larson described the viscosity of a con�ned nematic as� =  r E � 0:5

r [12].
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(a) (b)

Figure 5.12 (a) The comparison of evolution of G0 and G00as a function of the
applied strain for 5CB NLCs (black) and � = 0.3 PMMA-PHSA
5CB composite(blue) with G0 and G00 showing a plateau up to
 � 0.1% and yielding at a  c= 2.47 � 0.79 %, (b) The strain
dependence plot from theory.

We use this to assert that

G00
a = ! n  r E � 0:5

r p(� )2 (5.4)

for a nematic liquid crystal con�ned by dispersed colloids. For oscillatory ow,
Er = a2  r  n ! n

2�! where a is the average dimension of nematic domains, the size
of which will be determined by the ratio of the elasticity,K , to the anchoring
energy, W of nematogens at the surface of colloids such thata � K=W . The
growth of these domains forces colloids to approach one another and a� 10 � m.
The frequency,! n = ! c + ! , where ! c = 2�K

a2  r  n
is the critical frequency at which

ow overcomes the elasticity of the composite. Inserting our de�nition of the
Ericksen number into the Equation: 5.4 we �nd that

G00
a = ! n  r

�
2�K

a2 r  n ! n

� 0:5

p(� )2 (5.5)

so that,

G00
a =

�
2�K r ! n

a2 n

� 0:5

p(� )2 (5.6)

when we expand! n = ! c + ! we �nd that

G00
a = p(� )2 2�K

a2 n
+ p(� )2

�
2�K r !

a2 n

� 0:5

(5.7)
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(a) (b)

(c) (d)

Figure 5.13 Frequency dependence of the theoretical contributions to (a)G0, (b)
G00, (c) Experimentally measured value ofG0 and G00as compared
with the (d) theory prediction.

The left hand side describes the plateau,G00
d, observed at low frequencies where the

elasticity dominates. The right hand side,G00
c , described the yielding behaviour

which occurs after the critical frequency,! c has been exceeded andG00
a = G00

c +
G00

d.

We assume that the viscous term,GRey = � 2! , where� 2 is the Miesovicz viscosity
for ow alignment. These contributions to the viscous loss term are shown in
Figure: 5.13.

tan� = G00=G0. At low frequencies

tan� =
2�K

T
:

1
 n

:
d2

net

a2 (5.8)

which indicates that tan� is not dependent on the volume fraction but is
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(a) (b)

Figure 5.14 Tan � values from (a) experiment and (b) theory.

dependent on the disclination density and size of the nematic domains. A
comparison of experimental tan� values with the theoretical prediction is shown
in Figure: 5.14.

5.4 Summary

To summarize, the most important �ndings are:

1. G0 and G00/ � 2, possibly due to each colloid supporting a two-dimensional
Saturn-ring. This power-law dependence on volume fraction is similar to
colloidal suspensions above the glass transition,� g = 0.58. However, the
glass transition for �lled nematics is considerably lower at� = 0.18.

2. For the �rst time, we show that G00/ ! 1=2 on yielding. We present a theory
that indicates the yielding behavior is governed by the Ericksen number,
Er , and the viscous behavior is determined by the con�ned nematic regions.

3. We �nd that the frequency dependence of the composites is independent
of the volume fraction, � , indicating that it is neither active or passive
�lled system and the behavior of composite is determined by the intrinsic
property of the nematic phase. The colloids merely serve to create and
support Saturn-ring defects.
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Chapter 6

Exploring shear rheology and
microstructure of �lled nematic
lyomesophases.

For the �rst time, we have studied the bulk rheology of �lled lyotropic nematics
for a range of volume fraction and compare it with the thermotropic counterpart,
which is now well understood. To study the rheology behavior of colloids in
lyotropic LCs in bulk, we have dispersed hard-sphere and deformable colloids in
lyotropic nematic LCs made from water, SDS, and 1-decanol [5{7, 81, 150].

Following a similar route as the �lled thermotropic system, we have studied the
oscillatory rheology of uncharged PMMA-PVP particles dispersed in lyotropic
nematic, NC1, for a range of volume fractions,� , followed by their dynamic
behavior.

6.1 Rheology of lyotropic nematic NC1 LCs.

A strain amplitude sweep of NC1 NLCs as compared with 5CB NLCs is presented
in Figure: 6.1a. NC1 NLCs show uid-like behavior withG00> G 0, and the order
of magnitude ofG00for NC1 LCs is two orders of magnitude greater than for 5CB.
The dynamic response of pure lyotropic nematics is reported in the �gure: 6.1)b.
NC1 NLCs shows Maxwell uid-like behavior with G0 / ! 2 and G00/ ! before
reaching a plateau at higher frequency,! > 200 rad/s. The slope ofG00(NC1)
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(a) (b)

Figure 6.1 (a) Oscillatory strain sweep of thermotropic nematic - 5CB NLCs
(black circle) at a frequency of 1 Hz as compared with strain sweep of
lyotropic nematic - NC1 NLC (blue square)s, (b) Frequency sweep
of 5CB NLCs (circle) as compared with NC1 LCs (square) at 1%
strain. Closed symbol represents storage modulus (G0) and open
symbol represents loss modulus (G00).

is the same as that ofG00(5CB ) above ! � 10rad/s. In the entire frequency
spectrum of NC1 LCs,G00> G 0 therefore NC1 LCs have uid-like properties,
unlike 5CB LCs, which is elastic at low frequency. The increase in the value of
G00at a higher frequency can be attributed to the alignment of the rod-shaped
micelles present in NC1 towards the direction of ow, and these micelles were not
able to align back to its original position in the short interval of time.

A plot of loss tangent, tan � = G00

G0 , at di�erent strain values is plotted in Figure:
6.2. The absolute value of tan� is greater than 1 but the curve is non-linear.
At low frequency, ! � 10 rad/s, tan � plateaus before decreasing with increasing
frequency.

6.2 Inuence of uncharged �ller

PMMA particles stabilized by PVP were dispersed in NC1 LCs for a range of
di�erent volume fractions, 0.05 � � � 0.5, and the resulting composites were
imaged and exposed to oscillatory rheology. The confocal micrograph of� = 0 :05
and � = 0 :25 of NC1 composites are shown in Figure: 6.3. At low concentration,
� = 0 :05, PMMA-PVP microspheres form a small disconnected cluster with large
nematic domains between them, however at high concentration they form a spcae
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Figure 6.2 Tan� = G00/ G0 as a function of ! rad/s for di�erent strain values
for pure NC1 LCs. Tan � shows a plateau up to! = 10 rad/s and
then decreases with! � 1=3 up to ! = 100 rad/s.

(a) (b)

Figure 6.3 (a) Small disconnected cluster of PMMA-PVP microspheres in NC1
LCs at � = 0.05, (b) Network clusters of PMMA-PVP particles
spanning NC1 LCs. (dark region represents LCs media whereas
green spheres represents particles) Scale bar is 10� m.
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spanning network like cluster. From image analysis of �ve images at di�erent
x,y,z of the same sample, the average cluster area calculated = 25.14� 2.92�m 2,
however at higher concentration,� = 0.25, PMMA-PVP form entangled defect
connected structure spanning over the space. The area of the nematic domain
(black region) has decreased considerably from 400.90� 12.31�m 2 at � = 0.05
to 5.12 � 1.12 �m 2 at � = 0.25.

6.2.1 Oscillatory strain sweep

Oscillatory strain sweep curve for lyotropic nematic composites is shown in Figure:
6.4. It compares the strain amplitude curve of PMMA-PVP �lled NC1 NLCs to
PMMA-PHSA �lled 5CB composites at a volume fraction, � = 0.3. Both the
curves also draw a comparison with their respective NLCs. It can be seen that
with the addition of the �ller particles, the value of G0 is elevated by four orders
of magnitude for both lyotropic and thermotropic composites. The value ofG00

also increases with the addition of �ller particles.

Figure 6.4 The evolution of G0 and G00as a function of applied strain for NC1
LCs (black) with G00> G 0 and � = 0.3 PMMA in NC1 composite
(blue) with G0 and G00shows a plateau up to � 1% and �nally
yielding at  = 7.18 � 0.39 %. Closed symbol denotesG0 and open
symbol representsG00.

A comparison of strain sweep for two concentrated lyotropic composites is shown
in the Figure: 6.5 (a) Both (� = 0.2 (black) and 0.3 (grey)) the composites
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(a) (b)

(c) (d)

Figure 6.5 (a) Strain sweep for � = 0 :2 (black) and � = 0 :3 (grey) composites.
The LVR regime remains same for both the concentration denoted
by region 1 and yielding is denoted by region 2, (b) Critical yield
strain (  c) as a function of � for PMMA in NC1 LCs (blue) as
compared with PMMA in 5CB composite (black), (c) Partial phase
diagram of SDS-Decanol-water LCs for isotropic and nematic phase,
the points depict the wt% of SDS-Decanol added for di�erent �
samples. (d) Plot comparing the value ofG0 (closed symbol) andG00

(open symbols) for di�erent � of �lled nematic (blue) to isotropic
(grey) composites.
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Figure 6.6 G0 and G00 as a function of volume fraction, � for lyotropic
composites. For � � 0.2 the value ofG0 and G00for �lled nematics
shows a rapid increase. Line is/ � 2. Closed symbol representsG0

and open symbol representsG00.

have the same LVR denoted by region 1 before yielding denoted by region 2.
However, the yield strain, c decreases with increasing concentration, a behavior
also observed in �led thermotropic nematics. To con�rm that the elevated
moduli are due to the nematic structure of the lyotropic system, a comparison
of NC1 composite to an isotropic composite is studied. PMMA-PVP particles
were dispersed in the isotropic phase of the same lyotropic system, Figure: 6.5c
shows the partial phase diagram of SDS-decanol-water lyotropic LCs with points
representing the di�erent volume fraction of isotropic composites. Figure: 6.5d
represents the plot ofG0 and G00as a function of� for both �lled nematic (blue)
and isotropic (grey) phase.G0 > G 00for all �lled nematic composites beyond� �
0.18, whereas for the �lled isotropic system, the viscous behavior dominates up to
� < 0.4 with G00> G 0. The isotropic composites exhibit elastic behavior at a very
high concentration, � � 0.4, compared to nematic composites, thus con�rming
the enhanced elasticity is due to the nematic structure.

