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Abstract

Today, software is all around us, impacting our everyday lives in fundamental ways.

Developing software whose behaviour is reliable, predictable and correct is therefore

crucial. This has made software testing a critical part of the development process

and has led to the emergence of rigorous testing practices and standards. Testing any

non-trivial system, however, is time-consuming and takes up the bulk of development

time. Modern software engineering practices involve the repeated execution of large test

suites, as part of regular build, test and release cycles. A common approach to speeding

up testing without sacrificing rigour is distributing test executions among computer

clusters and cloud servers, but this can be complex and expensive due to the costs of

testing infrastructure and energy consumption.

This thesis presents a novel approach to accelerating test execution by parallelising it

using Graphics Processing Units (GPUs) - powerful and low-cost hardware accelerators

that are readily available in the majority of modern desktops. It demonstrates that GPUs

can be used to dramatically reduce test execution time at a lower cost compared to

other parallel approaches. To achieve this, it addresses significant challenges related to

usability, performance and scope, and makes three separate contributions:

First, a GPU testing framework, ParTeCL, is developed to automatically transform

the system under test into GPU source code and launch test execution in parallel on

the GPU threads. ParTeCL performs the entire testing process transparently without

requiring any expert GPU programming and architecture knowledge.

Second, two types of systems are used to evaluate the applicability and effectiveness

of the approach - sequential C programs form the embedded systems domain and Finite

State Machine (FSM) models. To enable testing them on the GPU, compiler-based

transformations and FSM implementations are developed and included in ParTeCL.

Finally, GPU performance is extensively analysed and optimised through a com-

bination of standard and domain specific techniques. Evaluation on programs from

the two domains demonstrates that the GPU outperforms a standard 16-core Central

Processing Unit (CPU) by up to 4× (avg. 1.4×) for embedded systems and up to 9×
(avg. 4.5×) for FSMs.

The techniques developed in this thesis demonstrate the exciting possibilities of

using specialised hardware architectures, such as GPUs, for the acceleration of software

test execution. Through integration into the testing process, they could provide rapid

feedback, reducing the amount of costly bug-fixing in later stages of development.

iii



Lay Summary

Software testing is the process of ensuring that a given computer program does what

we intend it to. It involves the repeated execution of the program, giving it different

parameters, and observing if it behaves as expected every time. The parameters used

for testing are called test inputs. As a program is developed and grows in size and

complexity, so does its set of test inputs. Normally, software engineers execute the set

of tests after each change to the program to ensure that the change did not introduce new

faults. This is a repetitive process, which is not performed manually by the engineers,

but automatically by a computer. As most programs have many tests, executing all of

them often can be a very time-consuming process, leading to delays in the software

development process and loss of productivity. It is often said that testing accounts for at

least 50% of a project’s cost.

Graphics processing units (GPUs) are a type of very fast computer processor that is

able to perform many of the same operations in parallel, using different inputs. This

thesis proposes using them to speed up software testing by executing multiple tests in

parallel on them. This is not easy to do, as GPUs are a niche type of processor that is

challenging to use without knowledge of its hardware and programming models. The

work in this thesis develops tools for software engineers to be able to use GPUs for

software testing without the need to program them themselves. It then uses these tools

to speed up test execution for two types of computer program and shows that, for these

programs, GPUs are indeed faster than conventional computers when executing tests.
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Chapter 1

Introduction

Software forms the basis of modern technology and is present in all areas of life. Today,

software is embedded in household appliances, personal devices and everyday objects.

It is widely used in diverse sectors including industry, healthcare, transport, finance and

retail, among others.

With the growing use of software, developing reliable systems whose behaviour is

predictable becomes critical. This has made rigorous software testing increasingly im-

portant, but thoroughly testing any non-trivial system is a complex and time-consuming

process. Literature regularly states that testing effort accounts for the majority of the cost

of development [1, 2]. This problem is heightened with the use of widespread software

engineering practices, such as test-driven development and continuous integration [3–5],

which rely on systematic testing. They provide improvements to overall system quality

and reductions in development costs, but involve the generation of extensive test suites

for each system component and regular test executions for every build and release,

making testing an even larger portion of the development process.

An important part of these practices is regression testing - the process of re-running

tests after every change in order to ensure that no errors have been introduced in the

existing functionality. As software evolves, new tests are added to the test suites, making

regular test execution increasingly expensive and time-consuming.

These observations are confirmed by industry accounts. Facebook [6] and Google [7]

state that even with the enormous resources dedicated to testing, they are unable to

perform regression testing using all tests for each code change due to the large number

of tests and high rate of changes. Google report that on an average day they perform

150 million automatic test executions at enormous compute cost, and they experience

increased lag in time between code check-ins and test result feedback to developers.

1



2 Chapter 1. Introduction

The research community has developed a body of work addressing this problem.

The focus has been on developing techniques to reduce the number of executed tests

without sacrificing testing rigour [8] and on distributing test executions across computer

clusters and cloud servers [9]. However, the first set of approaches could lead to reduced

testing effectiveness [10, 11], while the second could be complex to set up [12] and

expensive in terms of the cost and maintenance of the testing infrastructure [7].

This thesis addresses the problem of accelerating test execution by leveraging the

high degree of parallelism available on modern Graphics Processing Units (GPUs).

GPUs are powerful, readily available and low-cost hardware accelerators aimed at

graphics processing, which have been successfully applied to a wide range of appli-

cations in other domains [13–16]. This thesis demonstrates that through the parallel

execution of tests on separate GPU threads, GPUs can be successfully incorporated into

the testing process and used to speed up test execution.

1.1 Software Testing and GPUs

The focus of this work is the acceleration of software testing aimed at checking func-

tional correctness. This is the type of testing that ensures that the system behaves as

intended, which is distinct from testing for non-functional properties, such as speed,

portability or usability. It involves the execution of the program with different test inputs

and verifying that it produces the expected outputs. For complex systems, thorough

testing requires a large number of tests for each component. As a system evolves, the

number of tests in its test suite grows, along with the time necessary to execute them.

GPUs could prove well suited to parallelising test execution and reducing the

time it takes. In the general case, tests are both data parallel and independent, as

the tested functionality is executed multiple times over separate independent inputs.

This is precisely the computation pattern for which GPUs are designed, making a

compelling case for their use for test execution. GPUs are also a cost-effective option

for acceleration, present in virtually any modern computer. With the right tooling, they

could allow developers to execute tests and receive feedback quickly on their local

machines, before submitting their changes to shared development environments.

Nevertheless, using GPUs to parallelise test execution has until now remained an

unexplored area. This work aims to change this. The following sections present the key

challenges and contributions of this thesis.
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1.2 Challenges in Using GPUs for Software Testing

GPUs could offer reduced test execution time at lower cost compared to other paral-

lel architectures, but there are significant challenges, related to usability, scope and

performance, that must be overcome to achieve this goal.

1.2.1 Usability

As a niche architecture targeted at accelerating graphics computations, GPUs are no-

toriously challenging to program. Writing GPU programs requires expert knowledge

and the use of specialist programming models, such as OpenCL [17], CUDA [18] and

SYCL [19]. Of these, SYCL provides the highest level of abstraction, allowing program-

mers to write their GPU programs using standard C++, but even with it understanding

of the underlying GPU hardware is necessary. This represents a high barrier to entry in

adopting and experimenting with GPU approaches for test acceleration, as the majority

of software engineers do not have the necessary GPU programming expertise. This

makes automated frameworks that are flexible and intuitive to set up essential for the

use of GPUs in software testing.

1.2.2 Scope

GPU programming models and compilers are based on the C/C++ programming lan-

guages. As a result, the scope of applications which can be tested using GPUs is limited

to C/C++ programs, and to system models which can be implemented in C/C++ code.

To evaluate the applicability of using GPUs for software testing, this thesis focuses on

two types of systems: (1) sequential C programs from the embedded systems domain

and (2) Finite State Machine (FSM) models, using examples from the network intrusion

detection and digital signal processing domains.

In addition, due to hardware restrictions, there are standard C features that are

not supported for compilation on the GPU. Such features include dynamic memory

allocation, global scope variables and standard library functions. They pose further

restrictions to the scope of the approach and their impact is evaluated in this thesis.

1.2.3 Performance and Scalability

GPUs achieve high speeds compared to Central Processing Units (CPUs) due to their

highly parallel architecture, capable of launching thousands of threads at the same
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time, but simply compiling and running an application on the GPU does not guarantee

performance. GPU performance is subject to a number of factors related to the archi-

tecture, programming model, executed application and associated data. To establish

the effectiveness of using GPUs to accelerate test execution, it is crucial to understand

their importance in that context. Some of the most common factors that hinder GPU

performance are:

Data transfer overhead. GPUs have their own memory and data needs to be

explicitly copied between it and main memory before and after execution. Depending

on the amount of data, these data transfers can be slow, adding considerable overhead

to GPU time and severely impacting performance. With respect to testing, test inputs

and outputs need to be transferred and the overhead could be significant for the target

applications, as it is precisely programs with large test suites that are likely to benefit

the most from parallel test execution on the GPU.

GPU Memory Bandwidth. In GPUs, memory bandwidth is shared among thousands

of threads impacting the performance of memory intensive applications [20]. Appli-

cations written by expert programmers specifically for the GPU can alleviate this by

taking advantage of memory coalescing, in which data used by neighbouring threads is

stored in contiguous memory blocks and retrieved from memory at once. However, this

is a GPU specific optimisation that cannot be expected in every tested application and

shared memory bandwidth could have considerable performance impact.

Choice of GPU Parameter Values. Selecting appropriate values for GPU config-

uration parameters plays an important role in achieving optimal performance. They

depend on the specific GPU hardware, the implementation of the program and the

structure and size of program data. Finding the optimal configuration for a given GPU

architecture is a challenging problem, which has been addressed through the use of

dynamic techniques [21, 22].

Limited Memory. GPUs have a limited amount of memory which tends to be smaller

than main memory. In addition, unlike CPUs, GPUs do not have access to a hard

disk. This could pose a limitation to the scalability of the approach, as large test suites

comprised of large amounts of data may not fit into GPU memory.
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1.3 Problem Statement

Thorough software testing is a crucial part of the development process that ensures the

correct behaviour, reliability and quality of the developed system. However, testing

is often time-consuming and expensive, taking up the majority of development time.

Regression testing involves the repeated test executions of large test suites as part of

daily development and overnight builds and adds considerable strain to the software

development schedule. GPUs are widely available and inexpensive parallel accelerators

that could be well suited to speeding up test execution, but using them poses significant

challenges in terms of usability, scope, performance and scalability.

The goal of this thesis is to address these challenges by improving the usability of

GPUs for the purpose of test execution, evaluating the applicability and extending the

scope of the approach and evaluating and improving its performance and scalability.

1.4 Contributions

This thesis makes three main contributions. Table 1.1 shows which challenges are

addressed by each contribution.

1.4.1 Automated GPU Test Execution

A GPU testing framework, called ParTeCL1, is developed to automatically perform test

execution in parallel on the GPU, using the OpenCL programming model. ParTeCL

performs two tasks: (1) it translates the tested application into an OpenCL program,

which can be compiled and executed on the GPU and (2) it launches instances of the

tested program on the GPU threads, each with a separate test input.

ParTeCL addresses the usability challenge (Section 1.2.1) by launching test exe-

cution on the GPU transparently, relieving programmers from the need to write any

GPU-specific code. Furthermore, it facilitates the techniques used to address the scope

and performance challenges (Sections 1.2.2 and 1.2.3) by providing an automated

framework in which to implement them.

1ParTeCL - Parallel Testing in OpenCL
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1.4.2 Accelerated Embedded System and FSM Testing

The proposed approach is applied to two types of applications: (1) sequential C programs

from the embedded systems domain and (2) FSM models from the network intrusion

detection and digital signal processing domains. Testing is of paramount importance

to both of them and they can both be instrumented using the GPU programming

models (Section 1.2.3). Nevertheless, there are still scoping challenges involved in

using GPUs to test them. This thesis evaluates the applicability and feasibility of the

approach and addresses these challenges by applying compiler-based transformations to

C features that are not readily supported on the GPU. Furthermore, additional OpenCL

implementations for FSM test execution are implemented in ParTeCL.

1.4.3 Performance Analysis and Optimisations

GPU performance for test execution is optimised using a combination of approaches.

First, standard techniques to minimise the latency of data transfer are implemented in

ParTeCL. Then, GPU performance for both application domains is analysed and optimi-

sation approaches are developed, implemented and evaluated. Evaluation demonstrates

that with optimisations, the GPU is faster than a standard 16-core CPU by up to 4× (avg.

1.4×) for embedded systems and up to 9× (avg. 4.5×) for FSMs. This addresses the

performance challenge (Section 1.2.3) by demonstrating that GPUs can achieve better

performance than their counterpart multi-core CPUs available on the same machine.

Contribution Challenge

Automated GPU Test Execution (1.4.1) Usability (1.2.1), Scope (1.2.2),

Performance and Scalabil-

ity (1.2.3)

Accelerated Embedded System and FSM Testing (1.4.2) Scope (1.2.2)

Performance Analysis and Optimisations (1.4.3) Performance and Scalabil-

ity (1.2.3)

Table 1.1: Thesis contributions and the challenges they address.
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1.5 Publications

The ideas and results presented in this thesis are based on three previous publications

and one publication which is currently under revision. Table 1.2 summarises the thesis

chapters, the contributions which they make and the publications to which they relate.

The framework for automatic test execution on the GPU (ParTeCL), presented in

Chapter 4 was first presented in:

1. Yaneva, V., Rajan, A. & Dubach, C. ParTeCL: Parallel Testing Using OpenCL. In

ISSTA 2017. [23]

Chapter 5 presents accelerated testing of embedded systems, which was previously

published in:

2. Yaneva, V., Rajan, A. & Dubach, C. Compiler-assisted Test Acceleration on GPUs

for Embedded Software. In ISSTA 2017. [24]

FSM testing using GPUs, presented in Chapter 6, was first published in:

3. Yaneva, V., Kapoor, A., Rajan, A. & Dubach, C. Accelerated Finite State Machine

Test Execution Using GPUs. In APSEC 2018. [25]

Finally, the approach to improving the scale and performance of FSM testing presented

in Chapter 7 is currently submitted and under revision in:

4. Yaneva, V., Rajan, A. & Dubach, C. GPU Acceleration of FSM Input Execution:

Improving Scale and Performance. In STVR 2020 (under revision). [26]

This thesis reproduces the experimental results and analysis found in the above

publications. It also offers background information (Chapter 2) and a survey of existing

literature (Chapter 3), which includes references to recent work in the related fields.

1.6 Structure

This thesis is organised as follows:

Chapter 2 provides background information relevant to the motivation, methods,

evaluation and results in this thesis. It describes the software testing process and

provides details on GPU architecture and programming, embedded systems and FSMs.



8 Chapter 1. Introduction

Chapter Contribution Publication

2. Background

3. Related Work

4. Parallel Test Execution Using GPUs 1.4.1, 1.4.2, 1.4.3 [23]

5. Testing Embedded Software: Evaluating Applicability

and Performance

1.4.2, 1.4.3 [24]

6. Testing Finite State Machine Models: Establishing

Feasibility

1.4.2, 1.4.3 [25]

7. Testing Finite State Machine Models: Evaluating Per-

formance and Scale

1.4.2, 1.4.3 [26]

8. Conclusion

Table 1.2: Thesis chapters, contributions and related publications.

Chapter 3 provides an overview of existing work in five related areas: software test

acceleration, the use of GPUs in software testing, testing of embedded systems and

FSMs and automatic GPU code generation.

Chapter 4 describes the general method of executing tests in parallel on the GPU. It

presents ParTeCL - the automated framework developed for this purpose and describes

the general performance optimisations that are included in its implementation. The

approach and tools presented in this chapter are used in the rest of the thesis.

Chapter 5 applies the approach to the testing of sequential C programs from the

embedded system domain. It provides an evaluation of applicability and performance

using applications from the EEMBC industry-standard benchmark suite [27].

Chapter 6 establishes the feasibility of using GPUs to accelerate FSM testing.

Different designs for the FSM and test suites are considered, implemented and evaluated

in order to choose the optimal implementation in terms of execution time. ParTeCL is

extended to support FSM test execution.

Chapter 7 extends the work presented in Chapter 6 by improving the performance

and scalability of the approach for FSM test execution. Evaluation using 15 large FSMs

from the network intrusion detection domain is performed, demonstrating that, with

optimisations, GPUs can execute FSM tests up to 9× faster than a 16-core CPU.

Chapter 8 summarises the main findings of this thesis, provides a critical review and

discusses potential future work.
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1.7 Summary

The growing dependence on software in all areas of human life has made software

testing a crucial part of the development cycle in order to ensure the correctness,

reliability and robustness of the developed systems. While essential, software testing is

often a time-consuming and expensive part of the development process. GPUs could

prove successful in accelerating test execution with greater performance and at lower

cost compared to other parallel approaches. Achieving this requires overcoming three

main challenges, concerning usability, scope and performance and scalability. The next

two chapters provide technical background and discuss existing related work, while

subsequent chapters present and evaluate techniques to address these challenges.





Chapter 2

Background

2.1 Introduction

This chapter provides relevant background information to aid the understanding of

the problem and solutions presented in this thesis. First, it presents the software

testing process and defines the terms used throughout this thesis in Section 2.2. This is

followed by descriptions of the GPU architecture, memory hierarchy and programming

model in Section 2.3, focusing on aspects relevant to parallel test execution and the

optimisations presented in this work. The application domains to which the approach is

applied, embedded systems and FSM models, are introduced in Sections 2.4 and 2.5,

respectively. Finally, Section 2.6 concludes.

2.2 Software Testing

Program testing can be a very

effective way to show the presence of

bugs, but is hopelessly inadequate for

showing their absence.

Edsker W. Dijkstra

Software testing is a process used to evaluate whether a system meets the functional

specifications for its behaviour [28]. It aims to demonstrate that a system behaves as

intended, by executing it using a range of inputs and checking that the outputs are

as expected every time. Testing to ensure that a system meets other non-functional

requirements, such as speed, portability or usability, is outside the scope of this thesis.

11
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Result evaluationTest execution

Test suite

System
under test

Test input 1

Test input 2

Test input 3

Test input n

Test output 1

Test output 2

Test output 3

Test output n

Expected
output 1

Expected
output 2

Expected
output 3

Expected
output n

same as

same as

same as

not same as

... ... ...

Test
generation

pass

pass

pass

fail

Figure 2.1: The software testing process. It consists of three stages: test generation,

test execution and result evaluation. This thesis focuses on using GPUs to accelerate

test execution.

Figure 2.1 illustrates the software testing process. First, tests are generated (test

generation). This can be done either through the manual writing of tests or through the

use of automated techniques. Tests consist of separate inputs to the system under test

(SUT) and expected outputs. Next, the SUT is executed repeatedly, once with each test

input, and its outputs are recorded (test execution). Finally, the outputs are compared to

the expected outputs (result evaluation). A test passes if the two outputs are the same

and fails if they are not.

2.2.1 Term Definitions

Informal words referring to aspects of software testing can be intuitive and testing terms

are not always used consistently in literature. For this reason, it is useful to define the

terms used throughout this thesis.

• system/program/application under test (SUT/PUT/AUT) - the software system or

part of the system that is tested; for simplicity, SUT is used throughout this thesis

• test case or test - a set of inputs and a pass/fail criterion, also known as test oracle;

typically, the oracle is given in the form of an expected output, but could also

consist of other criteria
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• test suite - a set of test cases; a test suite for a system may by made up of several test

suites for individual modules, subsystems or units

• test input - input data for the SUT that is part of a test case

• test output - the output produced by the SUT during test execution

• expected output - the correct output for a given test input, based on the SUT’s

specification

• test result - indication whether a test execution passed (i.e. the system met its

requirements) or failed.

1 #include <stdio.h>
2 #include <stdlib.h>
3

4 int find(int array[], int n, int number) {
5 for (int i = 0; i < n; i++) {
6 if (number == array[i]) {
7 return i;
8 }
9 }

10 return -1;
11 }
12

13 int main(int argc, char **argv) {
14

15 // input error checking is omitted for brevity
16

17 int n = atoi(argv[1]);
18 int array[n];
19

20 printf("Enter %d array numbers.\n", n);
21 for (int i = 0; i < n; i++) {
22 scanf("%d", array + i);
23 }
24 printf("Enter a number to find.\n");
25 int number;
26 scanf("%d", &number);
27

28 // perform a search
29 int found_idx = find(array, n, number);
30

31 // output answer
32 printf("Number found at idx: %d\n", found_idx);
33 }

Listing 2.1: Linear search program, implemented in C.
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2.2.2 Example: Linear Search

To illustrate software testing, Listing 2.1 shows a simple C program, which performs a

linear search. The core function is find() on lines 4-11. It has three inputs: an array

of integers array, its length n and a number target, for which to search in the array. It

performs a linear search in array and returns the first index at which target is found,

or -1 when target is not in the array. The main() function accepts values for n through

the command line (line 17) and for array and target through standard input (lines 22

and 26) and calls find() to perform the linear search. Finally, it prints the output in

standard output.

The functional specification for linear search is the following:

1. It accepts as inputs an array of integer values, the length of the array and an

integer number for which to search in the array.

2. It returns the first index at which number is present in the array; it returns -1 if

the number is not present in the array.

3. If the array is empty, it returns -1.

Table 2.1 shows an example test suite for the linear search program based on this

specification, which contains four tests. Listing 2.2 shows an implementation for these

tests in GoogleTest [29] - an automated testing framework for C/C++ programs. The

SUT is the find() function and all tests are structured following the process illustrated

in Figure 2.1: (1) the test inputs are declared and initialised, (2) the SUT is executed

with the test inputs and the test output is recorded and (3) the test output is compared to

the expected output (using the assertions available in GoogleTest, e.g. EXPECT EQ).

Test id Test input Expected output
n array target

1 5 {1,2,3,4,5} 3 2

2 5 {1,2,1,2,1} 2 1

3 5 {1,2,3,4,5} 10 -1

4 0 {} 5 -1

Table 2.1: Example tests for the linear search program.
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1 TEST(linear_search_test, test_id_1) {
2 int n = 5;
3 int array[] = {1,2,3,4,5};
4 int target = 3;
5 int output = find(array, n, target);
6 EXPECT_EQ(output, 2);
7 }
8

9 TEST(linear_search_test, test_id_2) {
10 int n = 5;
11 int array[] = {1,2,1,2,1};
12 int target = 2;
13 int output = find(array, n, target);
14 EXPECT_EQ(output, 1);
15 }
16

17 TEST(linear_search_test, test_id_3) {
18 int n = 5;
19 int array[] = {1,2,3,4,5};
20 int target = 10;
21 int output = find(array, n, target);
22 EXPECT_EQ(output, -1);
23 }
24

25 TEST(linear_search_test, test_id_4) {
26 int n = 0;
27 int array[] = {};
28 int target = 5;
29 int output = find(array, n, target);
30 EXPECT_EQ(output, -1);
31 }

Listing 2.2: Example tests for the linear search program, implemented in GoogleTest.
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2.2.3 Testing Practices

The purpose of software testing is to provide confidence that a system’s behaviour

conforms to specification. Ideally, test suites will exhaustively sample the entire input

space of a system, but in practice this is infeasible, as even trivial programs would need

many billions of tests, that would be impossible to execute in any practical amount of

time. For example, to exhaustively test a program which takes two 32-bit integers as

arguments, 264 ≈ 1021 tests are needed. At one nanosecond (10−9 seconds) per test, this

would take approx. 1012 seconds, which is about 30,000 years [28]. For this reason, the

goal of software testing is to uncover faults in the system which can be fixed. Sufficient

testing should eventually provide enough confidence that no critical faults remain.

Testing can be applied at any level of system granularity - individual functions,

modules and entire systems. Unit testing checks the behaviour of the smallest functional

units of a program. Integration testing checks the correctness of the interactions between

units and modules. System testing focuses on the behaviour of the system as a whole.

Regression Testing Regression testing aims to ensure that changes to the existing

code do not introduce new faults in the system. It is used regularly in continuous

integration and test-driven development, usually as soon as a change to the program is

made. Developers often build and test multiple times a day, both locally on their own

machines and remotely, on dedicated central servers. Automated overnight builds and

test executions for the whole system are also a common practice. These testing practices

are repetitive and, combined with large test suites necessary for thorough testing, they

are time-consuming, creating a crucial need of time efficient test execution techniques.

2.3 GPU Architecture and Programming

GPUs are highly parallel hardware accelerators, designed for the efficient processing

of large blocks of data. They do not work by themselves but together with a general-

purpose CPU form a single heterogeneous system.

2.3.1 Architecture

Figure 2.2 illustrates the GPU architecture. GPUs consist of compute units, each of

which contains a number of processing elements, which execute the individual GPU

threads. The functions executed by the GPU threads are called kernels.
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Processing
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Compute
Unit Work-group

GPU

...

...

Figure 2.2: GPU architecture. GPUs consist of compute units, each of which contains

multiple processing elements that execute the individual GPU threads. All threads be-

longing to a compute unit are organised into a work-group (in the OpenCL programming

model). The functions executed by the GPU threads are called kernels.

All threads in a compute unit are organised into groups, which in OpenCL are called

work-groups1 [30]. Threads belonging to the same compute unit follow the Single

Instruction Multiple Data (SIMD) execution model - each thread executes an instance

of the same kernel over different input data. With respect to software testing, this

corresponds to running instances of the same SUT with different test inputs.

Threads in the same compute unit share the same instruction counter, and instruction

execution is performed in lock-step - all threads execute the same instruction at any

one time. If there is control-flow divergence across threads, divergent instructions will

be serialised, negatively impacting performance. Similarly, when the workload is not

balanced across threads, some threads would stay idle, resulting in reduced performance.

2.3.2 Memory Hierarchy

GPUs have a memory hierarchy, which is illustrated in Figure 2.3. The placement of

data during GPU execution can have significant impact on performance. The GPU

memory hierarchy consists of the following regions:

1In OpenCL, GPU threads are referred to as work-items. For simplicity, this thesis uses the term
thread throughout.
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Figure 2.3: GPU memory hierarchy. Placement of data during GPU execution can have

significant impact on performance.

• Global memory - large and slow, shared among all threads in all compute units.

Performance is improved, when accesses are coalesced during execution, i.e.

when all threads access consecutive addresses in global memory. Performance

can also be improved through the use of the cache.

• Constant memory - a read-only portion of global memory, which contains a

special cache allowing faster memory access.

• Local memory - local to compute units, shared among threads in a work-group.

• Private memory - private to individual threads.

GPU memory is usually smaller than main memory and is the only storage available

to the GPU, as it has no access to the hard disk. For this reason, input data needs to

be moved from main memory to GPU memory before kernel execution. Similarly,

output data needs to be moved from GPU memory back into main memory after kernel

execution. These data transfers can add considerable overhead to GPU execution time,

resulting in negative impact on performance.

2.3.3 Programming Model - OpenCL

GPUs require the use of specialist programming models. They include CUDA [18],

OpenCL [17] and SYCL [19]. Based on the C/C++ programming languages, they
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host_code.c kernel_code.cl

__kernel void foo() {

  ...

}

Setup GPU parameters.

Transfer input data to 
GPU memory.

Launch kernel execution 
on the GPU.

Transfer output data from 
GPU memory.

CPU GPU

Figure 2.4: The OpenCL programming model. An OpenCL program consists of a host

part, executed by the CPU, and a kernel part, executed by the GPU.

expose low-level hardware details and require the programmer to explicitly express

the parallelism in terms of the architecture. Each model differs in the degree to which

they abstract GPU architecture, but all of them require specialist knowledge from the

programmer in order to achieve fast GPU performance.

This work uses OpenCL for multiple reasons. It is an open standard, which is

maintained by an industry consortium of over 140 companies that include hardware

designers such as the Intel Corporation, NVIDIA, Qualcomm, AMD and ARM. Its

C-like syntax allows for the automatic translation of the SUT into an OpenCL kernel.

In addition, it provides cross-platform portability, making possible future research on

testing with other parallel heterogeneous architectures. Finally, it provides a relatively

low level of abstraction for the GPU hardware, allowing for fine-grained performance

optimisations and analysis. At the time of writing, OpenCL 1.2 [30] is the version most

commonly supported by hardware vendors and is the one used in this thesis.

Figure 2.4 illustrates the basic structure of an OpenCL program. It consists of a

host part, executed by the CPU, and a kernel part, executed by the GPU. The host

part is written in C or C++ and uses the OpenCL host API. Its role is to setup GPU

execution parameters, transfer data to/from GPU memory and compile and run the GPU
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kernel2. The kernel part is written in OpenCL. During GPU execution, each thread

executes an instance of the kernel application, using the input data transferred by the

host application.