The value ofG0 and G00as a function of volume fraction,� , is plotted in Figure:
6.6. The inset graph shows that there are two regions, (a) at low volume fraction,
� � 0:08, whereG00> G 0 and the composite behaves like a uid and (b) beyond
� > 0:2 where the composite exhibit solid-like response withG0 > G 00. In the
graph, � = 0.001 denotes theG0 and G00 value for just the liquid crystalline
medium. At � � 0.2, G0(LV RNC 1) increases rapidly with � , with a functional
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form consistent with:

G0(LV RNC 1) � G0
NC 10

= ( � � � c0 )m (6.1)

where m = 2.19 � 0.17 and � c = 0.22 � 0.04. The relation betweenG0 and
� agrees well with the thermotropic counterpart as PMMA microspheres induce
Saturn-ring defects in both lyotropic and thermotropic nematic LCs.

6.2.2 Dynamic response of �lled lyotropic nematics.

The frequency response of PMMA-PVP in NC1 LCs were studied for a frequency
range from 0.1 to 600 rad/s. From the strain sweep, two di�erent regions were
identi�ed, (1) LVR for strain,  � 1% and (2) yielding region for > 1%. The
dynamic response of lyotropic nematic in these two regions will be discussed.

Region-1

Figure: 6.7 (a) and (b) shows the dynamic moduli comparison for dilute (� < 0.2)
and concentrated (�> 0.2) lyotropic composite in the linear viscoelastic regime
(Region 1). It is observed the dilute composites follow liquid like behavior withG0

/ ! 2 and G00/ ! same as pure liquid crystal (black), however the concentrated
composites shows a weak dependence on frequency withG0 and G00� ! 1=3.

The mechanical spectrum ofG0 and G00 for � = 0.3 composites was further
studied at di�erent values of strain within the LVR region. The LVR for �
= 0.3 composites were restricted to � 1 %, thus the frequency pro�le recorded
for strain,  = 0.1, 0.4 and 0.6 % is reported in �gure: 6.7 c. BothG0 and
G00 increases with frequency with! 1=3. A behavior which is observed for all
concentrated lyotropic composites in the LVR region.

Region-2

The yielding region for the lyotropic nematic composites was de�ned for strain
values,  > 1%. The frequency dependence of high (� = 0 :3) (blue) volume
fraction for PMMA-PVP in NC1 composites at  = 6% compared with pure NC1
LCs is shown in Figure: 6.8. One can see that the elastic modulus (G0) is constant
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(a) (b)

(c)

Figure 6.7 Dynamic moduli (a) G0 and (b) G00comparison in the LVR (region
1) for di�erent volume fraction of the lyotropic composites, (c) for
� = 0.3 composites in the LVR region bothG0 and G00increases as
a function of angular frequency as! 1=3.
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Figure 6.8 G0 and G00as a function of angular frequency! in rad/s at  % =
6% for � = 0.3 of PMMA in NC1 NLCs (blue) as compared to NC1
NLCs (black). G0 is in closed symbol andG00in open symbol.

in a very wide frequency range covering several orders of magnitude. Such kind
of behavior is standard for ideal elastic materials, the elastic modulus of which
must be independent of frequency. Hence, the �lled lyotropic composites can
be classi�ed as elastic materials. However,G00exhibits a de�nite minimum at
intermediate frequency [120], and the yielding behavior is not observed clearly.
This can be due to the critical frequency beyond which yielding occurs being
outside the experimentally measured frequency window.

Tan � values for di�erent volume fractions of lyotropic composites at strain value,
 = 6%, is shown in Figure: 6.9. Tan � values for di�erent concentration
composites can be collapsed into one master curve, as shown in dark-purple;
this behavior could be replicated at all values of applied strain in the yielding
region. Thus, it was concluded the value of tan� is not dependent on the �ller
concentration beyond� = � c � 0.2 for the lyotropic nematic composites,� c � 0:2
is the onset of stable gel formation. However, the plot of tan� is non-linear, with a
negative slope of� -0.11 at low frequency,! � 10 rad/s, suggesting a strong glassy
behavior. But on increasing the frequency the value increases, �nally becoming
greater than 1 at ! > 100 rad/s. The dynamic independence suggests that the
nematic phase determines the elastic and viscous properties of the composite, and
its interaction with the colloids does not alter as the volume fraction is increased.
Like the case for �lled thermotropic nematics, colloids give rise to disclinations,
and the volume fraction increases the density of disclinations in the system, thus
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Figure 6.9 Tan � = G00/ G0 as a function of angular frequency! in rad/s for
di�erent volume fractions, � , of PMMA in NC1 at  = 6%, Dark
purple shows a collapsed master curve calculated from average of
both the volume fractions. Line has a slope of 1/2.

increasing the strength of the composites.

Tan � values at di�erent strain values,  = 6, 8 and 10 %, for � = 0.3 lyotropic
composites are drawn in Figure: 6.10. The value of tan� is directly proportional
to strain, with the values being maximum at 10% strain. Tan� becomes greater
than 1 at higher frequencies,! > 100 rad/s, where the nematic micelles have
oriented themselves in the direction of ow. However, the minima of tan� for
all three strains occurs at,! = 10 rad/s. The uid-like behavior (tan � > 1)
may be present at strain values greater than 10%. It can be clearly seen that
the cross-over (G0 = G00! tan � = 1) decreases with increasing strain. We were
not able to plot the critical frequency as a function of strain because of few data
points available.

6.2.3 Comparison of �lled lyotropic and thermotropic
composites - experiment and theory

Oscillatory strain sweep comparison

The strain amplitude sweep (Figure: 6.11) showed similar behavior for �lled both
thermotropic and nematic composites. However, the yield strain for lyotropic
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Figure 6.10 Tan � as a function of angular frequency! in rad/s for  % � 6%
for � = 0.3 PMMA in NC1 NLCs.

composites was one order of magnitude greater. From the theory discussed in
the previous chapter, Equation: 5.2 and 5.3 were used to draw the theoretical
prediction of G0 and G00for lyotropic nematics. The value of rotational viscosity
and Leslie co-e�cient is not known for NC1 LCs; thus, the values were kept the
same as 5CB as r = 0.081 Pa.s and� 2 = -0.939 Pa.s. However, the radius of
disclination was increased by one order of magnitude to 60 nm, because of the
size of nematic micelles is� 60 nm [187]. The value of critical strain is higher
for lyotropic nematic because of its direct dependence on disclination core radius,
 c = r c

1:1D where r c is the radius of a disclination.

The value of the maximum (in the LVR) dynamic moduli for both the composites
were compared, see Figure: 6.12. At a higher concentration at� � 0.2 there
was a sharp increment in the value ofG0 and G00. In spite of forming similar
microstructures arrested by Saturn-ring defects, the value ofG0 of 5CB composite
is one order of magnitude greater thanG0 of NC1 composite. Thus, the director
distortion around a single particle in both the composites was calculated. The
colloidal forces in nematic LCs are much stronger than the forces in ordinary
colloids in isotropic solvents, exceeding thousands ofkB T per PMMA-PHSA
particle, see Figure: 2.11 [89]. The extent of these defect lines or the deformation
in the presence of colloids in LCs is determined by the anchoring strength. This
is further estimated by taking the radial pro�le of these defect lines at 0� and
45� along the particle diameter. Figure: 6.13 (a) shows the radial pro�le of
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(a) (b)

(c)

Figure 6.11 The mechanical spectrum ofG0 and G00as a function strain for (a)
PMMA-PHSA in 5CB composites (thermotropic) and (b) PMMA-
PVP in NC1 composites (lyotropic). Both the composites show
LVR (region 1) and yielding (region 2), (c) The plot for G0 and G00

predicted from theory.
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Figure 6.12 Comparison of moduli of �lled lyotropic composite (square) with
thermotropic composites (circle). Line is a guide to eye. Closed
symbol representsG0 and open symbol representsG00.

(a) (b)

Figure 6.13 Confocal micrograph of (a) single PMMA-PHSA particles dispersed
in 5CB and radial pro�le of the director distortion, (b) single
PMMA-PVP particles dispersed in NC1 and radial pro�le of the
director distortion.
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PMMA-PHSA in 5CB and (b) for PMMA in NC1. In both lyotropic (NC1) and
thermotropic (5CB) nematics, PMMA particles induce Saturn-ring defect but
the extent of director distortion is up to three times the colloidal diameter for
5CB LCs and up to two times the colloidal diameter in NC1 LCs. The extent of
the director distortion is not so di�erent between both the composites, but the
result indeed suggests a weaker anchoring strength between colloids in lyotropic
nematics as compared to thermotropics.