2.4 Embedded Software

Embedded systems are a type of computer that is integrated into a larger system. They

consist of hardware and software components that form a computation unit designed

to perform a particular function within another system. Crucially, unlike conventional

software, embedded systems often operate in interaction with the physical world by

reading and reacting to inputs from different environmental sensors.

Embedded systems are ubiquitous. They are found in the consumer, industrial, trans-

portation, telecommunication, medical and military sectors, among others. Developing

dependable embedded systems is a critically important, but difficult process, which

relies on the use of rigorous methods and standards [31].

Characteristics Common characteristics of embedded systems are:

1. Interactions with the environment; embedded systems are designed to react to

inputs from the physical world and other components in the larger system, leading

to many possible interactions and a high degree of complexity in the software.

2. Strict requirements for safety, reliability and availability; as embedded systems

are connected to the physical environment and have a direct impact on it, it is

critical that their behaviour is dependable.

3. Restrictions on resource consumption; these could be memory, power, run-time

and code size.

4. Majority of embedded software is written in the C programming language.

These characteristics have an impact on the design, development and testing of em-

bedded software. They require a high degree of engineering expertise and knowledge of

the application domain and hardware. Particular emphasis is placed on the requirements

and design phases of development. Formal methods and model-driven approaches are

often used as a way to ensure that all quality requirements and resource consumption

constraints are incorporated into the system design [31].
2The GPU kernel can be compiled by the host application at runtime. Alternatively, it can be compiled

beforehand and read as a binary by the host application.



2.5. Finite State Machines 21

Testing Thorough and rigorous testing is another critical part of embedded software

development. Ebert and Jones [32] estimate that testing takes up 15% to 50% of total

project duration and is a major cost driver for embedded software development.

One of the key challenges associated with embedded software testing is generating

tests which accurately represent environmental inputs [33]. Most interfaces in embedded

systems are non-human interfaces (e.g. temperature and pressure sensors) which

produce a large range of potential inputs. It is crucial for embedded software to behave

predictably in the face of different, often unpredictable, inputs. Several methods are

used for the generation of embedded software tests. These include tests derived from the

system requirements and design models, sampling of input parameter combinations, the

use of rigorous code coverage criteria, and the use of static and dynamic analysis [31,34].

In practice, these methods result in large test suites which are time-consuming to execute

repeatedly as part of regular regression testing [32, 33].

2.5 Finite State Machines

This thesis considers FSMs in the context of model-based development - a widespread

software development approach, in which software is implemented and verified based

on a model of the required system. FSMs are a useful abstraction which is used to

model a large variety of systems, including embedded systems, control circuits, signal

processing tools and communications protocols. Industry tools which use FSMs to

model computer systems include Simulink [35], IBM Rational Rhapsody [36] and Sparx

Systems Enterprise Architect [37].

FSMs are commonly classified as two types that are very similar, Moore and Mealy

machines, with the Mealy definition being more general. Mealy machines have a finite

number of states and given a current state and an input, they transition to a new state

and produce an output. A formal definition of a Mealy FSM is found in [38]:

Definition 1. A finite state machine M is a quintuple

M = (I,O,S,δ,λ)

where I, O and S are finite non-empty sets of input symbols, output symbols and states,

respectively.

δ : S× I→ S is the state transition function and

λ : S× I→ O is the output function.
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When the machine is in a state s in S and receives an input a from I it moves to the next

state specified by δ(s,a) and produces an output λ(s,a).

An example FSM is shown in Figure 2.5a as a state-transition diagram. The input to

this FSM is a binary number and the output is the input divided by 3. Thus, the sets of

input and output symbols I and O are both {0,1} and the set of states S is {S0,S1,S2}.

Starting State Generally, FSMs have a single initial state which they enter when they

are reset. Throughout this thesis, this is referred to as the starting state. The starting

state for the divide-by-3 FSM in Figure 2.5 is S0.

Accepting State Some FSMs may have one or more accepting states, indicating

whether the received input sequence is accepted or not. Such FSMs may not pro-

duce outputs at each transition, but a single output once all input has been processed,

indicating if the reached state is accepting or not.

S0 S2

0/0 1/1

1/0

S1

0/0

1/1

0/1

(a) State-transition diagram. Each transition

is labelled as input/out put.

0 1

S0 (S0, 0) (S1, 0)

S1 (S2, 0) (S0, 1)

S2 (S1, 1) (S2, 1)

(b) State-transition table.

Figure 2.5: An example of a divide-by-3 FSM. The machine takes a binary number, as

an input sequence of bit values, and produces the number divided by 3 as an output.

2.5.1 Complete and Partial FSMs

A complete FSM is one, in which every state has a transition for each input. These

FSMs are also known as deterministic FSMs. In contrast, in a partial FSM, an input

could have no transition for a given state, i.e. a partial FSM has missing transitions.
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Density Chapters 6 and 7 refer to the density of a given FSM. It is calculated as the

percentage of transitions present in the FSM out of the number of all possible transitions

for that FSM, which is |S| ∗ |I|. Partial FSMs have densities that are less than 100%.

FSMs can be represented as state-transition tables, in which rows represent states

and columns represent inputs from the input set. Each entry in the table is a tuple (next

state, output), which encodes the transition of the FSM, corresponding to the respective

state and input. In other words, the element for row s and column a of the matrix is the

tuple (δ(s,a), λ(s,a)). A sparse transition table indicates that transitions are missing

for a large number of state/input pairs. On the other hand, a dense table indicates that

there is a transition for most state/input pairs.

Figure 2.5b shows the transition table for the divide-by-3 FSM. This is a complete

FSM, which has a full transition table and a density of 100%.

2.5.2 Testing FSMs

FSM testing can refer to two distinct activities.

The first aims to confirm that a system implementation generated from an FSM

model, manually or automatically, is behaviourally equivalent to the model. This is not

the FSM testing activity that is the focus in this thesis, but it is related. In this activity,

the FSM is used to generate suitable tests which, when executed on the implemented

system, will confirm that the implementation conforms to requirements. It relies on the

assumption that the FSM is an accurate model of the system requirements. This is the

activity which is commonly referred to as Finite State Machine Testing in literature,

covering problems like state identification, state verification and machine verification.

There is extensive literature on these problems dating back to the 1950’s [38, 39].

The second aims to check that an FSM model accurately captures the high level

requirements. Its goal is to confirm that a system that is developed based on a model

will deliver what is required of it. A practical approach to confirming the behaviour of

FSM models, employed in industry, is the generation and execution of large test suites,

which can be costly and time-consuming. This problem is the focus of Chapters 6 and 7

of this thesis. A test checking the behaviour of an FSM consists of an input sequence to

the machine and an expected output sequence. Executing such a test involves applying

the inputs in the sequence one by one, commencing at the starting state, transitioning

through the states of the FSM, and recording the outputs associated with each transition.

The test passes if the output sequence is the expected one and fails otherwise.
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Example: Digital Oscilloscope The problem with time consuming FSM test runs

was first brought to the author by an industrial partner, Keysight Technologies [40].

Keysight provide electronic measurement solutions to the wireless communications,

aerospace and semiconductor industries. Their systems are modelled using FSMs that

get tested extensively. They report that testing to validate their FSM models is part of

the test cycles for test-driven development and there is tension between the need for test

suites that achieve full coverage and the need for short test execution.
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Figure 2.6: An FSM model of a digital oscilloscope from Keysight Technologies.

To illustrate this problem, consider an example designed by Keysight. Figure 2.6

shows an FSM, which is used to identify and trigger particular measurements of interest

performed by a digital oscilloscope [41]. The inputs L, M and H correspond to Low,

Medium and High frequencies and this particular FSM is designed to identify a rising

edge in the digital signal. In order to ensure that the FSM identifies exactly the required

type of digital pattern, the system engineers at Keysight perform testing on it. They

execute input sequences and observe the output behaviour, checking both for false

positives and false negatives.

While this is a simple example, the aforementioned test execution problem is

encountered with large FSMs with thousands of states, depending on the input pattern

they are designed to identify. Such FSMs require millions of tests to ensure that all parts

of the FSM are tested adequately and provide confidence in its correctness. Executing

all the tests can take arbitrarily long times, adding cost to the project and strain to the

project schedule.
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2.6 Summary

This chapter provides background information related to the problem and methodology

presented in this thesis. Information on the software testing process demonstrates the

problem of time-consuming test executions and the importance of solving it. Introduc-

tion to the GPU architecture, memory hierarchy and programming model is essential

for the understanding of the main approach and performance optimisations in this thesis.

Finally, the sections on embedded systems and FSMs introduce the application domains,

to which the techniques proposed in this thesis are applied.





Chapter 3

Related Work

3.1 Introduction

The problems, solutions and applications examined in this thesis relate to five separate

areas of research. The main problem belongs to the field of accelerating software testing.

Section 3.2 reviews the existing work in this field, including traditional approaches

and the use of parallel architectures. The proposed solution, execution of test cases in

parallel on the GPU, falls within the broader area of using GPUs for software testing,

which is reviewed in Section 3.3. This thesis applies the proposed solution to two

types of systems, embedded software and finite state machines. Sections 3.4 and 3.5,

respectively, provide summaries for the existing work on testing for both of them.

Finally, the automated approach presented in Chapter 4 compliments existing research

on automated GPU code generation, which is summarised in Section 3.6.

3.2 Accelerating Software Testing

Accelerating software testing is an important problem, which has received a lot of

interest, examining both test generation and test execution. The related work in the

context of this thesis is with respect to test execution.

3.2.1 Minimisation, Selection and Prioritisation

Optimising test execution is a long-standing problem and research in this area spans

four decades. The objectives are reduced test execution costs in terms of both time

and resources, without sacrificing effectiveness in terms of fault finding. Traditional
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approaches are primarily focused on manipulating the test suite and popular techniques

are test suite minimisation, test case selection and test case prioritisation. Yoo and

Harman [8] provide a comprehensive survey of these approaches.

• Test suite minimisation [42], also called test suite reduction, is the process of

systematic removal of tests from a test suite, aiming to reach the minimum number

of tests which satisfy some criteria, usually a measurement of code coverage. The

goal is to optimise the test suite by removing tests that over time have become

redundant with respect to the testing requirements for which they were generated.

Finding the minimum test suite is an NP-hard problem and existing work has

been focused on developing heuristics [43–45] and algorithms [46, 47] to guide

this process.

• Test case selection [48] is a technique similar to test suite minimisation, but

instead of focusing on a single version of the SUT, it aims to select a subset of

tests for execution, covering the changes between two versions of the applications.

In the context of regression testing, the goal is to avoid executing tests whose

outcome will not have changed between the current and the previous versions

of the program. Therefore, the selected set of tests will be different for each

regression. Particular techniques for test case selection all aim to identify the

test cases in the given test suite that cover the modifications in the program.

Existing approaches are based on data-flow analysis [49–51] and graph-walking

for control flow and control dependence graphs [52–55]. Test case selection

techniques are surveyed by Biswas et al. [56], while Kazmi et al. [57] review

recent empirical studies on their effectiveness in terms cost, coverage and fault

finding, all of which are important objectives. In [58], Yoo and Harman formulate

test case selection as a multi-objective problem and evaluate three algorithms.

They allow software engineers to optimise test suites based on multiple objectives

and observe trade-offs between them.

• Test case prioritisation [59] is a technique which reorders test cases based on

some desirable criterion, with the aim of detecting faults as early during execution

as possible. This is particularly useful in situations in which there are fixed

time and resource budgets allocated for testing. Popular criteria used for test

case prioritisation include code coverage [60–62], fault detection rates [63–66]

and system requirements [67–69]. A systematic literature review on test case

prioritisation criteria and techniques is provided by Khatibsyarbini et al. [70].
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Recent work attempts to apply these techniques in real-world regression testing

at scale. Elbaum et al. [71] report that traditional test selection and prioritisation ap-

proaches that rely on code coverage and instrumentation are too expensive for Google’s

large codebases. They propose two new cost-effective selection and prioritisation tech-

niques, based on historical data of tests that were recently executed and revealed faults.

Similarly, Herzig et al. [72] from Microsoft dismiss code coverage for test selection

due to its runtime overhead, and present a cost-based test selection strategy based on

historic test performance data. Machalica et al. [6] from Facebook also use historical

testing data for test case selection, but in a novel way. They train a statistical model

to select a subset of tests for a particular code change using basic machine learning

techniques on data on previous code changes and test outcomes on those changes. All

three papers report significant reductions in regression testing time and costs.

A major risk associated with test suite optimisation approaches is omitting the

execution of tests which reveal faults in the SUT. Yoo and Harman [8] summarise

the findings of four studies on the effect of test suite minimisation on fault finding.

The studies provide contradictory results, with [73, 74] finding negligible reduction

in fault finding, while [75, 76] show a considerable negative effect. Yu et al. [10]

apply ten different test suite minimisation techniques to a set of eight programs and

report that higher reduction in test suite size tends to negatively impact fault finding.

A similar conclusion is reached by Heimdahl and George [77] for test suites form

model-based test generation. Elbaum et al. [11] compare five different techniques for

test case prioritisation over eight programs and conclude that the rate of fault detection

after the application of test suite prioritisation varies considerably across different

attributes of the SUT, test suites, and program modifications. In addition, Inozemtseva

et al. [78] show that structural coverage of the code, one of the common criteria used

for these approaches, does not have a strong correlation with test effectiveness when

test suite size is controlled for, while a study by Namin and Andrews [79] concludes

that both coverage and test suite size are important for fault finding. The results in

these studies demonstrate the difficulty in guaranteeing that these approaches will not

negatively impact fault finding for a given program and testing scenario. Therefore,

when software correctness is of critical importance, executing the entire test suite would

still be preferred. In these situations, parallel hardware can be leveraged to accelerate

test execution without the need to modify the test suite. Furthermore, even in cases

when minimisation, selection and/or prioritisation are successfully used, parallel test

execution can still be utilised as a complimentary approach to further speed up testing.
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3.2.2 Parallel Test Execution

Distributing test executions on parallel hardware infrastructure has become a widespread

practice that has received attention both in industry and academia, using clusters of

multiple machines to execute tests in parallel. Kushneryk and Barnett [80] use an

auxiliary test environment, comprised of additional PCs, laptops and/or servers, to run

test cases in parallel with the primary test environment. Misailovic et. al. [81] present a

constraint-based algorithm that combines test generation and execution of structurally

complex test inputs in parallel. They apply their approach to an application developed at

Google, using 1024 machines from Google’s infrastructure. Garg and Datta [9] combine

test prioritisation with parallel test execution. They use a functional dependency graph

to partition the test suites for web applications into prioritised test sets that can be

distributed for execution on multiple machines. Gupta et al. [82] present a method for

automatic machine configuration for parallel test execution, which targets not only large

test suites, but also multiple software configurations.

The main drawback of these approaches is the costs associated with building, main-

taining and operating parallel CPU clusters at a large scale [7]. This has led to the

exploration of using cloud-based services as a way to reduce the costs associated with

building dedicated testing infrastructure. Parveen and Tilley [83] explore this idea by

taking into account the characteristics of the SUT and the types of testing performed on

the application, stating that in certain situations cloud-computing “can aid in reducing

the execution time of large test suites in a cost-effective manner”. In [84], they propose

a parallel test execution environment for cloud services using the MapReduce program-

ming model [85] and Hadoop [86]. Yu et al. [87] present an elastic Test-as-a-Service

platform to automatically cluster, schedule, and manage unit testing, including test gen-

eration, test execution and result reporting. More recently, Gambi et al. [88] present a

framework for cloud unit testing, targeting Java unit tests, which automatically allocates

computational resources and efficiently schedules test execution on them, including in

the presence of test dependencies. Despite its advantages, cloud-based test execution

might not be suitable for all projects, due to networking and bandwidth challenges,

loss of autonomy and security, and potential lack of support for particular features or

technologies, on which the SUT is dependent [83]. It could also still be prohibitively

expensive for projects with limited budgets and large testing workloads. For these

reasons, there is still a need for low-cost efficient test acceleration achievable on local

infrastructure.
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Another drawback of these approaches are the usability challenges associated with

creating and maintaining a parallel test environment, which requires knowledge of

testing frameworks and parallel technologies. A survey on test execution paralleli-

sation for open-source projects by Candido et al. [12] found that only 15% of 110

project surveyed used parallel test execution. Among the teams who did not use it, the

most common reasons cited are the extra work to organise testing, as well as lack of

continuous integration services and unfamiliarity with the underlying technology.

Unlike CPU clusters, GPUs provide large scale parallelism at low cost, but they

too pose significant challenges associated with ease of use (Section 1.2). The work in

this thesis addresses this issue by presenting an automated approach to leverage GPU

parallelism to accelerate test execution.

3.3 Using GPUs for Software Testing

There is a growing interest in the software testing community in utilising the massive

performance advantages offered by GPUs. Yoo et al. [89, 90] successfully use GPUs to

parallelise three search-based [91] algorithms for multi-objective test suite minimisation.

Their results demonstrate that due to the data parallel nature of search-based algorithms,

they are a perfect fit for the GPU and the approach scales well with the sizes of the SUT

and test suite. Li et al. [92] build on this work by proposing a parallel GPU search-based

algorithm for multi-objective test case prioritisation. More recently, in [93], Celik et

al. use GPUs to accelerate test input generation for bounded-exhaustive testing [94],

which generates test inputs, up to a given bound, based on a formal specification for the

properties of desired test inputs. They define an abstract representation for candidate

inputs and use it to derive a new technique for parallel test generation on the GPU.

The work carried out in these papers is complimentary to this thesis. They use GPUs

for test generation and test suite optimisation, while this research focuses on execution.

This idea is first presented by Rajan et al. in [95]. They define three key points of the

approach: (1) the program and its logic remain unchanged, (2) the changes required to

run tests on the GPU are only to the program interface and (3) the program is launched

as a GPU kernel with each thread using a different test input. The approach in [95],

however, uses manual code transformation and does not address GPU limitations with

respect to ease of programming and performance optimisations. The paper presents

promising preliminary performance results, but lacks a detailed evaluation and analysis

of the applicability and scope of the approach. This thesis addresses these issues.
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3.4 Testing Embedded Software

Embedded software is characterised by high requirements for quality, safety, reliability

and availability in the face of often unpredictable inputs, which are supported by

rigorous testing practices. To allow for the cost-effective testing of embedded software,

industry and academia have proposed different approaches over the years. Garousi et

al. [96] present a recent comprehensive literature survey of the area.

The majority of work has been focused on the design, generation and evaluation

of effective test suites. There are many approaches to test generation for embedded

systems, including model-based and requirements-based testing [97–99], partition

testing [100] and coverage-based testing [101]. As the focus of this thesis is on test

execution, thorough survey of test generation methods is outside of its scope.

Due to the complexity of embedded systems, test generation methods tend to

lead to large test suites, resulting in long test execution, adding to the overhead of

testing within development [32]. Traditional approaches for test suite optimisation

(Section 3.2), are generally not suited to embedded software, as they do not take into

account features specific to it, e.g. time-dependent tasks, and could lead to loss of

fault finding which is a crucial concern for embedded software testing. Biswas et

al. [102–104] address this by proposing test case selection for embedded software

that takes into account additional features present in it, and compare their approach

to existing test case selection techniques. Their results show their approach selects

an additional 28% test cases with a 36% increase in the fault revealing effectiveness

compared to other techniques [104]. However, these conclusions are based on a small

set of eight embedded C programs of limited size. Netkow and Brylow [105] present a

framework for automatic parallel regression testing of embedded systems on a pool of

dedicated target hardware, but their focus is not on performance, but on automation of

the testing process, and they do not report performance results. The work in this thesis

accelerates embedded test execution without making any modifications to the test suite.

Static Analysis Due to the high quality requirements for embedded software, re-

searchers have also looked into static analysis methods [31] to verify their behaviour.

Static analysis is based on abstract interpretation theory [106] and aims to verify the

run-time behaviour of a system by performing automatic code inspection and verifying

program properties, based on system specification. For example, a static analyser can

verify that a program never executes an instruction with undefined behaviour. Multiple
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static analysers have been proposed [107–109] and static analysis tools are developed

and used in industry. Examples include the Clang Static Analyser [110], Facebook’s

Infer [111] and tools developed by Coverity [112] and GrammaTech [113]. However,

fully automated analysers take a long time to run and produce a large volume of false

positives which need to be manually inspected by developers [108]. Therefore, thor-

ough testing using rigorous test suites remains the most common approach for verifying

embedded software behaviour.

3.5 Testing Finite State Machines

In model-based software development, the traditional testing process is split into two

distinct activities: one activity that tests the model to validate that it accurately captures

the high-level requirements, and another testing activity that verifies whether the code

generated (manually or automatically) from the model is behaviourally equivalent to

the model [114]. Chapters 6 and 7 use GPUs to accelerate the first activity, but as the

two are closely related, this section provides a survey of related work in both.

Testing for FSM Model Validation

The formal verification of models against specification is referred to in literature as

model checking [115, 116]. Though powerful, in practice, model checking methods can

be costly in terms of memory, execution time and effort involved in learning and using

them. Notoriously, they suffer from the state-explosion problem, where model checking

tools fail to process large and complex systems [116].

Thus, as a practical addition to model checking, industry often uses testing to

validate that their models behave as expected. In academia, work by Whalen, Rajan

et al. [117] improves the effectiveness of this approach by introducing the notion of

requirements-based coverage. They define coverage metrics for the adequacy of model

and system validation tests, based on formalised high-level system requirements. Follow

up work then uses the metrics for the generation of test suites than can be used to validate

executable models against the requirements [118].

Testing Based on FSM Models

Testing a program that is based on an FSM model involves the use of the model as a

tool for test generation and as a test oracle. In literature, this is what is most commonly
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referred to as Finite State Machine Testing. This process has generated extensive liter-

ature that can be traced back to the 1950’s [119, 120], which is surveyed by Lee and

Yannakakis [38] and Broy by et al. [39] in the context of reactive systems. Test inputs for

the SUT are generated from the FSM model by using techniques based on the construc-

tion of distinguishing sequences [121–124], unique I/O sequences [121, 125–127] and

characterisation sets [128–131]. These techniques have high computational complexity

and can lead to exponentially long testing sequences, incurring high execution costs.

For this reason, there is a body of research focused on generating minimised testing

sequences [132–135].

An alternative approach is structural testing, in which test suites are generated based

on some type of coverage criteria for the FSM. Popular criteria choices are all-transition,

all-transition pair and full predicate coverage, formalised in [136], as well as transition

tree [137], based on the W-method introduced by Chow in [128]. Briand et al. [138]

present an empirical investigation into the cost and fault detection effectiveness of the

four criteria.They conclude that while the other criteria are inadequate for fault detection

or too expensive, all-transition pair coverage offers strong fault detection guarantees, as

it ensures that events in the system are tested not only individually, but also in relation

to one another. While much more expensive than all-transition coverage, it is also much

more rigorous.

In recent years, Hierons and Türker have been using GPUs to accelerate the gen-

eration of testing sequences for FSMs based on unique I/O sequences [139, 140],

state harmonised state identifiers and characterising sets [141] and distinguishing se-

quences [142].

To the best of the author’s knowledge, the work presented in this thesis is the first to

explore using GPUs for the execution of FSM model validation tests.

3.6 GPU Code Generation

General-purpose computing on GPUs is successfully used in a wide range of do-

mains [13–16], but GPUs are notoriously difficult to program and extract performance

from. As a result, there is a rich body of research dedicated to automatic techniques for

GPU programming. This section presents existing work in two relevant areas, automatic

parallelisation and high-level programming frameworks.
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Automatic Parallelisation

Automatic parallelisation targeting GPUs (and other heterogeneous hardware) relies

on the use of compiler techniques. A large portion of this research uses the polyhedral

model [143] - a powerful mathematical framework for automatic optimisation and

parallelisation of statically predictable loops. Polyhedral optimisations have been

integrated into mainstream compilers, most notably through the Polly extension for the

LLVM infrastructure [144]. Polly works at the level of intermediate representation (IR),

recognises parts the program that fit the polyhedral model and transforms them into a

suitable representation, allowing the application of further optimising transformations.

Grosser and Hoefler [145] extend Polly to provide code generation for GPU hardware

targeting CUDA. Other tools which use the polyhedral model to generate GPU code are

C-to-CUDA [146] and the Polyhedral Parallel Code Generator (PPGC) [147]. Instead

of targeting compiler IR, both of these tools perform source-to-source transformations,

that take sequential C programs and generate optimised CUDA kernels. More recently,

Baghdadi et al. [148] presented Tiramisu - a polyhedral framework that targets the

generation of high-performance code for heterogeneous hardware, including multi-core

CPUs, GPUs and distributed architectures. It performs optimisations on multiple layers

of IR, resulting in better performance compared to previous approaches. However,

unlike other tools, it does not detect polyhedral code automatically, but requires the

programmer to express the parallel algorithms explicitly using a dedicated C++ API.

In this regard, Tiramisu is similar to the high-level programming frameworks for

heterogeneous programming.

High-Level Programming Frameworks

High-level programming frameworks and domain-specific languages have been pro-

posed to aid programmers in writing efficient code for GPUs and other heterogeneous

systems. They allow the programmer to explicitly guide the compiler towards those

parts of the application which are suitable for offloading to the GPU.

Recent work in this area includes Lift [149–153] - a functional-style programming

language, which provides high-level primitives for the explicit implementation of

data-parallel algorithms that is suitable for dense linear algebra applications, stencil

computations and some irregularly shaped data structures. Lift relies on a set of rewrite

rules to transform the high-level primitives into low-level representations that are then

compiled into efficient OpenCL kernels. Other functional programming languages
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for GPU code generation include NOVA [154], which also uses high-level primitives

and generates CUDA code, and Halide [155], which targets the optimisation of image

processing pipelines, but can also be used for other computations [156].

Some GPU programming frameworks have been inspired by the notion of algorith-

mic skeletons [157]. Motivated by the need of higher-level parallel programming models,

algorithmic skeletons represent an abstraction of parallel algorithms based on their use

of generic patterns of computation and interaction, such as pipelines, task queues and

fixed degree divide and conquer. The concept has been widely used in multi-core CPU

programming, but has also inspired some GPU programming approaches. SkelCL [158]

is framework which provides implementations for algorithmic skeletons in the form

of a C++ API, that can be executed on the GPU using CUDA. Bones [159, 160] is a

C-to-CUDA compiler, which relies on programmer annotations to determine which

skeletons to use and what additional optimisations to perform.

Relevance to Test Execution

The body of work presented in this section provides diverse mechanisms for the au-

tomatic generation of GPU code, but ultimately their goal is different to that of this

thesis. The related work greatly simplifies the expression and automatic detection of

parallelism within software applications, but the challenge for GPU test execution is

not in the identification of parallelism - it is inherent in the mapping of test cases to

separate GPU threads. Instead, automating test execution on the GPU requires a code

generation tool that takes a sequential CPU program and transforms it into a GPU

kernel, without affecting the core program functionality. To meet this goal, Chapter 4

presents ParTeCL - the automated testing framework for test execution on the GPU,

which is used throughout this thesis.

3.7 Summary

This chapter surveys the relevant literature in the fields of software test acceleration, the

use of GPUs in software testing, testing of embedded systems and FSMs and automatic

GPU code generation, outlining the ways in which this thesis relates to existing work in

these areas.
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Parallel Test Execution Using GPUs

4.1 Introduction

The research contributions of this thesis are built on a novel method for parallel test

execution using GPU architectures. This chapter describes the underlying approach and

its implementation which is then applied and evaluated using two separate application

domains in Chapters 5 to 7.

The proposed approach executes software tests in parallel with each test running on

a separate GPU thread. The key idea behind it is that test executions are inherently data

parallel and independent, which makes them well suited to parallelisation on the GPU.

This idea is first explored by Rajan et al. in [95]. They demonstrate its feasibility on a set

of four benchmark applications by manually transforming the program and tests to run

on the GPU. Their approach, however, is incomplete in tackling GPU limitations with

respect to ease of use, unsupported program features, and performance optimisations.

The approach presented in this thesis addresses these challenges in three stages.

First, the method is generalised and automated through the development of a testing

framework for the GPU, called ParTeCL. It consists of two parts, (1) ParTeCL CodeGen

- a code generation tool that targets C programs and generates OpenCL kernels for them

and (2) ParTeCL Runtime - a host application which executes on the CPU, builds the

OpenCL kernel and automatically launches tests for execution on the GPU. Through

ParTeCL, test execution is fully automated for the GPU, removing any need of specialist

GPU programming knowledge.