Frequency sweep comparison

The dynamic behavior of both the thermotropic and lyotropic composites have
been compared in Figure 6.14. Both the nematic LCs show Maxwell uid-like
behavior with G00linearly increasing with ! . The storage modulus of the �lled
thermotropic (left) and lyotropic (right) remain constant with no dependence
on the frequency. This is a characteristic of an elastic material. However, a
dramatic yielding is observed for thermotropic composites withG00> G 0 beyond
a critical frequency; this behavior is not seen in the lyotropic composites. One of
the plausible explanation is that the critical frequency for lyotropic composites
is beyond the range of applied frequency. This is further explained by the
dependence of critical frequency on the disclination radius,! c = 2�K c

a2  r (  c+  ) =
2�Kr c

Da 2  r (( r c=D )+  ) thus indicating that ! c increases when the disclination radius (or
yield strain) increases. The disclination core radius for lyotropic NC1 LCs is one
order of magnitude greater than the thermotropic 5CB counterpart. Therefore,
we do not see the upturn in the viscous component for lyotropic nematic phases
where the disclination radius (r c) is expected to be tenfold of the disclination
radius in thermotropic nematic materials. Using the Equation: 5.4 and 5.7 and
putting the relevant value of r c, the theoretical plot for frequency dependence of
the moduli is created in Figure: 6.14 c.

6.2.4 E�ect of droplet deformability on the rheology of
nematic composites.

After studying the physics of solid-sphere colloids in NC1 LCs, we were
encouraged to study the e�ect of droplet deformability on the rheology of nematic
emulsions. The nematic emulsions were made using PDMS (0.05 Pa.s). Readers
are directed to section 4.2.1 for the protocol followed to form the nematic
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(a) (b)

(c)

Figure 6.14 The mechanical spectrum ofG0 and G00as a function of angular
frequency for (a) � = 0.3 of PMMA in 5CB NLCs (blue) as
compared to� = 0.05 of PMMA in 5CB NLCs (black) at 6 % strain
and (b) � = 0.3 of PMMA in NC1 NLCs (blue) as compared to
NC1 NLCs (black) at  = 6%. G0 is in closed symbol andG00

in open symbol. For both the pure NLCs,G00/ ! . However, for
both the �lled composites the value of storage moduli,G0, remains
constant for the entire frequency range, but there is a gentle yielding
observed for the composites beyond a critical frequency whereG00/
! 1=2, (c) frequency sweep for lyotropic composites predicted from
theory.
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(a) (b)

Figure 6.15 The evolution of (a) G0 and (b) G00as a function of volume fraction
for 0.05Pa.s PDMS nematic emulsion. The nematic emulsions
follow solid-sphere rheology up to� < 0.54 but shows a decrease in
the value of moduli beyond� = 0.54.

emulsion. The average droplet size of the PDMS droplets were, 2r = 4.54� 1.23
� m. Nematic emulsions up to volume fraction,� = 0.72 were made. The resultant
moduli of the strain amplitude sweep of these emulsion as a function of� is plotted
in Figure: 6.15. The plot suggests that nematic emulsion has the same value of
dynamic moduli as PMMA composite up to� < 0:54 beyond which the value of
the moduli decreases. This behavior is replicated in the loss moduli curve as well.
The ow rheology of PDMS emulsions in an isotropic solvent has been studied by
Saiki and group [171]; they observed that both PDMS emulsion showed identical
behavior as hard-sphere for low concentration,� � 0:4 but deviates from Krieger-
Dougherty �t at � g = 0.58. The deviation was due to the droplet deformability.
However, for our nematic emulsions the deviation occurs at� = 0.54. At � = 0 :54,
we expect the interparticle separationr=d � (0:64=0:58)1=3 � 1:03 (presuming
colloids touch at random close packing� = 0 :64) which is less than the ratio
of particle radius to the interparticle distance, r=d � 1:1, between colloids
entangled by disclinations, as reported through computer simulations by Araki
et al. [10], thus the droplets start touching and coalesce changing the size of
droplets changing the rheological behavior.
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6.3 E�ect of surface charge on the structure and
rheology of �lled lyotropic nematics

We were inspired to explore the e�ect of surface charge on the rheology of �lled
lyotropic composites after studying the viscoelasticity of uncharged composites.
Competition between charge repulsion and colloidal attraction is ubiquitous
across colloidal dispersions. Charge e�ects can enhance phase separation in
charged colloid-polymer systems [146] and are predicted for charged lyotropic
lamellar systems [38]. It is known that the charged colloids aggregate in a
lyotropic nematic phase. The �rst experimental evidence for the existence of
elastic forces between spherical inclusions in a nematic liquid crystal was given
for small-angle neutron scattering (SANS) experiments on a lyotropic nematic
crystal by Raghunathanet al. They showed that the charged colloids aggregate
in the presence of lyotropic nematics [98]. To know the e�ect of surface charge of
colloids on the microstructure and viscoelastic property of a �lled NC1 system, we
have identi�ed both positive and negatively charged polystyrene (PS) particles.
Composites of negative and positively charged polystyrene particles were made
by dispersing them in NC1 LCs for di�erent volume fractions following the same
preparation method as uncharged PMMA composites. Table 4.2 gives details
about the zeta potential, (� ), and the surface charge, (� ), of both Ani PS and
Cat PS.

Confocal micrographs at� = 0.25 for both uncharged (PMMA-PVP in NC1)
composite and negatively charged (Ani PS in NC1) composite are shown in
Figure: 6.16. Uncharged PMMA particles form a space spanning network-
like structure in NC1 LCs whereas the Ani PS form tenuous compact clusters
not interlinked with each other. To observe the detailed di�erence in the
microstructure, higher magni�cation images were studied. Figure: 6.17 shows
the confocal micrographs of these two systems under high magni�cation (63X)
for � = 0.15 composites, there are some striking di�erences between charged
and uncharged system. PMMA-PVP particles formed irregularly shaped clusters
connected over the space, whereas the negatively charged system of Ani PS
showed a 2D lattice-like structure. Similar structures were �rst observed by
placing quadrupolar colloids near to each other in thermotropic nematics with
the help of laser tweezers [89]. In our system, for the �rst time, these honeycomb
structures are observed in bulk, with dark defect lines connecting each other. This
indicates that the Saturn-ring defects around the particles do become entangled
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(a) (b)

Figure 6.16 (a) Tenuous network of PMMA clusters in NC1 LCs as seen under
confocal microscope, (b) Compact clusters of Ani PS particles in
NC1. (dark region represents LCs media whereas white region
represents particles).

but form di�erent topological structures compared to the uncharged system.
It was di�cult to image entangled defect in lyotropic system because of the
alignment constraint.

6.3.1 Oscillatory strain sweep

Figure: 6.18 (a) shows a plot ofG0(max) and G00(max) as a function of � for
Anionic PS particles in NC1. The inset graph shows that there are again two
di�erent regions at low and high volume fractions. At high � , G0 increases as
� 2. A detailed plot with the value of G0 and G00 for charged and uncharged
composites in both lyotropic and thermotropic composite is shown in the Figure:
6.19. The magnitude ofG0 for Cat PS and uncharged PMMA composites are of
the same order of magnitude. However,G0 of Ani PS composites are one order
of magnitude lower at the same volume fraction,� .

The lower magnitude ofG0 for Ani PS composites was further studied with the
help of confocal images. On preliminary examination, both the colloids appear
to promote quadrupolar defect patterns. However, there is a clear di�erence in
the microstructure of both charged and uncharged composites, see Figure: 6.16.
This could be due to di�erent anchoring conditions between the colloids and LCs
medium. The strength and type of anchoring depend upon the surface charge and
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(a) (b)

Figure 6.17 (a) Irregular shaped network like cluster of PMMA particles
in NC1 LCs (dark regions represents LCs media whereas green
circles represents PMMA particles), (b) Compact clusters forming
2D lattice like array of Ani PS particles in NC1. (dark
region represents Ani PS particles whereas dark lines shows the
disclinations around the particles.

(a) (b)

Figure 6.18 (a) Evolution of G0 and G00as a function of � for negatively charged
nematic composites, inset shows the two regime for dynamic
moduli, (b) The value of critical strain,  c comparison as a function
of volume fraction for uncharged thermotropic (black) and lyotropic
(blue) composites, negatively charged (green) and positively charged
(orange) composites. Line is a guide to the eye.
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Figure 6.19 Storage modulus (G0) and loss modulus (G00) as a function of
(� � 0:2) of uncharged and charged colloids in nematic liquid
crystal composite, black = PMMA-PHSA in 5CB, blue = PMMA
in NC1, green = anionic polystyrene in NC1 and orange = Cationic
Polystyrene in NC1.

the defect structure around particles in LCs. Thus, we tried to image individual
PMMA and Ani PS and have tried to evaluate the extent of directory distortion
caused by both the particles in NC1 medium. Each colloid is 1 micron in diameter,
so visualization of nematic distortion was not easy.