Second, performance optimisations are implemented, targeting the performance

overhead of transferring tests between main memory and GPU memory. These opti-

misations are: (1) using hardware optimisations for faster data transfer and (2) hiding

37
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data transfer latency, by splitting test suites into groups and transferring them to GPU

memory in batches, overlapping data transfer with test execution.

Finally, extensive empirical evaluation is performed, targeting two separate applica-

tion domains, embedded systems and FSM models. Their unique challenges and results

are presented and analysed in Chapters 5 to 7.

The rest of this chapter is organised as follows. Section 4.2 presents the generalised

approach for parallel test execution on the GPU. Section 4.3 presents the automated

GPU testing framework and its implementation. Section 4.4 describes how automation

is used to address the scope challenge presented in Section 1.2.2. Section 4.5 describes

the performance optimisations targeting data transfer. Finally, Section 4.6 concludes

the chapter.

4.2 General Approach

Figure 4.1 illustrates the general approach for parallel test execution on the GPU. As

any OpenCL GPU program, it involves a host application, executed by the CPU, and a

kernel application, executed by the GPU (Section 2.3.3). The host application reads

the test inputs, transfers them to GPU memory, builds and launches the GPU kernel

and transfers the test outputs back from GPU memory to main memory. The kernel

application is the system under test (SUT). The GPU executes multiple instances of it

in parallel, each on a separate test input.

Figure 4.1 outlines five distinct steps involved in this process:

Step 1. CPU: Read test inputs.

Step 2. CPU: Transfer test inputs to GPU memory.

Step 3. CPU: Build the SUT kernel and launch test execution on the GPU.

Step 4. GPU: Execute the tests in parallel.

Step 5. CPU: Transfer test outputs from GPU memory.

This approach differs from conventional test execution in two ways. First, the

SUT is not built by the tester or an automated build system, but by the OpenCL host

application. To achieve this, the SUT needs to be wrapped into an OpenCL kernel, which

can be compiled by the OpenCL compiler. This requires the use of source-to-source

transformations, which are not trivial to perform manually. For this reason, automating
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GPUCPU

1. Read test inputs.

2. Transfer test inputs to 
GPU memory.

3. Build the SUT kernel and
launch test execution 

on the GPU.

4. Execute tests in parallel.

5. Transfer test outputs from 
GPU memory.

Test inputs

__kernel SUT(){

  ...

}

Test inputs

Test outputs

__kernel SUT(){

  ...

}

__kernel SUT(){

  ...

}

__kernel SUT(){

  ...

}

__kernel SUT(){

  ...

}

...

...

Figure 4.1: Executing tests in parallel on the GPU. The CPU (host) application is

responsible for transferring test inputs and outputs to/from GPU memory and launching

test execution on the GPU. The GPU executes multiple instances of the system under

test (SUT) in parallel, each on a separate test input.
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code transformations of the SUT into an OpenCL kernel is crucial. In addition, code

transformations can be used to extend the scope of applications which can be tested on

the GPU. An automatic tool for code generation for the SUT is described in Section 4.3,

while code transformations targeting application scope are presented in Section 4.4.

Second, the tests input values are not read directly by the SUT, but by the host

application and transferred to GPU memory. Similarly, test outputs are transferred back

from the GPU to main memory after GPU test execution. The time to perform these

data transfers adds an overhead to GPU performance. Depending on the size of the

data, this overhead could be considerable, outstripping the performance gains of parallel

GPU execution. Therefore, it is crucial to optimise data transfers. Such optimisation

techniques are presented in Section 4.5.

Restrictions This approach relies on the use of the OpenCL programming model

to compile and execute the SUT on the GPU. The extent to which this is possible is

dependent on both OpenCL and the GPU architecture and is subject to restrictions.

Presently, they include dynamic memory allocation, recursion, file I/O, function pointers

and concurrency. Applications which contain these features cannot be currently tested

using the GPU. Of these, dynamic memory allocation is the most common feature,

causing the biggest restriction to the wide adoption of the approach. Section 4.4 contains

more details on currently unsupported features, together with possible solutions to

overcoming them in the future.

4.3 ParTeCL - Automating Test Execution on the GPU

This section describes ParTeCL - a framework, which automates test execution on the

GPU. Through automation, ParTeCL abstracts away low level GPU details, making the

approach accessible to all programmers, and allows for automatic code transformations

of program features typically unsupported on the GPU. As discussed in Section 1.2.2,

ParTeCL targets the testing of applications written in the C programming language,

since GPU programming models are limited to C/C++. All optimisations, experiments

and results presented in this thesis are performed using ParTeCL.

ParTeCL consists of two systems, illustrated in Figure 4.2:
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Figure 4.2: ParTeCL system overview. ParTeCL CodeGen uses the unmodified source

files for the SUT and a configuration file to generate an OpenCL kernel for the SUT,

along with data structures and auxiliary functionality for ParTeCL Runtime. ParTeCL

Runtime uses the generated code to transfer test data to/from the GPU, build the SUT

and launch test execution in parallel on the GPU, producing the test outputs.

(1) ParTeCL CodeGen is a code generation tool, which translates the SUT into an

OpenCL kernel. It also generates data structures and functions, which are used

by the host application to transfer test inputs and outputs between main memory

and GPU memory.

(2) ParTeCL Runtime is the host application. It uses the code generated by ParTeCL

CodeGen to transfer test data to/from the GPU, build the SUT and launch test

execution in parallel on the GPU.

The framework requires three user inputs - the unmodified source files for the SUT,

a configuration file and the test inputs. It uses them to transparently execute the tests

on the GPU and produce the test outputs. Since ParTeCL’s focus is on accelerating

test execution, the framework does not perform result evaluation, but produces the test

outputs which can be compared to the expected outputs outside of the system.

Example The following sections describe ParTeCL CodeGen and ParTeCL Runtime

in detail. To aid understanding, they use the linear search program from Section 2.2.2

as an example, demonstrating how ParTeCL transforms it into an OpenCL kernel and

executes its tests on the GPU.
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4.3.1 ParTeCL CodeGen

ParTeCL CodeGen performs two tasks: (1) it converts the SUT into an OpenCL kernel

and (2) generates data structures and auxiliary functions for ParTeCL Runtime. Its inputs

are the unmodified C source code of the SUT and a configuration file, as illustrated in

Figure 4.2. This section describes the configuration file and data structure generation

first and the OpenCL kernel generation second.

1 input: int n 1
2 stdin: char* array
3 stdin: char* number
4 output: int value variable: found_idx

Listing 4.1: ParTeCL configuration file for the linear search program shown in Listing 2.1.

It shows that the program has three inputs and one output. One of the inputs is a

command line argument and two are standard inputs. The output is an integer and

corresponds to a variable called found idx in the program.

1 #ifndef STRUCTS_H
2 #define STRUCTS_H
3

4 #define POINTER_ARRAY_SIZE 1024
5

6 typedef struct partecl_input {
7 int test_id;
8 int argc;
9 int n;

10 char array[POINTER_ARRAY_SIZE];
11 char number[POINTER_ARRAY_SIZE];
12 } partecl_input;
13

14 typedef struct partecl_output {
15 int test_id;
16 int value;
17 } partecl_output;
18

19 #endif

Listing 4.2: Data structures for the linear search program, generated by ParTeCL. They

correspond to the program’s configuration file, shown in Listing 4.1.

Configuration File and Data Structure Generation The configuration file required

by ParTeCL CodeGen describes the test inputs and outputs for the SUT and is used by

the tool to generate data structures for them. ParTeCL CodeGen parses the configuration

file, line by line, using the keywords and syntax outlined in Table 4.1.
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To illustrate this, consider the linear search program from Section 2.2.2 and its tests

shown in Table 2.1. Listing 4.1 shows its configuration file. It describes the input/output

interface of the program as follows:

• Line 1: The program has one command line input argument, an integer n, that is

passed at index 1, corresponding to argv[1] in the program’s implementation.

• Lines 2-3: It has two more inputs, which are passed through standard input, which

correspond to variables array and number in the program.

• Line 4: It has one output, an integer value, which corresponds to variable

found idx in the program.

ParTeCL CodeGen translates the configuration file into data structures for the

test inputs, partecl input, and test outputs, partecl output. The data structures

generated for the linear search program are illustrated in Listing 4.2. They correspond

directly to the configuration file and contain additional fields for a test id and the value

of argc for the test.

The current prototype of ParTeCL CodeGen sets a limit on the size of arrays in

the data structures by defining a compile-time constant POINTER ARRAY SIZE (line 4).

This size can be changed in the generated code, depending on the SUT and tests. For

the purposes of memory efficiency, this size should be set to the smallest possible value

which ensures that all test inputs and outputs will be accommodated. If any test input or

output exceeds the size set by POINTER ARRAY SIZE, ParTeCL will not warn the user

and tests will fail silently.

In addition, ParTeCL CodeGen generates a parser for ParTeCL Runtime, which is

used to read the test input values and assign them to the partecl input data structure.

This code is then compiled and used by ParTeCL Runtime for test execution.

OpenCL Kernel Generation ParTeCL CodeGen translates the source of the SUT

into an OpenCL kernel which can be compiled and executed on the GPU threads. To

achieve this, it uses compiler-based transformations on the source code’s Abstract

Syntax Tree (AST), using the C front-end of the Clang compiler. ParTeCL CodeGen

performs two types of transformation. The first instruments the functions in the SUT to

be recognised as OpenCL kernels and changes their input/output interface to read and

write test inputs/outputs from/to GPU memory. It does not change the core algorithm of

the SUT, ensuring that the tested functionality remains the same. The second type of
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Keyword Usage & Examples

input Test input supplied as a command line argument:

type, name and index on the command line.

Could also be an array (see end of table).

input: int a 1

input: int array[10]

stdin Test input supplied through standard input;

its type is always char*.

stdin: char* stdin1

output

• function name RET

• function name ARG idx

• variable name

Test output: type, name and what it corresponds to

in the program’s implementation.

• when the output is the return value of a function name

• when the output is the calculated by a function name

and is its idxth argument after execution

• when the output is a variable name

output: int out function: add RET

output: int out function: add ARG 1

output: int out variable: sums

include For header files from the SUT, which declare custom types

for the inputs and outputs; these headers will be included in

the file with data structures generated by ParTeCL CodeGen.

include: algo.h

arrays:

The configuration file supports arrays of constant or variable

lengths. When variable lengths are used, that variable should

also be specified in the configuration file.

input: int array[n]

input: int n 1

Table 4.1: ParTeCL configuration file syntax.



4.3. ParTeCL - Automating Test Execution on the GPU 45

transformation handles features which are not supported for compilation on the GPU

out of the box, in order to extend the scope of the approach. It is described in more

detail in Section 4.4.

To illustrate the transformations, Listing 4.3 shows the kernel generated for the

linear search program shown in Listing 2.1. The tool makes the following key changes

to the code:

• Lines 1-2: Includes for header files for an OpenCL implementation of the C

standard library. It is described in more detail in Section 4.4.

• Line 3: An include for a header file that contains the data structures, generated by

ParTeCL, shown in Listing 4.2.

• Lines 16-17: The signature of the main() function is changed to turn it into an

OpenCL kernel. Its arguments are transformed into two arguments - (1) the test

inputs, values for which are initialised by the CPU, and (2) the test outputs, which

are to be calculated by the kernel.

• Lines 19-26: Included by ParTeCL CodeGen, in these lines the GPU kernel

identifies the GPU thread on which it is running and selects the corresponding

test. In particular, the input values for the corresponding test are contained in

the variable partecl testin, which is of type struct partecl input, shown

in Listing 4.2. The kernel will calculate the test outputs and store them in the

variable partecl testout, which is of type struct partecl output. Each

test input is identified by an id, which is copied to the output (line 24). This

allows identifying the produced outputs as the result of their respective test inputs,

once parallel execution is complete and outputs are transferred to CPU memory

to be checked.

• Lines 30, 35, 39: References to the command line and standard input inputs are

replaced with references to the test inputs inside partecl testin.

• Line 46: Finally, the value of the variable found idx is assigned to the data

structure, containing the test output.

ParTeCL CodeGen also removes any printing to standard output, as shown on lines

33, 37, 41 and 45, in order to avoid producing a large volume of messages when large

test suites are executed in parallel. This is safe to do under the assumption that printing

to standard output has no side effects. To correctly handle printing statements that
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1 #include "cl-stdio.h"
2 #include "cl-stdlib.h"
3 #include "structs.h"
4 //#include <stdio.h>
5 //#include <stdlib.h>
6

7 int find(int array[], int n, int number) {
8 for (int i = 0; i < n; i++) {
9 if (number == array[i]) {

10 return i;
11 }
12 }
13 return -1;
14 }
15

16 __kernel void main_kernel(__global struct partecl_input *partecl_testins,
17 __global struct partecl_output *partecl_testouts) {
18

19 int partecl_threadidx = get_global_id(0);
20 struct partecl_input partecl_testin = partecl_testins[partecl_threadidx];
21 __global struct partecl_output *partecl_testout =
22 &partecl_testouts[partecl_threadidx];
23 int argc = partecl_testin.argc;
24 partecl_testout->test_id = partecl_testin.test_id;
25 char *partecl_arrayptr = partecl_testin.array;
26 char *partecl_numberptr = partecl_testin.number;
27

28 // input error checking is omitted for brevity
29

30 int n = partecl_testin.n;
31 int array[POINTER_ARRAY_SIZE];
32

33 /*printf("Enter %d array numbers.\n", n);*/
34 for (int i = 0; i < n; i++) {
35 scanf("%d", array + i, &partecl_arrayptr);
36 }
37 /*printf("Enter a number to find.\n");*/
38 int number;
39 scanf("%d", &number, &partecl_numberptr);
40

41 // perform a search
42 int found_idx = find(array, n, number);
43

44 // output answer
45 /*printf("Number found at idx: %d\n", found_idx);*/
46 partecl_testout->value = found_idx;
47 }

Listing 4.3: OpenCL kernel for the linear search program, shown in Listing 2.1, generated

by ParTeCL CodeGen.
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contain expressions with side effects, ParTeCL CodeGen could be extended to replace

the printing statement with the expression. In this way the printing itself would be

removed, but the side effects will still take place.

These transformations illustrate the changes which ParTeCL CodeGen makes to the

input/output interface of the program. Crucially, the tool performs no transformations to

the core functionality of this program in lines 7-14. Additional transformations which

relate to extending the scope of the applications testable on the GPU, are discussed in

Section 4.4.