Figure: 6.20 shows the director distortion pro�le for both PMMA-PVP and Ani
PS in NC1. Pro�les were taken across the particle centers to measure the extent
of the spread of the quadrupolar defect pattern for each colloid. The spread is
up to 2 colloid diameters beyond the colloid perimeter for the uncharged PMMA
sample but is less than one diameter beyond the perimeter of the negatively
charged anionic sample. It seems we have very weak anchoring conditions for
the anionic sample, although it does appear to be homeotropic. So from the
extent of distortion of the director, we conclude that the negatively charged
Ani PS particles induce very weak homeotropic anchoring in nematic solution
as compared to the uncharged system. Thus, they form a weak gel-like network
leading to a lower value ofG0 as compared to the uncharged system. PMMA
particles are sterically stabilized by PVP polymers that form hair-like structures
around them (Figure: 4.1), whereas Ani PS particles have a smooth surface and
are stabilized by the charge. These hair-like structures around PMMA particles
promote strong homeotropic anchoring when in the nematic medium [66], whereas
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(a) (b)

Figure 6.20 A comparison of extent of director distortion for (a) PMMA-PVP
in NC1 as compared to (b) Ani PS in NC1. Pro�les were taken
across the particle centers to measure the extent of the spread of
the quadrupolar defect pattern for each colloid. The spread is up to
2 colloid diameters beyond the colloid perimeter for the uncharged
PMMA sample but is less than one diameter beyond the perimeter
of the negatively charged anionic sample.
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Figure 6.21 Comparison of di�erent potentials in ratio with thermal energy
(kB T) between colloids and LCs composites, x is the separation
between particles and D is the colloidal diameter.UCN (square)
is the attraction potential between colloids and nematic LCs,UND
(triangle) elastic attraction potential between nematic domains and
UNC 1 (circle) is the screened Coulomb potential between nematic
micelles.

a smoother surface may induce a weaker homeotropic anchoring compared to the
hairy surface. The mechanical strength of these array-like structures is one order
of magnitude less than the uncharged clusters.

It was also observed that the moduli value for uncharged lyotropic composites
were one order of magnitude lower than their thermotropic part inspite of both
particles and LCs phases being similar, see Figure: 6.19. Thus, to understand
the discrepancy in the magnitude ofG0 for uncharged and charged lyotropic
composites, we calculated and compared the di�erent forces binding the colloid
and liquid crystal composites together. The attraction potential between (a)
colloids and nematic domains and (b) between nematic domains were present in
both thermotropic and lyotropic LCs. The attractive potential between colloids
and nematic LCs,UCN , [94, 167] can be written in the form of anchoring strength,
W, and elasticity of NLCs, K; wherer0 is the colloid radius andx is the separation
between particles. The attraction potential between colloids and the nematic host
is higher for strongly anchored particles because ofUCN / ! 2. At T = 300 K
and particle separation(x) = 1.1D, the value ofUCN � 3000kB T.
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The elastic attraction potential among nematic domains,UND , can be estimated
from Hooke’s law, see Equation: 6.3, where n is the number of nematic
monodomains, K is the elastic constant and A is the nematic domain size.

UND = n � K � x � 5000kB T (6.3)

UNC 1 =

 
k(q1q2)2

(x � r )
exp� r=� D

!

� 10000kB T (6.4)

However, in addition to these forces, there is an additional force between the
negatively charged micelles in lyotropic nematic LCs. The lyotropic NC1 LCs are
composed of negatively charged micelles because of their composition (24.8% of
anionic surfactant -SDS). The screened Coulomb potential between the negatively
charged micelles,UNC 1 is given by Equation: 6.4, whereq1 is the electronic charge
= 1.6 10� 19C, q2 is the surface charge on the rod-like micelles in NC1, x is the
particle separation and r is the particle radius and D = 2r is particle diameter
and � D is the Debye length. The range of all these three forces over the particle
separation is plotted in the Figure: 6.21. From the plot, it is observed, the value
of screened Coulomb potential dominates at low particle separation, compared to
the long-range nematic attraction. The occurrence of Saturn-ring defect happens
at x

D � 1.1 [10], which is according to the plot in the range where the screened
Coulomb repulsion dominates, thus reducing the combined interaction potential
between colloids and LCs | thus decreasing the anchoring strength between the
colloids and lyotropic nematics and in turn, reducing the magnitude ofG0.

In negatively charged lyotropic composites, the value ofG0 is one order
of magnitude lower than the uncharged lyotropic composites. One of the
mechanisms explaining this weak anchoring in the anionic composite is charged
induced repulsion. The lyotropic nematic (NC1) phase have rod-like micelles
that are negatively charged because of anionic SDS present in them. Coulomb
repulsion between Anionic PS beads and could occur between Ani PS and charged
micelles of NC1 LCs. However, if we go down to the nanoscale, the micellar
solution is likely to be polydisperse with micelles of varying anisotropy from
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Figure 6.22 Curve comparing the screened Coulomb potential between charged
colloids and polydispersed charged SDS micelles with thermal
energy (kB T)

spherical to cylindrical. In the nematic liquid crystal, the aspect ratio of the
building blocks molecules in this case of the micelles are of 3:1. Micelles with
higher anisotropy will have more SDS present in the rod-like structure (see Figure:
4.5, giving rise to higher surface charge on them.

Considering the micelles next to a charged surface and the local charge repulsion
between an area on the colloid equivalent to the micelle radius, we can use the
screened Coulomb potential (Equation: 6.4) to calculate the repulsion between
the colloid surface and micelles of increasing charge. Spherical micelles of SDS
are known to carry around 50 charges [94], and these charges increase with the
micelles becoming more anisotropic on the addition of SDS. In the nematic phase,
the uniaxial micelles tend to be three times as long as wide on average (aspect
ratio 3:1 [149]). So we have calculated the potentials of these micelles as compared
to the thermal energy (kB T), see Figure: 6.22 for three di�erent surface charges
50 q, 100q and 150q. The calculated potentials are close to thermal energy
(kB T), which suggests that larger (longer) micelles can be repelled from the colloid
surface, thus reducing the anchoring of the nematic to the colloid surface. So,
the weak anchoring is caused by electrostatic repulsion of larger micelles from the
negatively charges polystyrene surface and as a result, lowering the value ofG0

for Ani PS composite. A schematic representation of the orientation of micelles
before and after getting repelled from anionic PS is shown in the Figure: 6.23.
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(a) (b)

Figure 6.23 (a) Schematic of polydispersed micelles (green) and negatively
charged particle (black), (b) Oblate micelles having more SDS at
its head rearranges themselves after getting repelled from negatively
charged particle.

6.3.2 Dynamic response in the yielding region

Frequency spectra in the yielding regime, region - 2, (Figure: 6.24 b) of Ani
PS composite in NC1 suggest that at low frequency bothG0 and G00 increase
with frequency. But after a critical frequency, the composites yields withG00

> G 0, in this region G00grows as! 1=2. The viscous response is similar to the
uncharged composites. However,G0 is not constant but shows a mild dependence
on frequency. This is because the Ani PS particles form a fragile array of
particles in NC1 LCs exhibiting low elasticity. And at a higher frequency, the
microstructure breaks and aligns in the direction of ow, giving rise to a higher
value of G00. The plot of tan� for strain values,  � 0.6 is shown in Figure: 6.25.
Tan � curve is non-linear with a constant value at a lower frequency, however
at a critical frequency, the viscous behavior dominates and tan� grows as! 1=2,
see Figure: 6.25. It can be clearly seen that the value of critical frequency is
inversely proportional to strain, but due to an insu�cient number of data points,
the inverse linear relation is not plotted. Thus the dynamic behavior of charged
nematic composite is similar to uncharged composite at a higher frequency, with
G00/ ! 1=2.
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(a) (b)

Figure 6.24 (a) Amplitude sweep of � = 0.3 of Ani PS in NC1, showing LVR
rehion and yielding region as region 1 and 2, (b) Frequency spectra
of Ani PS composite at strain values, � 0.6%.

Figure 6.25 Tan � curve for Ani PS composite in the yielding region, � 0.6%.
Tan � / ! 1=2 at frequency greater than the critical frequency,! c
= G00=G0.
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6.4 Summary

One of the most important �ndings of this thesis concerns the measurement of
dynamic rheology and the microstructure of �lled lyotropic nematic composite
and comparing it with the �lled thermotropic system. And here, some of the
important experimental �ndings are presented:

ˆ Filled lyotropic nematic composites behave the same as �lled thermotropic,
exhibiting the same dynamic behavior and forming similar microstructure.

ˆ Surface charge of colloids disrupts the composite properties in the charged
micellar nematic liquid crystal system.

ˆ Nematic emulsions show similar rheological behavior like the solid-sphere
dispersion in lyotropic nematic up to� � 0.54 but deviate near the glass
transition volume fraction.
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Chapter 7

Flow behavior of �lled nematics.

The rheological properties of concentrated suspensions in liquid crystals are
of interest in several applications. The making, mixing, and transfer of such
materials generally require knowledge of the possible variation of viscosity with
shearing rates as well as with concentration and particle size distribution. Here,
in this work, we perform steady-state ow rheology on the samples prepared
by mixing colloids in nematic LCs, both thermotropic and lyotropic. First, we
discuss the viscosity and ow curve of a hard-sphere colloidal suspension followed
by nematic emulsion. Nematic emulsions were made by dispersing PDMS in NC1
LCs. We have used two viscosities PDMS; (a) 0.05 Pa.s and (b) 0.5 Pa.s for
these measurements. However, they are composed of very small droplets (� 4� m
in diameter) and are very much like our solid-sphere system since the drops are
hardly deformable. As a result, they follow essentially the same kind of rules
given for solid dispersions.

The same experimental conditions were used to perform steady-state ow
rheology on our composites. Apparent viscosity was measured when the material
has reached steady-state ow determined by the correct sample period. The
sample period is the time interval for which the average value of torque is recorded.
The shear rate was increased (logarithmically) in steps from (a) 0.001 to 0.01 /s,
(b) 0.01 to 0.1 /s, (c) 0.1 to 1/s, and (d) 1 to 1000/s and the process was repeated
yielding a viscosity and ow curve. The steady-state stress as a function of applied
shear rate is referred to as the ow curve, whereas the viscosity as a function of
applied shear rate is referred to as the viscosity curve.
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Figure 7.1 Steady state shear viscosity curve as a function of shear rate,_ , for
5CB (black) and pure NC1 LCs (blue).