Implementation ParTeCL CodeGen is implemented in C++14, using the Clang

LibTooling library [161]. It consists of two main components, a data structure generator

and a kernel generator, corresponding to the two tasks performed by the tool. The data

structure generator performs a straightforward translation of the configuration file into

data structures and a parser for the test inputs. The kernel generator uses LibTooling’s

AST Matchers, AST Handlers and Rewriter to apply the code transformations which

translate the SUT into an OpenCL kernel. It executes sequential compiler passes, which

find the relevant portions of the SUT that need to be transformed. It then uses the

Rewriter class to perform the transformations at source code level, producing a readable

OpenCL kernel for the SUT, which can be compiled and executed on the GPU. The

source code for ParTeCL CodeGen is hosted at [162].

4.3.2 ParTeCL Runtime

ParTeCL Runtime implements the host application’s functionality which is executed

on the CPU. It uses the code generated by ParTeCL CodeGen to launch tests for

parallel execution on the GPU. It performs the four steps presented in Figure 4.1: it

reads the test inputs, transfers them to GPU memory, builds the OpenCL kernel and

launches test execution on the GPU, and transfers the test outputs into main memory.

It is implemented in standard C, using the OpenCL API to perform the GPU related

operations. The source code for ParTeCL Runtime is hosted at [163].

1 1 5 "1 2 3 4 5" "3"
2 2 5 "1 2 1 2 1" "2"
3 3 5 "1 2 3 4 5" "10"
4 4 0 "" "5"

Listing 4.4: ParTeCL test input file, containing example tests for linear search.
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Test Inputs ParTeCL Runtime accepts test inputs in a standard Space-Separated Value

file. In it, each row corresponds to a test, the first column contains the test id while

the rest of the columns contain the input values, in the order in which they are given

in the configuration file. Listing 4.4 shows the test file for the linear search example,

containing the tests shown in Table 2.1. Based on the configuration file, ParTeCL

CodeGen generates code that is used by ParTeCL Runtime to automatically assign test

input values to the custom data structures, shown in Listing 4.2.

Work-group Size The choice of work-group size impacts performance, depending

on the GPU architecture, kernel and dataset involved in the execution. Choosing an

appropriate value is a difficult problem [21,22]. To enable dynamic experimentation,

the work-group size can be supplied as an input parameter to ParTeCL Runtime.

For the performance experiments in Chapter 5, the work-group sizes for all bench-

marks were chosen experimentally. The full test suites were executed with work-group

sizes 32, 64, 128, 512 and 1024 and the ones that achieved the fastest GPU execution for

each benchmark were used for all performance experiments in Chapter 5. The specific

values for each benchmark are shown in Table 5.3.

For the performance experiments in Chapters 6 and 7, a fixed work-group size of

256 was used in order to reduce experimentation effort, but choosing different sizes

could lead to different performance results.

In future work, existing approaches for work-group tuning could be integrated into

the testing process, allowing the evaluation of their impact on the performance of the

approach, as outlined in Section 8.3.

4.4 Extending Application Scope

As outlined in Section 1.2.2, there are standard C/C++ features which are not supported

for compilation on the GPU and thus limit the scope of programs that can be tested on

it. This is due to inherent GPU hardware and programming model restrictions. ParTeCL

CodeGen addresses this by performing code transformations for such C features. This

section describes the features that are handled by the tool and lists the features which

are currently still unsupported.

Global Scope Variables OpenCL does not support the use of global scope variables

which are not constant, since writing to them could lead to concurrency issues on
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the GPU. Nevertheless, global scope variables are a common feature of C programs.

To support these programs, ParTeCL CodeGen moves global scope variables to the

local scope of the main kernel function (main kernel), preventing any sharing of the

variables among tests. If other functions in the application use a global scope variable,

ParTeCL adds a pointer argument for it to the function’s argument list. Using a pointer

ensures that the variable is passed by reference and if its value is changed by the

function, that would be available to the all other functions that may use it, just as it

would be with the original global scope variable.

Command Line Arguments, Standard Input and Output These features form the

input/output interface of the SUT and are transformed by ParTeCL CodeGen, replacing

them with references to the tests’ inputs/outputs, as discussed in Section 4.3.1 and

illustrated in Listing 4.3. Standard output is commented out by ParTeCL CodeGen,

unless it is specified as the test output in the configuration file. In this case, the tool

replaces it with a write to the test output data structure.

Standard Library Calls There is no OpenCL implementation for the C standard

library, making it impossible to compile code that uses it for execution on the GPU. To

address this, an implementation of the C standard library in OpenCL, called clClibc,

is started as an auxiliary project to ParTeCL. It is inspired by uClibc [164], a small C

standard library typically used for embedded systems.

The code generated for the linear search example in Listing 4.3 illustrates this.

Lines 1 and 2 contain includes for cl-stdio.h and cl-stdlib.h, which replace the includes

for stdio.h and stdlib.h on Lines 4 and 5. cl-stdio.h contains an OpenCL implementation

of the standard scanf() function, which is used by the program on Lines 33 and 37.

clClibc currently implements functions from stdlib.h, ctype.h, string.h and stdio.h,

and will be extended further. The code for clClibc is hosted at [165].

Unsupported Features C features which are still unsupported for compilation and

execution on the GPU include dynamic memory allocation, recursion and file I/O.

Testing of applications which contain these features cannot be currently accelerated

using the methods presented in this thesis.

Dynamic memory allocation. OpenCL kernels cannot use dynamic memory alloca-

tion. Dynamic allocation of GPU memory can be performed only by the host application

prior to kernel execution. For applications in which the amount of allocated memory is
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known at compile-time, a partial solution for the purposes of testing could be replacing

dynamic memory allocation with static allocation in ParTeCL CodeGen. Another, more

general solution, can be the implementation of a memory allocator on the GPU, similar

to the CUDA programming model [18]. This can be achieved through the pre-allocation

of a large enough memory buffer for each OpenCL thread and the use of auxiliary

variables to record which portions of the array are allocated and which are free.

Recursion. GPU hardware lacks support for recursion. Removing recursion as part

of compiler optimisations has been studied in literature [166]. In the context of testing,

this means that the recursive calls can be automatically removed from the SUT without

changing functionality. Nevertheless, removing recursion in general is a complex task

depending on the particular implementation of the recursive function. It is simplest in

the case of tail-recursion, where the recursive call is the last operation in the function

and can be replaced with a loop. In the general case, removing recursion involves the

use of a stack to track the state and parameters for the function calls, which would

require the use of dynamic memory allocation.

File I/O. GPUs do not have access to the file system, unless special OS abstractions

are used, which can have significant performance penalties [167]. One way to address

this issue could be partitioning the SUT into several kernels, leaving file I/O to be

performed by the CPU with data explicitly transferred to GPU memory between separate

kernel executions.

Function pointers. OpenCL does not support the use of function pointers on the

GPU. This can be addressed by implementing automatic elimination of function pointers

in ParTeCL CodeGen. Static analysis can be used to identify the functions to which a

function pointer may refer and assign unique integer ids to them. The function pointer

itself can be replaced by an integer variable that is assigned the id of the concrete

function to which it points. The function call that uses the function pointer can then be

replaced with a switch statement which uses the id to identify and call the respective

function. This approach is used by Cooper et. al. [168] to handle function pointers and

virtual functions for automatic cross-compilation on heterogeneous hardware.

Concurrency. The approach does not support automatic testing of concurrent

programs. Testing concurrent applications is a difficult task which requires specific ap-

proaches, because concurrency failures often show only under particular circumstances.

In addition, significant complexity would be involved in handling both program concur-

rency and parallel test execution on the GPU. For these reasons, testing of concurrent

applications is outside the scope of this approach.
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Further research is needed to lessen the impact of the first four features on the

applicability of the approach. As GPU architectures and programming models evolve,

new ways to tackle these limitations are likely to emerge.

4.5 Optimising Test Transfers to Improve Performance

GPU programs have to copy data back and forth between main memory and GPU

memory. In testing, the data is the test inputs and outputs, illustrated in Figure 4.1. This

is a slow process that adds considerable overhead to total GPU execution and negatively

impacts performance.

This section presents two optimisation strategies, implemented in ParTeCL Run-

time. Section 4.5.1 presents the use of Direct Memory Access (DMA) - a hardware

optimisation which accelerates data transfer between the CPU and GPU memories.

Section 4.5.2 presents Data Transfer Overlap - a strategy in which tests are transferred

to GPU memory in groups, overlapping data transfer with test execution and hiding

data transfer latency. This is a well-known optimisation strategy for GPU applications,

with recent implementations in several CUDA libraries [169, 170].

4.5.1 Direct Memory Access

GPU programming models require for the CPU to explicitly move test inputs from

main memory to GPU memory before kernel execution. Similarly, the CPU needs to

move the test outputs from GPU memory back into main memory after kernel execution.

To do this, the CPU issues explicit reads and writes to transfer data via the bus and is

occupied for the duration of the data transfer, adding an overhead to GPU performance.

To address this issue, modern GPUs are equipped with a DMA controller - a special-

purpose processor which allows data to be transferred between main memory and a

device (the GPU) without occupying the CPU. The DMA controller temporarily takes

over control of the bus from the CPU and generates memory addresses and control

signals to transfer data between main memory and GPU memory. Figure 4.3 illustrates

this process. This results in faster data transfers compared to explicit reads and writes.

It is also required for OpenCL to be able to overlap data transfer with GPU execution.

To make use of DMA, specific OpenCL directives are used to setup memory and

transfer data in ParTeCL Runtime:
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Figure 4.3: DMA between CPU and GPU memory.

• clCreateBuffer with flag CL ALLOCATE HOST PTR - create OpenCL buffers

into main memory, in which test inputs and outputs are stored; these are called

pinned buffers.

• clEnqueueMapBuffer - map the main memory buffers to pointers, which are used

to access the data in them directly.

• clCreateBuffer - create OpenCL buffers into GPU memory, for test inputs and

outputs; these buffers are used directly by the GPU kernel during test execution.

• clEnqueueWriteBuffer and clEnqueueReadBuffer - transfer the test inputs and

outputs between main memory and GPU memory.

This memory setup allows the OpenCL implementation to perform the data transfers

using the DMA controller, which not only accelerates the data transfers, but also enables

the overlapping of data transfer with test execution to improve performance. It is

important to note that the particular OpenCL directives for DMA access are dependent

on the GPU architecture and OpenCL implementation. The setup implemented in

ParTeCL Runtime will use DMA on the NVidia Tesla GPU, which is used in the

experiments in Chapters 5 to 7. A different implementation might be necessary for

other GPU architectures.

4.5.2 Data Transfer Overlap

Figure 4.4a shows the workflow of testing on the GPU without any data transfer

overlapping, illustrating the large performance overhead of transferring test inputs and
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Figure 4.4: Test execution on the GPU without and with data transfer overlap. Without

data transfer overlap, test inputs are transferred to GPU memory as one whole group.

Test execution begins after all tests are transferred. Then, after all tests are executed,

test outputs are transferred from GPU to CPU memory. In contrast, with data transfer

overlap, tests are split into groups and transferred to GPU memory one after the other.

Test execution begins as soon as the first group is transferred, overlapped with the data

transfer for the next group. Test outputs for each group are transferred back to CPU

memory as soon as test execution for the group is finished.
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outputs between CPU and GPU memories. For large test suites that take considerable

time to transfer, the overhead could be large enough to remove the advantage parallel

kernel execution. In addition, due to the limited amount of GPU memory, storing the

entire test suite in it at once may not be possible.

To mitigate these problems, ParTeCL Runtime implements data transfer overlap, as

illustrated in Figure 4.4b. The test suite is split into groups of tests, which are transferred

to the GPU memory one after the other. As soon as a group of tests is transferred, the

GPU can start executing them, overlapping execution with the data transfer for the next

group. Similarly, as soon as kernel execution is finished, output transfer back to the

CPU can start, overlapping data transfer to and from the GPU. This is possible on GPUs

equipped with dual copy engines and requires the use of additional OpenCL buffers for

implementation.

This approach achieves two objectives:

1) Performance. Overlapping data transfer with kernel execution reduces total time

spent on the GPU, resulting in faster testing and mitigating data transfer overhead.

2) Scalability to larger test suites. Splitting the test suite into groups reduces the

amount of memory necessary on the GPU. There is no longer need to allocate

GPU memory for all tests, but only for the group that is being executed at each

cycle. This allows the execution of larger test suites than is possible otherwise,

improving the scalability of the approach.

Implementation Data transfer overlap is implemented within ParTeCL Runtime.

Once the tests are split into groups of equal sizes, ParTeCL Runtime performs a loop

which transfers each group to the GPU memory, launches the test execution in the GPU

kernel, and transfers the outputs back to main memory. Due to the use of DMA for data

transfer, the OpenCL implementation takes care for overlapping transfers of test inputs

and outputs for each group with their execution.

4.6 Summary

This chapter presents the general approach of parallel test execution on the GPU, along

with the design and implementation of an automated testing framework. The developed

framework, called ParTeCL, uses compiler-based source-to-source transformations to

generate an OpenCL kernel for the SUT and launch test execution in parallel on the
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GPU threads. By automating testing on the GPU, the effort involved in using GPUs

is reduced, as no expert knowledge of the architecture and its programming models is

necessary. In addition, the compiler-based source-to-source transformations facilitate

the implementation of techniques that support additional features for compilation on

the GPU. Finally, standard techniques to optimise the performance of transferring tests

between main and GPU memory are implemented in ParTeCL.

The next chapter evaluates the applicability and effectiveness of this approach when

applied to the testing of embedded systems.





Chapter 5

Testing Embedded Software:

Evaluating Applicability and

Performance

5.1 Introduction

Embedded systems are ubiquitous, featuring in consumer electronics, telecommuni-

cation systems and safety-critical systems, such as car sensors, breaking systems and

medical devices. The widespread use and close daily interaction with these systems

makes safety concerns a top priority when developing and approving embedded soft-

ware. Testing such software is crucial for gaining confidence in its quality and reliability,

and for limiting risks to users and companies. For these reasons, embedded software

often needs to adhere to strict standards to ensure quality and safety [31], leading to

the use of more sophisticated quality assurance, better quality measures and more test

stages compared to other types of software [32]. This typically results in large test

suites [171], making testing a major cost driver in development [32].

Existing solutions (Section 3.2) that focus on reducing the number of tests to be

executed are not suitable for the field of embedded software as they come at the expense

of fault finding effectiveness [77, 78], departing from the crucial goal of ensuring

safety. Therefore, new approaches are necessary that accelerate test execution while

maintaining the large number of tests.