7.1 Nematic liquid crystals (LCs)

The viscosity curve for both thermotropic - 5CB and lyotropic nematic NC1
LCs is drawn in the Figure: 7.1. Both the nematic LCs exhibit mild shear-
thinning behavior, with a rate - 0.16� 0.01 for 5CB and - 0.32� 0.01 for NC1
LCs. Nematic liquids generally show shear-thinning property [130, 185]. The
perturbation of the equilibrium state by ow is then dependent not only on the
direction of the ow �eld relative to the director �eld, ~n(r ), but also on the relative
con�guration of the ow gradient and the director �eld. The shear-thinning
behavior in the NC1 phase can be due to the orientation of cylindrical micelles
to facilitate ow. The curve was �tted to a power-law equation (Equation: 3.19).
The value of power-law index,nP L , is 0.74 � 0.15 for 5CB and 0.68� 0.13 for
NC1. The di�erence in the value suggests that the lyotropic nematic (NC1) LCs
exhibit a high shear-thinning behavior compared to thermotropic nematic 5CB
LCs.

7.2 Inuence of �ller

For the �rst time, we have studied the ow rheology of the �lled thermotropic
and lyotropic composites. The PMMA �lled composites were subjected to shear
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(a) (b)

Figure 7.2 (a) Shear viscosity in (� ) Pa.s and (b) Stress curve for PMMA-
PHSA in 5CB and composite plotted against shear rate, for various
volume fractions: 0.05 � � � 0.5. Shear-thinning behavior and the
absence of low shear-rate Newtonian plateau is clearly observed.

stress, and the resultant change in viscosity is reported. Figure: 7.2 represents
the viscosity curve and stress curve for PMMA in 5CB composites and Figure:
7.3 represents the ow curve of PMMA in NC1 composites.

The steady-state ow curve of solid-sphere colloids in nematic LCs show shear-
thinning behavior without the existence of zero-shear viscosity plateau but it may
appear at low enough shear-rate which is outside the range of experimentally
measured shear-rate. The exceptional shear-thinning behavior occurs as a result
of micro structural rearrangements occurring aligned to the plane of applied
shear. Raghavan and Khan [16, 156] have proposed that highly concentrated
suspension may form ordered layers and clusters of particles under a high shear
rate in the direction of ow. Pure 5CB LCs and dilute composites,� � 0.05,
show mild shear-thinning behavior with a slope of - 0.16� 0.01. However, the
concentrated composites,� � 0.2, show strong shear-thinning behavior with a
slope of -0.73� 0.11. This rate is higher when compared with dense colloidal
suspensions [34, 171] and �lled polymer solution [172], [154], [74], [153]. The
low shear - viscosity _ ! 0.01/s increases with increasing �ller concentration.
The interaction among Saturn-ring defects around the particles at equilibrium
explains the increase in low - shear viscosity with the �ller concentration for
both the composites. Beyond a certain critical concentration,� � 0.2, these
defects entangle to form a network-like structure that acts as a node restricting
the motion of the particles in the composites hence resisting ow. However, upon
shearing, the topological con�guration frustrates, and the defect encircled particle
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(a) (b)

Figure 7.3 (a) Shear viscosity in (� ) Pa.s and (b) Stress curve of PMMA-PVP
in NC1 composite plotted against shear rate, for various volume
fractions: 0.05 � � � 0.5. Shear-thinning behavior and the absence
of low shear-rate Newtonian plateau is clearly observed. Blue line
depicts all the composites have similar increase.

network breaks into smaller clusters and began to align along with the ow.
In dense nematic composites, the defect does not detangle, but their structure
breaks, unlike polymer melts. This behavior was studied using microuidic
channel ow. A channel slide with width: 20 � m, depth: 20 � m and length:
58.5 mm was used to image the lyotropic nematics. The elve-ow OB1 pressure
controller was used to control the ow speed of the sample through the channel.
And the ow pro�le was imaged under a confocal microscope. Figure: 7.4 show
the images of dilute lyotropic composite in the microuidic channel. The �rst
image shows that the PMMA particles are trapped on the side walls restricting
their motion. However, the maximum ow velocity is at the centre and the
entangled network breaks into smaller clusters aligning along the ow direction.
A simulation of velocity pro�le in the entangled network shows an enhanced ow
velocity in a defect network.

At high shear-rate, the e�ect of adding particles becomes less signi�cant, and
eventually, each of the curves becomes parallel to each other, showing power-law
behavior. For _ > 100/s, the viscosity for di�erent �ller concentration converge
to a common viscosity.

In lyotropic nematic composites, the micellar structure, when in equilibrium, has
a high value ofG0, G00and low shear viscosity, which is similar to a high molecular
weight concentrated solution of polymers [153]. However, upon shearing, they
can break into smaller micelles and align in the shear direction. The viscosity
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(a) (b)

(c)

Figure 7.4 Channel ow images showing (a) particles accumulating and moving
slowly on walls of the channel slides, (b) ow of small broken clusters
of nematic colloids in the middle of channel slides and (c) ow
pro�le of quadrupolar nematic colloids suggests an enhanced ow
velocity in the defect network, courtesy Oliver Henrich.
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Table 7.1 The values of n and yield stress� y from the Herschel-Bulkley relation
for nematic composites.

Composites volume fraction,� n � y (Pa)

PMMA in NC1 0.13 0.7 � 0.08 11.2� 0.58
PMMA in NC1 0.16 0.5 � 0.14 11.8� 0.61
PMMA in 5CB 0.2 0.75 � 0.01 -
PMMA in NC1 0.25 0.41 � 0.03 8.68� 0.91
PMMA in NC1 0.27 0.33 � 0.15 37.17� 1.08
PMMA in 5CB 0.3 0.76 � 0.01 7.91� 0.71
PMMA in 5CB 0.4 0.98 � 0.01 16.58� 1.61

reduction upon shearing is, therefore, very signi�cant and sharp, as depicted
schematically in the Figure: 7.3.

Stress curves from ow rheology are plotted in Figures: 7.2 and 7.3 b. The curve
was �tted using Herschel-Bulkley relation [71],� = � y + k _ n i , where the indexni

< 1 for shear - thinning samples. The value ofni and yield stress,� y, for these
composites are tabulated in Table: 7.1.

7.3 E�ect of surface charge

After studying the ow rheology of uncharged composites in NC1, we were
inspired to study the e�ect of the surface charge on their rheology. Both
negatively charged Ani PS and positively charged Cat PS composites in NC1
were exposed to shear stress, and the resultant viscosity curves are drawn in the
Figure: 7.5.

Both the charged composites exhibit shear-thinning behavior; however, the rate
is greater for positively charged Cat PS in NC1 (-0.74� 0.19) as compared
to negatively charged Ani PS (- 0.52� 0.13). This is explained by the weaker
anchoring strength found in Ani PS in NC1 composites (see Figure: 6.20), which
allowed particles to entangle but the structure is di�erent - more crystal like,
rather than fractal like. Therefore, a higher relative concentration of colloids is
required to achieve the same value of low shear viscosity. Because of the lower
value of low shear viscosity, a shorter distance to the point of shear thinning
is present - thus the gradient is lower for charged colloids. However, for both
negatively and positively charged composites, the addition of more particles
enhances the low shear viscosity.

138



(a) (b)

Figure 7.5 Shear viscosity (� ) Pa.s of (a) Ani PS in NC1 liquid crystals and
(b) Cat PS in NC1 plotted against shear- rate, for various volume
fractions: 0.05 � � � 0.5. Shear-thinning behavior and the absence
of a low shear-rate Newtonian plateau are clearly observed.

7.4 Power-law behavior

The power-law index (nP L ) values calculated from the viscosity curve of the
composites, plotted against� are shown in the Figure: 7.6. The value ofnP L for
uncharged PMMA in both thermotropic (PMMA-PHSA in 5CB) and lyotropic
(PMMA in NC1) decreases with increasing particle concentration. However, Ani
PS has the same value ofnP L independent of particle concentration. For PMMA
in NC1 suspension, it is seen that at� % = 12.73, there is a sudden decrease
in the value of nP L . But the value of nP L for uncharged composites in both
thermotropic and lyotropic composites plateaus with a value of 0.07� 0.01 at
� % � 40. This value is one order of magnitude lower than the hard-sphere
concentrated suspension which hasnP L - 0.4 ([34, 171]). On the other hand,nP L

for Ani PS in NC1 composites do not show any sharp decrease in their value with
increasing volume fraction but a plateau with a value similar to solid-sphere dense
suspension of 0.4� 0.05. This can be attributed to the weak anchoring between
Ani PS and NC1 LCs, which does not form entangled network-like structure in
nematic LCs but form a compact disconnected cluster.
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Figure 7.6 Power-law indices plotted against volume fraction: PMMA-PHSA
in 5CB (black), PMMA in NC1 (blue) and Ani PS in NC1 (brown).
Line is a guide to eye.