This chapter evaluates the applicability and effectiveness of using GPUs to auto-

matically accelerate embedded software test executions, using the approach and tools

developed in Chapter 4. The evaluation uses applications from EEMBC industry-

57
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standard benchmark suite for embedded systems [27], which is designed to represent

real-world embedded systems applications. It is created and maintained by an industry

consortium which includes major embedded systems companies, such as Samsung, Sony

and Huawei. Performance results show that parallelising test executions on an NVidia

GPU achieves a speedup of up to 4× (avg. 1.4×), compared to parallel execution on a

16-core CPU.

The rest of this chapter is organised as follows. Section 5.2 presents the approach

for analysing applicability and measuring performance. Section 5.3 describes the

experimental methodology. Section 5.4 presents and analyses the results. Finally,

Section 5.5 concludes.

5.2 Approach

This section outlines the empirical approach taken to evaluate the applicability and

performance of using GPUs to accelerate embedded software test execution. This

approach consists of three stages steps: (1) choosing representative embedded systems

benchmarks, (2) analysing applicability based on them and (3) designing and executing

performance experiments.

5.2.1 Embedded Systems Benchmarks

The programs chosen for the evaluation are from the Embedded Microprocessor Bench-

mark Consortium (EEMBC) benchmark suite. It consists of a diverse suite of 33

benchmarks, written in the C programming language, that span real-world application

domains, such as automotive, digital media, networking, office and telecom [27] and

are widely used both in industry and academia. A description of the individual subject

programs is provided in Table 5.1. They consist of a main algorithm, a test harness, and

example input data available for each benchmark.

5.2.2 Analysing Applicability

Figure 5.1 illustrates the approach taken to analyse the applicability of using GPUs to

accelerate test execution for embedded software. It aims to answer three questions:
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Program Domain Description

a2time01 automotive Angle to time conversion

aifftr01 automotive Fast Fourier Transform (FFT)

aifirf01 automotive Finite Impulse Response (FIR) filter

aiifft01 automotive Inverse Fast Fourier Transform (iFFT)

basefp01 automotive Basic integer and floating point

bitmnp01 automotive Bit manipulation

cacheb01 automotive Cache “Buster”

canrdr01 automotive Controller Area Network (CAN) remote data request

idctrn01 automotive Inverse Discrete Cosine Transform (iDCT)

iirflt01 automotive Infinite Impulse Response (IIR) filter

matrix01 automotive Matrix arithmetic

pntrch01 automotive Pointer chasing

puwmod01 automotive Pulse width modulation

rspeed01 automotive Road speed calculation

tblook01 automotive Table lookup

ttsprk01 automotive Tooth to spark

cjpeg consumer JPEG compress

djpeg consumer JPEG decompress

rgbcmy01 consumer/filters RGB to CMYK colour conversion

rgbhpg01 consumer/filters RGB to HPG colour conversion

rgbyiq01 consumer/filters RGP to YIQ colour conversion

ospf networking Dijkstra shortest path first algorithm

pktflow networking Packet flow

routelookup networking Route lookup

bezier01 office Bezier curve algorithm

dither01 office Floyd-Steinberg error diffusion dithering algorithm

rotate01 office Bitmap image rotation algorithm

text01 office Text parsing

autcor00 telecom Cross corr. of signals

conven00 telecom Convolution encoder

fbital00 telecom Bit allocation

fft00 telecom Fast Fourier Transform (FFT)

viterb00 telecom Viterbi decoder

Table 5.1: EEMBC benchmark programs.
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Figure 5.1: Analysing applicability. For each EEMBC program, ParTeCL CodeGen

generates an OpenCL kernel, which is used by ParTeCL Runtime to execute the program

on the GPU. Benchmarks, whose OpenCL kernels are invalid, i.e. cannot be successfully

compiled by the OpenCL compiler, are analysed. For the rest, outputs from the GPU

execution are compared to outputs from the CPU.

1. Can ParTeCL CodeGen generate valid OpenCL kernels for embedded programs?

A valid kernel is one which can be successfully compiled by the OpenCL compiler.

2. What are the features present in embedded programs which prevent the generation

of valid kernels?

3. Does execution on the GPU produce correct program outputs?

To answer these questions, the following steps are performed. First, ParTeCL

CodeGen is used to generate an equivalent OpenCL kernel for each EEMBC program.

Benchmark programs, for which ParTeCL CodeGen cannot produce valid kernels, are

analysed in order to discover which program features are incompatible with OpenCL.

Second, the EEMBC programs whose kernels are successfully compiled, are executed

on the GPU by ParTeCL Runtime, using the input data provided with the benchmarks.

Finally, the benchmark outputs from the GPU are compared to those from CPU execu-

tion, in order to empirically verify that correctness is preserved during GPU execution.
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Successfully executed on the GPU Table 5.2 shows which of the EEMBC programs

are successfully compiled and executed on the GPU by ParTeCL CodeGen and Runtime.

In total, there are 17 out of the 33 EEMBC benchmarks which can be executed on

the GPU. They consist of 11 out of 16 benchmarks from the automotive domain, all 5

benchmarks from the telecom domain and 1 out of 3 benchmarks from the networking

domain. For all of them, their outputs from the GPU are exactly the same as their

outputs from the CPU.

Not executed on the GPU The remaining 16 out of 33 EEMBC programs cannot

be successfully compiled and/or executed on the GPU. Analysing the source code for

these benchmarks reveals that this is due to 5 different features:

1. Dynamic memory allocation, which includes dynamic memory allocation with

sizes not known at compile time, as well as other memory operations, such as

realloc and memset.

2. File IO

3. Function pointers

4. Not enough constant memory available on the GPU

5. String literals in data structures

The specific FSMs which contain each feature are listed in Table 5.2. The most common

feature is dynamic memory allocation, present in 13 of the benchmarks. The second

most common feature is file IO, present in 4 of the benchmarks, all of which also use

dynamic memory allocation. One benchmark (cacheb) contains function pointers and

one benchmark (ttsprk) cannot be executed on the GPU, as it uses large statically

allocated data tables, that do not fit into the GPU’s constant memory. Finally, one

benchmark (pktflow) cannot be executed on the GPU, as it uses string literals to

initialise some of its structures. However, string literals are required by OpenCL to be

in constant memory and cannot be assigned to non-constant variables on the GPU.

As all of these features are known limitations of the GPU hardware and programming

models. Testing of embedded systems, and other C software, that use these features

cannot be accelerated using GPUs.
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Program Domain Success on GPU? Reason

a2time01 automotive 3

aifftr01 automotive 3

aifirf01 automotive 7 Dynamic memory allocation

aiifft01 automotive 3

basefp01 automotive 3

bitmnp01 automotive 3

cacheb01 automotive 7 Function pointers

canrdr01 automotive 3

idctrn01 automotive 3

iirflt01 automotive 7 Dynamic memory allocation

matrix01 automotive 7 Dynamic memory allocation

pntrch01 automotive 3

puwmod01 automotive 3

rspeed01 automotive 3

tblook01 automotive 3

ttsprk01 automotive 7 Not enough constant memory

cjpeg consumer 7 Dynamic memory allocation

djpeg consumer 7 Dynamic memory allocation

rgbcmy01 consumer 7 Dynamic memory allocation, File IO

rgbhpg01 consumer 7 Dynamic memory allocation, File IO

rgbyiq01 consumer 7 Dynamic memory allocation, File IO

ospf networking 3

pktflow networking 7 String literals in data structures

routelookup networking 7 Dynamic memory allocation

bezier01 office 7 Dynamic memory allocation, File IO

dither01 office 7 Dynamic memory allocation

rotate01 office 7 Dynamic memory allocation

text01 office 7 Dynamic memory allocation

autcor00 telecom 3

conven00 telecom 3

fbital00 telecom 3

fft00 telecom 3

viterb00 telecom 3

Table 5.2: Success in executing EEMBC programs on the GPU. Out of 33 programs, 17

are successfully executed on the GPU and 16 are not.

Summary Using GPUs to accelerate test execution is partially applicable to embed-

ded systems programs. ParTeCL is able to compile and execute half of the EEMBC

benchmark programs on the GPU, particularly for the automotive and telecom domains.
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This demonstrates the that the scope of the approach is currently restricted by known

limitations originating from the GPU hardware and programming models. Further

research is necessary to address these restrictions.

5.2.3 Evaluating Performance

To evaluate the performance of GPU test execution for embedded system, a set of

performance experiments are designed and executed. They involve the following steps:

(1) definition of research questions, (2) generation of test inputs for the benchmark

programs, (3) execution of experimental runs on the GPU and in parallel on the CPU

and (4) analysis of the experimental results. The design of the experiments is described

in Section 5.3, while the results are presented and analysed in Section 5.4.

5.3 Experimental Setup

This section presents the experiments carried out to evaluate the performance of parallel

GPU execution of embedded system tests. Testing time on the GPU is measured and

compared to the time taken to execute the same tests in parallel by a 16-core CPU. For

test execution on the GPU, the following measurements are taken:

• Input transfer time: time taken to transfer the test inputs from main memory to

GPU memory.

• Kernel execution time: time taken by the GPU to execute the tests.

• Output transfer time: time taken to transfer test outputs from GPU memory

back to main memory.

• Total GPU time: the overall time taken by the GPU; represents the sum of input

transfer, kernel execution and output transfer time.

The experiments aim to answer the following research questions:

Q1. GPU vs CPU execution. What is the GPU performance compared to a single-

thread and multi-core CPU? For each subject program and test suites, test exe-

cutions are performed on the GPU and the CPU. On the GPU, test executions

are performed without data transfer overlap. The effect of data transfer overlap

on GPU execution time is assessed in Q3. For CPU execution, experiments are
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performed sequentially on 1 core, and in parallel on 2, 4, 8 and 16 cores. Times

taken by the GPU and CPU are compared in order to assess GPU performance.

Q2. Kernel execution vs data transfer time. What is the overhead of data transfer

when compared to kernel execution time? Data transfer time consists of the times

to transfer test inputs and outputs between main memory and GPU memory. They

are measured separately and compared to kernel execution time for each subject.

Q3. Data transfer overlap: effect on performance. Does data transfer overlap

improve GPU performance? For each subject program, test executions are

performed on the GPU with data transfer overlap. Total GPU time is measured

and used to calculate speedup relative to a single-thread and multi-core CPU.

This speedup is compared that achieved without data transfer overlap.

Q4. Correctness. Do test outputs remain the same when tests are executed on the

GPU? For each subject program and test suite, test outputs are collected from the

CPU and from the GPU and compared to check if they are an exact match.

5.3.1 Test Generation

Due to time constraints, nine out of the 17 EEMBC programs which are successfully

executed on the GPU (as shown in Table 5.2.2) are chosen for the performance evalua-

tion. They are listed in Table 5.3. These are all five benchmarks in the telecom domain

and four of the programs in the automotive domain, chosen at random.

The EEMBC benchmark suite does not contain tests for the programs. To simulate

large test suites, 217 (131,072) unique and random test inputs are generated for each

program. The number of test inputs is chosen with regards to the GPU used for the

experiments, which has approx. 214 threads. Having 217 test inputs produces more than

enough threads to saturate the GPU and allows performance observation before and

after the saturation point is reached. For each subject program, experiments are carried

out with test suites containing between 28 (256) to 217 (131,072) tests. Table 5.3 shows

the input size of for each program in bytes. The smallest input size just 512 bytes per

test for conven, whilst the largest input is 4849 bytes for puwmod.

5.3.2 Hardware and Measurements

The GPU architecture used for the experiments is an NVidia Tesla K40m GPU with

15860 threads, spread across 15 compute units, which operates at 745 MHz and has
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Subject Domain Description Input Size Work-group
[bytes] size

a2time01 automotive Angle to time conversion 2000 128

puwmod01 automotive Pulse width modulation 4849 32

rspeed01 automotive Road speed calculation 2000 512

tblook01 automotive Table lookup & interpol. 1856 512

autcor00 telecom Cross corr. of signals 1024 128

conven00 telecom Convolution encoder 512 32

fbital00 telecom Bit allocation 604 128

fft00 telecom Fast Fourier Transform 1024 32

viterb00 telecom Viterbi decoder 688 512

Table 5.3: EEMBC programs used in the performance evaluation.

12 GB global memory, 64 KB constant memory and 50 KB local memory. For the

CPU executions, an Intel(R) Xeon(R) CPU E5-2640 v3 processor with 16 cores at 2.60

GHz and 16 GB RAM is used. All the programs are compiled using the gcc compiler

with the highest optimisation level (-O3). To measure GPU kernel execution and data

transfer time, the profiling functions from the OpenCL API are used. CPU execution

time is measured through the standard C function gettimeofday. Each experimental

execution is performed 100 times and median values are reported.

Multi-core CPU Execution To provide a fair comparison between the GPU and a

multi-core CPU, test execution on the CPU is parallelised using OpenMP.

5.4 Results and Analysis

This section presents and analyses the results of the experiments outlined in Section 5.3.

First, GPU speedup without data transfer overlap is assessed and analysed in Q1.

Then, the overhead of data transfer is measured and presented in Q2. The effect on

performance of using data transfer overlap is evaluated in Q3. Section 5.4.4 presents

an analysis of the differences in results among benchmarks. Finally, correctness of the

testing results is evaluated in Q4.
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5.4.1 Q1. GPU vs CPU Execution

This section presents the speedup achieved when executing tests on the GPU compared

to a single-thread and parallel multi-core execution on the CPU. Test execution on the

GPU is without data transfer overlap. The GPU time presented in this section represents

the worst-case time of the approach.
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Figure 5.2: Speedup on the GPU vs single-thread execution for 10 different test suite

sizes, without data transfer overlap.

GPU vs Single-thread CPU For each subject program and each of the associated

test suite sizes (ranging from 28 to 217), two measurements are used to calculate GPU

speedup: CPU time and Total GPU time. Figure 5.2 presents the GPU speedup for each

subject program over the different test suite sizes. It shows that for all the programs,

speedup increases linearly with increase in test suite size until a point, after which it

begins to stabilise. The reason for the linear increase in speedup is because doubling

the test suite size causes a proportional doubling in execution time on a single-thread

CPU. However, on the GPU, execution time remains the same with increase in test

suite size until a threshold size is reached. After reaching the threshold size, speedup

generally remains stable when increasing the test suite size. This is because after the

threshold, both CPU and GPU execution times increase at similar rates with test suite

sizes, resulting in no change in speedup. For the subject programs, the threshold test

suite size is 16,384 (214), which is the point at which all GPU threads are saturated.