(a) (b)

Figure 7.7 Relative viscosities at (a) low � 0:01=s and (b) high shear (� 95=s) for
PMMA-PHSA in 5CB composites (circle), PMMA in NC1 (square),
Ani PS in NC1 (triangle) and Cat PS in NC1 (down triangle)
composites. The line is �tted to the Krieger-Dougherty relation,

� r =
�

1 � �
� m

� � 2:5� m
.
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7.5 Relative viscosity

Relative viscosities, (� r = � �
� LCs

), for the composites as a function of the colloidal
concentration at low � 0:01=s and high shear (� 95=s) are shown in Figure: 7.7.
The thermotropic composites deviate from Krieger-Dougherty relation both at
high and low shear rates, suggesting that the nematogens in the thermotropic
composites are not a�ected by shear. However, the relative viscosity for lyotropic
composites follows Krieger-Dougherty relation at high shear rate = 95/s,� r =
[1 � �

� m
]� 2:5� m , the value of � m = 0.58 was used to �t the data. This behavior

suggests that the micellar nematogen is broken at high shear and reorganise to
form spherical micelles which no longer exhibit nematic phase. Therefore the
dispersion acts more like a normal colloid at high shear in the lyotropic nematic.
However, the relative viscosities at low shear rate (0.05/s), Figure: 7.7, do not
follow Krieger- Dougherty relation for �lled lyotropic compsoites as the micelles
nematogens are in equilibrium without being deformed or broken.

7.6 Nematic emulsion

We have studied the ow rheology of two sets of concentrated� > 0.2, nematic
emulsion. Nematic emulsions were made from two di�erent viscosities, (a) 0.05
Pa.s and (b) 0.5 Pa.s of PDMS dispersed in NC1 LCs. A plot of shear viscosity
as a function of shear-rate for PDMS(0.05) emulsion exhibiting shear-thinning
behavior, is shown in the Figure: 7.8. The data were �tted using the power-
law equation. The value of the power-law index (Figure: 7.8b) decreases with
increasing volume fraction, a behavior also observed in solid-sphere PMMA
composites in NC1.

The solid-like behavior of drops can be explained by the formation of an elastic
inter-facial layer at the drop surface, and this elastic cover changes radically the
boundary conditions between the two uids and prevents deformations of the
liquid inside the drops up to � � 0.58. The increase of the concentration of
drops in emulsions results not only in increased viscosity at low shear rates (i.e.,
Newtonian viscosity), but also in the appearance of strong non-Newtonian e�ects,
a shear rate dependence decrease in viscosity.

The relative viscosities for nematic emulsions are plotted in Figure: 7.9. Nematic
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(a) (b)

Figure 7.8 (a) Viscosity curve for PDMS (0.05) nematic emulsion and (b)
Power-law index obtained from viscosity curve plotted against� ,
hard-sphere composites (blue square) and emulsion (orange cirlce).

Figure 7.9 Relative viscosities at high shear-rate� 95=s for lyotropic composites,
(a) PMMA in NC1 (square), (b) Ani PS in NC1 (triangle), (c) Cat
PS in NC1 (down triangle) and (d) PDMS (0.05 Pa.s) emulsion
(cirlce) composite. The line is �tted to the Krieger-Dougherty
relation.
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emulsions follow solid-sphere composite behavior for volume fractions,� � 0.58,
but deviate from the Krieger-Dougherty relation beyond. The deviation volume
fraction is at the glass transition,� g = 0.58, a behavior which was also observed
in PDMS emulsion in isotropic solvent [171]. This is in accordance with the
amplitude sweep data, section: 6.2.4. At� = 0.58, the inter droplet separation
becomes less than 1.11 and they no longer remain entangled by the defects but
start to touch each other and coalesce. This changes the ow behavior of the
nematic emulsions similar to dense emulsions.

7.7 Summary

ˆ The zero-shear viscosity of �lled charged and uncharged nematic composites
increases with the volume fraction. The concentrated composites,� > 0.2,
exhibit exceptional shear-thinning behavior, with the value of power-law
index � 0.11, which is lower than for dense colloidal suspension� 0.4 and
to those of polymer melts� 0.3.

ˆ The relative viscosities of the hard-sphere lyotropic nematic composites at
high shear-rate ( _ = 95/s) follow the Krieger-Dougherty relation suggesting
that the micellar nematogens are broken at high shear and form isotropic
spherical micelles.

ˆ Nematic emulsions show identical ow behavior to solid-sphere composites
for low volume fractions composites,� = � g < 0.58, but deviate from the
Krieger-Dougherty relation beyond� g.
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Chapter 8

Structure and dynamics in �lled
lamellar phase.

The rheology of �lled lamellar lyotropic phases has been considered in depth
before [23, 51, 72, 99]. We present measurements on colloids in a lamellar system
made using the same ingredients as for the lyotropic nematic system so that we
can compare directly the rheology of �lled nematic and lamellar systems. In
this chapter, we have attempted to study the rheology of the lamellar phase
formed from a ternary mixture of anionic surfactant-SDS, 1-decanol, and water.
Filled lamellar composites were formed by dispersing PMMA-PVP particles in the
lamellar liquid crystal. Lamellar liquid crystalline textures may show homeotropic
or focal-conic (threadlike, mosaic or oily streaks patterns), [166], [85] texture
under cross-polariser, see Figure: 4.8. The proposed orientation of SDS and
1-decanol in the bi-layer structure is represented in the Figure: 4.6.

8.1 Rheology of lyotropic lamellar LCs.

The strain-dependent storage (G0) and the loss (G00) moduli of L � as compared
with thermotropic nematic - 5CB and lyotropic nematic (NC1) LCs are shown in
Figure: 8.1. The value ofG0 for L � is two orders of magnitude greater than that of
NC1 LCs with G0 > G 00up to  � 4.2 %. The lamellar phase behaves as an elastic
system with high yield stress. One of the most signi�cant di�erences between
both lyotropic lamellar (rhombus) and nematic (square) liquid crystals are the

145



(a) (b)

Figure 8.1 The mechanical spectrum ofG0 and G00as (a) a function of applied
strain and (b) a function of frequency for 5CB (black), NC1 (blue)
and L � (brown) phases of LCs.

appearance of yield stress. The solid-like behavior of theL � phase is explained by
their intrinsic ordered bi-layer structure, which gives rise to multiple defect lines
because a bi-layer structure cannot continue inde�nitely and therefore defects
arise as opposed to nematic phases where the director can relax to form a defect-
free structure if it has a su�cient length scale to do so (i.e. it is not con�ned). A
cross-polariser image of both lyotropic LCs (see Figure: 4.7 and 4.8) shows the
di�erent defect structures observed in these lyotropic LCs. The linear viscoelastic
properties of lamellar phases were determined by means of frequency sweeps
inside the linear viscoelastic region. As can be observed in the Figure: 8.1b,
the frequency dependence ofG0 and G00is always similar. Thus, almost constant
values ofG0 and a clear minimum inG00can be detected, a behavior prominent
in glassy rheology [148]. This mechanical spectrum corresponds to the ’plateau’
region, which has been related to the formation of an elastic structural network
due to the interactions between liquid-crystalline domains [93]. This behavior
is typical of a viscoelastic solid such as a combination of springs (elastic) and
dashpots (viscous). At high frequency, the springs are able to elongate while the
dashpots are moving slowly with time under the forced shear. At low frequency,
the springs can also extend, however the dashpots have su�cient time to move
and their extension exceeds that of the springs.

Tan � = G00/ G0 curve for pure L � is non-linear but increases with frequency
beyond 1 rad/s as for all strain values. But the absolute value of tan� < 1 for
the entire frequency spectrum con�rming that the defects in lamellar LCs exhibit
strong elastic characteristics.
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Figure 8.2 Tan� = G00/ G0 as a function of angular frequency! in rad/s for L �
LCs for  = (0 :1 � 10)%.

8.2 Inuence of �ller on the rheology and
microstructure of �lled lamellar.

Microspheres of PMMA-PVP were dispersed in lamellar lyomesophases to create
composites of varying volume fraction,� = 0.05 - 0.5. Confocal micrographs
of dilute, � = 0 :05, and concentrated ,� = 0.3, lamellar composites are shown
in Figure: 8.3. In the dilute composites, the colloids form small disconnected
clusters. The average cluster size calculated from 7 di�erent sets of images is�
50 � 10 � m, and the clear nematic domain size was found to be� 700 � 21
� m. However, at high concentrations, the shape of the cluster transforms into
a well-connected space spanning network structure, and the size of the nematic
domain is reduced to� 500 � 4 � m. Thus the change in the microstructure of
the composites and a�ecting the rheology results.

8.2.1 Oscillatory response

Following a similar route as NC1 LCs, the inuence of �ller concentration on the
L � composites was studied. It was observed from amplitude sweeps, that as the
concentration of PMMA-PVP particles increases, the value ofG0 and G00 also
increases. An amplitude sweep curve for� = 0.30 composite compared with pure
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(a) (b)

Figure 8.3 Microstructure of PMMA particles dispersed in L � for (a) � = 0.05
and (b) � = 0.3 as seen under confocal microscope (uorescence
channel) Green spheres are PMMA beads and dark regions represent
L � medium. PMMA beads form irregular shaped space spanning
cluster at high concentration. Scale-bar is 20� m.

Figure 8.4 Amplitude sweep for� = 0.3 composite (purple) as compared to pure
L � phase. Closed symbol isG0 and open symbol isG00.
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(a) (b)

Figure 8.5 (a) Amplitude sweep for � = 0.2 (black) and 0.3 (grey) composite.
(b) Yield strain,  C , for the lamellar composites (rhombus) as
compared with the NC1 composites (square).

un�lled L � phase is shown in Figure: 8.4.G0 (LVR) for � = 0.3 composite is�
10000 Pa which is two orders of magnitude greater than the pure lamellar LCs
with G0 � 100 Pa. The critical yield strain, c, whereG0 = G00, also has increased
with volume fraction from 3 % to 16 % for pure and �lled LCs respectively.

The Figure: 8.5 a compares the amplitude sweep of two concentrated (� = 0.2
and 0.3) composites. The plateau region (LVR) remains the same for both
the composites with the crossover happening at the same strain. The plot of
yield strain Figure: 8.5 b suggests that the yield value does not change with
the concentration, unlike for nematic composites. A detailed plot representing
the value of G0(LVR) and G00(LVR) for lamellar composites is drawn in Figure:
8.6. The inset shows the two regimes of dynamic moduli, for� � 0.1 the value
of G0 and G00 are of the same order of magnitude as that of un�lled liquid
crystals, but there is a rapid increase in the values ofG0 and G00beyond � � 0:2.
The comparison with NC1 composite is evident, the value ofG0(LVR) for L �

composites greater than for NC1 composites.G0 shows an increase with� with
G0 � G0 = � p, where p = 1.57 � 0.24. The value of bothG0 and G00 for the
lamellar composites are greater than for the NC1 and 5CB composites.

The elevated value ofG0 at high volume fraction can be attributed to the space
spanning cluster matrix (see Figure: 8.3), which holds the particles together,
forming a stable gel-like system. But as the applied strain increases, the structure
deforms �nally yielding with G00becoming greater thanG0. The critical yield
strain,  c, remains� 30 � 4 % for di�erent concentration of composite as shown
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(a) (b)

Figure 8.6 (a) Storage modulus (G') and loss modulus (G00) as a function of
volume fraction (� )) of PMMA particles dispersed in L � . Inset
shows the two regimes of dynamic moduli, for (b)� � 10% the
value of G0 and G00are of the same order of magnitude as that of
un�lled liquid crystals but there is a rapid increase in the values of
G0 and G00beyond� � 0:2.

in �gure: 8.5 unlike the NC1 composites whose value decreases with increasing
� .

8.2.2 Dynamic response

A frequency sweep was conducted for PMMA-PHSA �lled lamellar LCs compos-
ites with the same experimental condition as used in the amplitude sweep. The
frequency sweep pro�le was recorded at di�erent values of strain from 0.1 to 10
% over four decades of frequency, 0.1 to 600 rad/s. From oscillatory strain sweep,
two regions (a) LVR and (b) yielding were identi�ed; see Figure: 8.5 a.

Region 1

The LVR for � = 0.3 composites were restricted to � 1%. The frequency sweep
pro�le was recorded for the strain values below 1% is reported in Figure: 8.7.
Both G0 and G00shows a weak dependence on frequency with! 1=5. G0 remains
approximately the same in the whole frequency range studied. This behavior is
characteristic of a gel-like sample. The plot of tan� (Figure: 8.7 b) reveals that
the composites behave as an elastic solid with tan� < 1 for the entire frequency
spectrum.
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(a) (b)

Figure 8.7 (a) G0 and G00 as a function of angular frequency ! in rad/s
at low strain,  � 1% in the LVR region (region 1) where G0

and G00 remains constant as compared with %> 2% where the
microstructure of the sample has deformed with decreasing value of
G0 and G00(b) Tan � as a function of ! in region 1. Tan � shows a
weak dependence on! .

Region 2

Frequency spectra of �lled, � = 0.3, lamellar composites and pureL � LCs are
compared in Figure: 8.8. It is interesting to note that for the angular frequency
range from 0.01 to 100 rad/s, the elastic moduli shows a plateau with the viscous
component increasing as! 1=2 at higher frequencies. The system does not show
a linear response, and under these nonlinear conditions, the storage modulusG0

is higher than the loss modulus over the whole angular frequency range, unlike
pure lamellar LCs, which show a clear minimum. This solid-like viscoelastic
behavior is strongly correlated with the defect density. In fact, Larsonet al.
[100] showed that bothG0 and G00 decrease when the defects are removed by
applying a large amplitude oscillatory shear. Hence the plateau modulus reects
the defect density. This result coincides with the idea that systems with yield
stress behave as a solid until a certain threshold value, and they do not have any
�nite structural relaxation time [63].

Nemeth et al. [133] reported this behavior only in the lamellar liquid crystalline
phase, but from our studies, these characteristics are present in concentrated
lamellar composites. The increase ofG00may be attributed to slow reorganizations
of the system (motion of lamellar or other liquid crystalline phases depending on
the system). These reorganizations correspond to the rupture of weak bonds in
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Figure 8.8 G0 and G00as a function of angular frequency,! , in rad/s for � =
0.3 and pure L � LCs for  = 0 :1 � 10%.

Figure 8.9 Tan� = G00/ G0 as a function of angular frequency! in rad/s for
PMMA in L � LCs in the yielding region for  > 1%.
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the system and donot a�ect the elasticity of the system, i.e.,G0 changes a little.
These relaxations result in energy loss and lead to an increase ofG00.

The tan � values of �lled lamellar composites as a function of frequency,! , for
di�erent strain,  > 1 � 10% is plotted in Figure: 8.9. The plot reveals that the
value of tan � is directly proportional to ! . The more liquid-like character of the
composites is reected at higher frequency, for example! > 10 rad/s where tan
� > 1, with tan � � ! 1=2. This is because the suspension has yielded and bi-layers
have reoriented in the direction of ow at higher >  c.

Thus we conclude, the curve of tan� is non-linear, with tan � showing a
slight negative slope at lower frequency and increase with! 1=2 beyond a critical
frequency,! c. We de�ne ! c, as the frequency where the value of tan� = 1. The
value of critical frequency is inversely proportional to the strain values.

8.3 Steady state ow rheology

8.3.1 LCs comparison

The evolution of apparent viscosity as a function of shear rate for the lamellar
phase shows the characteristics of a shear-thinning uid, showing, in general,
a power-law decrease in viscosity see Figure: 8.10. Flow properties of lamellar
liquid-crystalline systems are strongly dependent on shear rate and composition.
It can be observed that the viscosity curve is nonlinear in the LCs system. This
is explained from the experimental error as the data was collected in steps,
and each bump represents the start of a new step. The zero shear viscosity
(�at 0:001=s) of L � is two orders of magnitude greater than for NC1 LCs, which
is consistent with G" values from strain amplitude sweep. Viscosity decreases
on increasing shear rate and follow power-law behavior, _ = � nP L � 1, with nP L

= 0.44 and 0.87 for lamellar and nematic LCs respectively, a complete absence
of a shear-independent viscosity plateau region. Similar shear-thinning behavior
was obtained for a CTAB/1-hexanol/water system lamellar phase [130]. This
shear-thinning behavior has been related to the formation of ordered bi-layer
structures being aligned in the ow direction for the lamellar phase. For the
nematic phase, this decrease in viscosity was attributed to the partial alignment
of rod-like micelles in the direction of ow.
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Figure 8.10 Shear viscosity (� ) in Pa.s for di�erent liquid crystal, thermotropic
nematic - 5CB (black), lyotropic nematic - NC1 (blue) and
lyotropic lamellar (L � ) (brown).

8.3.2 Inuence of �ller

The �lled lamellar composite exhibits exceptional shear-thinning behavior, as
depicted in the Figure: 8.11. The low-shear viscosity (� at 0.05/s) of the
composites increases with the concentration of particles. The data was �tted
using a power-law equation, _ = � nP L � 1, wherenP L is the power-law index. The
value of nP L for di�erent volume fractions of lamellar composites is plotted on
Figure: 8.11b for both NC1 andL � composites. The value ofnP L is close to 0.1
for the di�erent volume fractions of lamellar composites proving that all lamellar
composites (� > 0.15) exhibit the same ow behavior, unlike NC1 composites.
The dilute (� < 0.15) NC1 composites have a low power-law index stating a low
shear-thinning rate; however, concentrated composites (� � 0.2) exhibit similar
ow behavior as lamellar composites.

Relative viscosities (� r = � �
� L �

) at two di�erent shear-rates, (a) _ = 0.05/s and (b)
_ = 95/s as a function of composite volume fractions are shown Figure: 8.12. At
low shear rate, _ , the relative viscosities follow the Krieger-Dougherty relation.
But this behavior is not evident at high shear - rate when the composites have
changed their structure.
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(a) (b)

Figure 8.11 (a) Viscosity curve for di�erent volume fraction of L� composites
(di�erent colors are for di�erent volume fractions), (b) Power-law
index as a function of � for L � and NC1 composites.

Figure 8.12 Relative viscosities (at _ = 0.05/s and at 95/s) plotted against �
for lamellar composites.
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8.4 Summary

Our rheology results forL � LCs repeats the �ndings reported in the literature
and allows us to set the rheology of �lled nematics in context.

1. G0 / � 2 for �lled nematics, but there is a lower power dependence (G0 /
� 1:5) for lamellar composites.

2. The critical yield strain,  c, for �lled nematics decreases with increasing
volume fraction, but for �lled lamellar, the value of yield strain remains
constant.

3. The shear rheology suggests an exceptional shear-thinning behavior for
concentrated (� > 0.2) nematic composite which is also a characteristic
behavior of �lled lamellar composites withnP L for nematic andL � � 0.1.
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Chapter 9

Conclusion and outlook

The research presented in this doctoral thesis spans several original �ndings about
�lled nematic liquid crystals composites. Thus, in this concluding chapter we
summaries the results presented in this thesis.

9.1 Structure and dynamics of �lled nematic
composites.

We have studied the dynamic response of �lled thermotropic nematic composites.
Un�lled pure nematic liquid crystals without defects ow like a viscous liquid
exhibiting Maxwell uid like behavior, G00/ ! . However, on addition of particles
beyond a critical volume fraction, � c > 0.18, a class of highly elastic soft-solid
is formed. From the amplitude sweep, two di�erent regions were identi�ed, (a)
Region 1 - LVR and (b) Region 2 - yielding region. The value ofG0 in the LVR
shows a sharp increase with volume fraction at� > 0.18 with functional form
of G0 / � 2. This power dependence on volume fraction is similar to colloidal
suspensions over the glass transition,� g = 0.58. However, the glass transition for
�lled nematics is considerably lower at� = 0.18.

From the frequency sweep,G0 > G 00 for in�nite time, ! ! 0 we �nd that the
composite is highly stable. Above a critical frequency, we show that the soft-solid
yields with G00/ ! 1=2. We present a theory that indicates the yielding behavior
is governed by the Ericksen number,Er , and the viscous behavior is determined

157



by the con�ned nematic regions. We �nd that the frequency dependence of the
composites is independent of the volume fraction,� , indicating that it is neither
an active nor a passive �lled system. The behavior of composite is determined by
the orientation of defect lines in the nematic LCs and the colloids merely serve
to create and support Saturn-ring defects.

For the �rst time, we explore �lled lyotropic nematic composites and �nd their
rheology and microstructure to be very similar to their thermotropic counterparts.
We show that charge interactions weaken the composite strength when colloids are
dispersed in a charged nematic liquid crystalline medium. The microstructure of
the charged composites exhibit crystal array-like structures as opposed to loose
randomly-packed networks formed in uncharged composites, see Figure: 6.17.
We also show that the deformable colloids in nematic emulsions show similar
rheological behavior like the solid-sphere dispersion in lyotropic system up to
� � 0.54 but deviate near the glass transition volume fraction. We attribute this
deviation to the change of interparticle separation at higher volume fractions. At
� = 0 :54, the inter particle separation between droplets decreases from 1.11 to
1.05, thus they are no longer separated by Saturn-ring defects but start to touch
each other and coalesce, therefore changing the microstructure of the composites
and their rheological behavior.

The low shear viscosity of �lled nematic composites increases considerably with
colloidal volume fraction. However, on the application of stress, the concentrated
composites,� > 0.2, exhibit exceptional shear-thinning behavior, with power-law
index � 0.11, which is lower than for dense colloidal suspension� 0.4 and to
those of polymer melts� 0.3. The relative viscosities at both low (0.01/s) and
high (95/s) shear rate were plotted against the Krieger-Dougherty relation. At
low shear-rate both �lled thermotropic and lyotropic composites does not follow
Krieger-Dougherty relation because the nematogens are in equilibrium without
being a�ected by shear. However, at high shear lyotropic nematic composite
follow K-D relation suggesting that the micellar nematogens are disrupted at
high shear and the composites behave like dense colloidal suspensions. The ow
rheology of lyotropic nematic emulsions show identical ow behavior to solid-
sphere composites for volume fraction less than glass transition,� = � g < 0.58,
but deviates beyond� g.
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9.2 Dynamics of lamellar composites in context of
�lled nematics.

Rheology measurements on lamellar composites are consistent with �ndings
reported in the literature and allows us to set the rheology of �lled nematics
in context. The value ofG0 shows a lower power dependence on volume fraction,
G0 / � 1:5, as compared to �lled nematic composites,G0 / � 2. However, the
value of critical yield strain,  c, remains constant for �lled lamellar composites
whereas the value decreases for �lled nematics with increasing volume fraction.
The ow pro�le of lamellar composites suggests a high shear-thinning behavior for
concentrated lamellar composites as compared to the �lled nematic counterpart.

Collectively, these results support the suggestion that a �lled lyotropic liquid
crystal could o�er an alternative route to creating stable formulations, that
are highly tunable, and shear-thinning, without the use of polymers. However,
in order for uni axial micelles to be the route of choice, further research and
development will be required to identify nematic phases made of bio-compatible
surfactants and co-surfactants. Charge should be avoided since it can lead to
phase separation when charged colloids are dispersed within. Our experiments
indicate that anchoring at the surface of colloids can a�ect the microstructure and
future work could involve new characterization methodologies to characterize the
anchoring strength more quantitatively. Furthermore, computer simulation could
enlighten experimentalist to help us understand the conditions under which the
crystal structure is formed and, for the defect-mediated gel, help us understand
the increase in the number of percolating disclinations across a composite with
the �lled volume fraction.
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Appendix A

Topological defects in nematics.

Topological defects are the defects which arise from breaking continuous symme-
try of the system and cannot be �xed by any local rearrangement of molecules.
In three-dimensional space, these defects are where the order parameter of the
system under consideration is classi�ed by the homotopy groups �n (V ), n = D-d-1
[125] , where D is space dimension, in a 3D nematic, d is the defect dimension, V =
P2, n=1 for line defects enclosed by loops and n = 2 for point defects enclosed by
sphere. Homotopy classi�cation of defects can be done by; �rst de�ning the order
parameter (OP) of the system, if the system is non-uniform then S is considered
as a function of coordinates. Then all the values of OP are determined that do
not alter the thermodynamic potential of the system. From the topological point
of view, the order parameter space of the nematic phase is the projective plane
P2 = S2

Z2
, where S2 is the unit sphere in three dimensions. Every point onS2

Z2

denotes a particular orientation of~n. Since~n and ~� n are equivalent, so any
two diametrically opposite points on the sphere represents the same state. The
director ~n maps all the point in the sphere.

A.1 Line Defects or Disclinations.

Nematic line defects are also known as disclinations to indicate the discontinuity
in the inclination of molecules. Consider a disclination as shown in Figure: A.1
and surround the line by a loop � such that the director, ~n(r ) is de�ned at
every point along �. Thus the function ~n(r ) maps � into some closed contour 
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Figure A.1 Stable disclinations in a nematic phase with their corresponding
contours in � space.

on the projective plane. 
 can be of two types; (a) like a circle which starts
and terminates at the same point or (b) like a contour which connects two
diametrically opposite points of the sphere. A circle in the �rst case can be
contracted into a single point and for this scenario,~n = constant, but contours
cannot be contracted and their ends will remain diametrically opposite points
of 
. The corresponding defect line of contours is topologically stable. The
homotopy group � 1( S2

Z2
) = Z2 = 0, 1

2 is composed of two elements from the
addition rules 1

2 + 1
2 = 0 and 1

2 + 0 = 1
2 . The elements of the homotopy group are

called topological charge, s. The transformation between12 and 0 is energetically
impossible as it will require the breaking of nematic phase symmetry; the only
stable disclinations are those that correspond to the element of1

2 . All the stable
lines (1 and 5) can be transformed into each other by a rotation of� along the
horizontal axis. The disclination shown on left (1) has a strength (k) of12 whereas
the disclination of right (5) has a strength of -12. The strength is de�ned by how
many times the director rotates by 2� while covering the circumference of the
defect core once and the sign of k denotes the direction of rotation. The director
�eld around a disclination follows from the minimization of the Frank free energy,
Equation: 2.4. In one-constant approximation, the line tension energyFd of the
disclination can be calculated using R, the radius of enclosing sphere � and the
radius of the disclination corer c given by;

Fd =
�
4

K (1=2 + log
R
r c

) (A.1)
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The surface term is neglected in the above equation. The right-hand side of
Equation: A.1, represents the elastic free energy per unit length around the line
defect. The line energy calculated using the same equation, withr c / 10 nm,
average elastic constant K� 12 pN and L around 10-100� m is Fd =65-85 pN
[139]. It can be seen that as R increases the energy also increases logarithmically,
so if R tends to1 , the energy also diverges logarithmically.

Since the energy diverges logarithmically, one has to introduce a lower cut-o�
radius of r c, i.e., the radius of the disclination core. Its line energy, given by
the �rst term, is derived in the following way, one assumes that the core of the
disclination contains the liquid in the isotropic state with a free energy density
� c necessary to melt the nematic order locally. The expression for� c is given by
Equation: A.2. Now a rough approximation for the core energy,Fc, per unit
length can be assumed:

� c =
K
8

(1=rc) (A.2)

Fc =
pi
8

K 1 + K 2 + K 3

3
(A.3)

A.2 Point Defects

The two types of point defects found in nematic LCs are radial and hyperbolic
hedgehogs. These defects are classi�ed by second homotopy group;� 2( S2

Z2
) = Z =

(0, � 1, � 2, ...). The simplest point defect is radial hedgehog shown in Figure:
A.2.

The director �elds are rotationally symmetric about the vertical axis in both
radial and hyperbolic hedgehogs. Consider a sphere of radius R, enclosing the
point defect. Thus, the function~n maps every point in that sphere. But these
mapping cannot be contracted into a single point because the point defect will be
unstable at that point. But if the mapped surface is wrapped N times around the
sphere, the point defect is stable with topological charge s =1. In nematic LCs, it
is not possible to distinguish between s and -s because~n and ~� n are equivalent.

The energies of the hedgehog con�gurations are calculated from the Frank free
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Figure A.2 a) Schematics of radial and hyperbolic hedgehog. b) Spherical
nematic droplets suspended in glycerin doped with lecithin. The
director con�guration is normal to the spherical surface. The image
shows the point defect-hedgehog in the center of the droplet as
observed as observed under cross polarizer.

energyFel + F24 (see Equation: 2.28 and 2.6).

Fradial = 4 � (2K 1 � K 24)R (A.4)

Fhyper =
4�
15

(6K 1 + 4K 3 + 5K 24)R (A.5)

Note that the Frank free energy of point defects does not diverge in contrast
to the line energy. The hyperbolic-hedgehog has lower energy compared to the
radial hedge-hog when 6K 1 � 5K 24 > K 3, and whenK 24 = 0, then hyperbolic
hedge-hog is preferred asK 1 � K 3.
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