For two subject programs, fbital and viterb, increases in speedup continue to be

observed up to test suite sizes of 131,072, but by approx. 20% after the threshold
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Figure 5.3: Speedup of GPU and multi-core CPU compared to a single-thread CPU,

when executing the largest test suite for each benchmark.

size, rather than doubling. For these two programs, GPU execution time increases at a

slightly lower rate than CPU execution time.

Figure 5.2 shows that speedup is higher for large test suite sizes. The average

speedup for the maximum test suite size across all experimental programs is 9.6×. For

the smallest test suite size of 256, the speedups are limited. Running on GPU starts to

achieve speedup gains over the CPU when test suite sizes are larger than 2048 tests.

This is not surprising, since for smaller test suite sizes, there is not enough workload to

benefit from parallelisation on the GPU.

Figure 5.2 also shows that most subject programs achieve considerable speedup

when large test suites are executed on the GPU. For viterb, fbital, a2time,

autcor and tblook, GPU speedup ranges from 9.7× to 37× for the largest test suite.

For rspeed, puwmod and conven, the speedup gain is more limited, ranging from

2.2× to 5.6×. Section 5.4.4 analyses the reasons for the varying speedup observed

among different programs.

GPU vs Multi-core CPU To offer a fair comparison point, Figure 5.3 shows the

speedup achieved by a multi-core CPU, using 2, 4, 8 and 16 cores, when executing the

largest test suites for all subject programs. Multi-core CPU test execution is parallelised

with OpenMP and speedup is calculated compared to a single-thread CPU. Figure 5.3

also shows the speedup achieved by the GPU without and with data transfer overlap.
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Here, GPU speedup without data transfer overlap is discussed. GPU speedup with data

transfer overlap is discussed in Section 5.4.3.

For all programs, multi-core CPU speedup scales linearly with the number of

cores, achieving a maximum speedup of 13.6× (average speedup 11×) with 16 cores,

across all subject programs. For 4 of the 9 programs, autcor, fbital, viterb

and a2time, the GPU achieves considerably higher speedup ranging from 18.6× to

37.5× without data transfer overlap, demonstrating the benefit of using the GPU for

these programs. For 5 benchmarks, rspeed, puwmod, fft, conven and tblook, the

GPU is slower than the 16-core CPU without data transfer overlap. The reasons for

differences across benchmarks are explored in Section 5.4.4. Average GPU speedup

over all benchmarks, without data transfer overlap, is 9.6×, compared to 11× for a

16-core CPU, demonstrating the importance of optimising GPU test execution. The

next sections analyse the impact of data transfer overhead and the effectiveness of using

data transfer overlap to improve GPU performance.

5.4.2 Q2. Kernel Execution vs Data Transfer Time

To analyse the effect which data transfer overhead has on GPU test execution, Figure 5.4

shows the breakdown of total GPU time for all subject programs. In this section, kernel

execution time and data transfer time are first analysed separately and then compared.

Kernel Execution Time. Figure 5.4 shows that for all programs, for small input

sizes, kernel execution time remains the same on the GPU, due to the large number

of available threads. This is expected, because as test suite sizes increase, the GPU is

able solicits more threads for parallel execution of the additional test cases, up to the

threshold size of approx. 16,384 (214), as identified in Q1. After reaching the threshold

size, kernel execution time starts to increase linearly with test suite size.

Data Transfer Time. In contrast, data transfer is not parallelised and Figure 5.4

shows that data transfer time, including the transfer of both test inputs and outputs,

increases linearly with the test suite size.

Data Transfer vs Kernel Execution Time. While the separate trends for data transfer

and kernel execution times are the same across benchmarks, the proportion of total GPU

time spent on each varies considerably across subject programs. For 4 benchmarks,

autcor, conven, fbital and viterb, kernel execution time dominates and is up to

5× higher than data transfer time. This means that the cost of data transfer is minimal

compared to the time it takes to perform test execution. For 4 other benchmarks,
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Figure 5.4: Breakdown of total GPU time into data transfer and kernel execution time for

each subject program.
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a2time, puwmod, rspeed and tblook, the data transfer time is larger than kernel

execution time, representing a large overhead to using the GPU. This overhead could be

mitigated by using an on-chip GPU or using data transfer overlap, as evaluated in the

next section.

5.4.3 Q3. Data Transfer Overlap: Effect on Performance

To mitigate the effect of data transfer overhead on total GPU time, data transfer overlap

is used (Section 4.5.2). Figure 5.3, shows the GPU speedup achieved with and without

it for the largest test suite size for each subject program, when compared to a single-

thread CPU. It shows that overlapping data transfer always improves GPU performance,

bringing the largest GPU speedup from 38× (for viterb) to 53× (for a2time) and the

average GPU speedup from 9.6× to 16×.

Across all programs, the GPU outperforms single-thread CPU execution. When

compared to a parallel execution on a 16-core CPU, the GPU is faster for 5 out of the

9 benchmarks. Its maximum speedup compared to the 16-core CPU is 4×, while the

average speedup across all benchmarks is 1.4×.

5.4.4 Analysis

This section analyses the diversity of GPU speedup observed across all benchmarks.

It is based on the general observation that the more compute-intensive a program

is, the higher the performance will be on the GPU. The metric used to establish the

computational intensity of a benchmark is Time cpu/Input size, representing the time

it took for the CPU to process a Byte of input data. A higher value of this metric

means that more computations are executed per Byte of input data, suggesting that the

benchmark is more computationally demanding.

Figure 5.5 shows the computational intensity of each benchmark. It shows that the

benchmarks with the lowest value (rspeed, puwmod, fft), also have the lowest GPU

speedup (Figure 5.3). Conversely, benchmarks with a high value, fbital, viterb,

a2time are the ones exhibiting the largest GPU speedups.

While a2time does not have the highest computational intensity, it achieves large

speedup due to the effect of data transfer overlap. Input data transfer time for a2time is

comparable to kernel execution time, allowing for effective pipelining of the groups of

tests, which leads to more than doubling its speedup, from 24× to 53×.
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Figure 5.5: Computational intensity of benchmarks ordered by speedup achieved.

Another outlier is conven, which based on its computational intensity, would be

expected to perform well on the GPU, but its speedup is comparable to fft, that has

lower computational intensity. The reason for this lies in the fact that conven uses a

temporary array of 1KB for each input test, that is accessed frequently in a loop. This

array can easily fit in the large cache of the CPU, but cannot fit in the smaller cache of

the GPU, providing additional benefit to CPU execution.

In summary, embedded benchmarks with high computational intensity tend to

benefit more from using GPUs for accelerated test execution. Nevertheless, relative

performance on the GPU is also affected by other factors, such as the ability to balance

kernel execution and data transfer time when overlapping and the availability of large

enough memory caches. Given the trend towards larger cache sizes on GPUs, it can be

expected that embedded programs will be able to exhibit better performance on future

generations of GPUs.

5.4.5 Q4. Correctness

To empirically demonstrate that using ParTeCL to execute embedded system tests on

the GPU does not alter their functionality, test outputs from the CPU and GPU are

collected for all benchmarks and all test suites. For all 9 subject programs, with 256

to 131,072 test inputs each, the test outputs between the CPU and GPU executions are

an exact match. This demonstrates that using ParTeCL for test execution on the GPU

preserves correctness of program execution for all 9 embedded system benchmarks.
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5.5 Summary

This chapter evaluates the applicability and performance of accelerating test execution

for embedded software on the GPU, using embedded systems benchmarks from the

EEMBC benchmark suite.

To evaluate applicability, ParTeCL is used to compile and execute the benchmark

programs on the GPU. This process reveals that the approach is partially applicable: 17

out of the 33 EEMBC benchmarks are successfully compiled and executed on the GPU,

particularly the ones from the automotive and telecom domains. For the rest, limiting

features are dynamic memory allocation, file IO, function pointers and some uses of

string literals, which are not currently supported in OpenCL.

To evaluate performance, experiments are performed using 9 benchmarks from

the automotive and telecom domains of EEMBC. The experiments reveal that the

GPU outperforms sequential execution on the CPU by up to 53× (avg. 16× across

benchmarks), and parallel execution on a 16-core CPU by up to 4× (avg. 1.4×).



Chapter 6

Testing Finite State Machine Models:

Establishing Feasibility

6.1 Introduction

Model-based development is a widespread development approach in which software

is implemented and verified based on a model of the required system. Finite state

machines are a popular abstraction that is widely used to model a large variety of

systems, including signal processing tools, communications protocols and control

systems. Validating that an FSM model accurately represents the system requirements

is a crucial task that involves the generation and execution of a large number of tests,

which is often a costly and time-consuming process.

GPUs can be used to automatically and transparently accelerate test execution for

FSM model validation, using the approach and tools presented in Chapter 4, but there

are challenges specific to FSMs. This chapter, along with Chapter 7, addresses these

challenges, demonstrating the feasibility using GPUs to accelerate FSM test execution.

The specific challenges are:

1) Performance of the GPU kernel. FSM execution involves a large number of

memory accesses, which are expensive operations on the GPU. Test sequences are read,

input by input, corresponding transitions are searched in the FSM, and corresponding

test outputs are written into GPU memory. This means that the memory layouts used

for the FSM and tests (inputs and outputs) are crucial for GPU performance. In order

to minimise kernel execution time and maximise performance, it is essential to design

optimal memory layouts.

73
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2) FSM test suite size. Test suites for large FSM models consist of long input se-

quences, comprising large amounts of data, impacting both performance and scalability.

Performance is reduced, as transferring large test inputs and outputs between CPU and

GPU memory adds considerable overhead to GPU time. Scalability is also limited, as

GPUs have less memory than CPUs and may not be able to accommodate the entire test

suites all at once.

The current chapter addresses the first challenge, which relates to the performance of

the GPU kernel only. Two memory layouts for the FSM and three memory layouts for

the tests are defined and implemented into separate OpenCL kernels. They are then used

by ParTeCL Runtime to automatically launch parallel FSM test execution on the GPU

threads. To determine the optimal memory layouts for kernel performance, they are

evaluated and compared in terms of kernel execution time. Evaluation focuses on kernel

execution time only, assuming that the FSM and tests are transferred to GPU memory

prior to kernel execution. It demonstrates that, when using the optimal memory layouts,

the GPU kernel is up to 12× faster (6.5× avg.), compared to a parallel implementation

on a 16-core CPU. The second challenge is addressed in Chapter 7. Data transfer is

optimised and total GPU performance, which includes both data transfer and kernel

execution time, is evaluated and compared to a multi-core CPU.

The rest of this chapter is organised as follows. Section 6.2 presents the memory

layouts for the FSMs and tests, together with further optimisations for kernel execution

time and implementation details. The research questions, experimental setup and

subjects FSMs used in the evaluation are presented in Section 6.3. Experimental results

and analysis are discussed in Section 6.4. Finally, Section 6.5 concludes the chapter.

6.2 Approach

A test checking the behaviour of an FSM is represented as a sequence of inputs. Execut-

ing such a test involves applying the inputs in the sequence one by one, commencing at

the specified starting state, transitioning through the states of the FSM, and recording

the outputs associated with each transition. The test passes if the output sequence is the

expected one and fails otherwise.

This section introduces the design and implementation of FSM test execution on the

GPU. ParTeCL Runtime, which is introduced in Chapter 4, is extended to accept the

FSM and test suite as inputs. They are read, stored in main memory and transferred

to GPU memory. Two memory layouts for the FSM and three memory layouts for



6.2. Approach 75

the tests are designed and implemented. OpenCL kernels are implemented for each

of the memory layouts, to execute the given FSM over an input sequence on the GPU.

ParTeCL Runtime then uses the new OpenCL kernels to transparently launch the tests

in parallel on the GPU threads.

6.2.1 Memory Layouts

This section presents two memory layouts for the FSM and three memory layouts for

the test suite that are implemented in ParTeCL Runtime and evaluated in terms of their

impact on GPU kernel performance.

6.2.1.1 FSM Layouts

The two FSM layouts are called sparse and dense.

Sparse The sparse FSM layout consists of a one-dimensional array, indexed by state,

in which each element is a list of (input, next state, output) triplets. Figure 6.1a illustrates

the sparse FSM layout for the digital oscilloscope FSM, shown in Figure 2.6. Given a

state s and an input a, the list of triplets corresponding to s is found in constant time

and then a search is performed to find the correct triplet based on a. For example, to

find the transition from state 1 on input M, first the list of triplets corresponding to state

1 is found at index 1 and then the list is searched to find the triplet containing input M.

The advantage of the sparse FSM layout is compactness. Since it uses dynamic

lists, it requires memory only for the transitions present in the FSM and does not use

any padding. This could be beneficial for sparse FSM matrices as it may allow them

to fit into constant GPU memory. The disadvantage of the sparse FSM layout is the

potentially slow execution time due to the need to perform a search to find the correct

triplet in a list for each input in a test sequence.

Dense The dense FSM layout consists of a two-dimensional array, indexed by state

and input, in which each element is a single (next state, output) tuple. Figure 6.1b

illustrates the dense FSM layout for the digital oscilloscope FSM, shown in Figure 2.6.

Given a state s and an input a, corresponding tuple is picked in constant time, based on

the array indices.

The advantage of the dense FSM layout is the fast execution time, as for each

input in a test sequence, the lookup for (next state, output) takes constant time. The
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disadvantage is the need to allocate memory for every possible state/input pair in the

FSM and use padding for pairs which are not present in the FSM. This could incur a

large overhead in memory compared to the sparse layout, particularly for sparse FSMs.

This would not be a drawback for FSMs with high density, as they require memory for

approx. the same amount of transitions in both layouts, (|S|× |I|).

[0]

[1]

[2]

L, 1, 0 M, 0, 0 H, 0, 0

L, 1, 0 M, 2, 0 H, 3, 1

M, 2, 0 H, 3, 1

[3] [ empty list  ]

(a) Sparse

[0]

[1]

[2]

1, 0 0, 0 0, 0

1, 0 2, 0 3, 1

2, 0 3, 1

[3] padding padding padding

padding

[L] [M] [H]

(b) Dense

Figure 6.1: The two FSM memory layouts, representing the digital oscilloscope FSM.

6.2.1.2 Test Layouts

There are three memory layouts for FSM tests, called padded, padded-transposed and

with-offsets, illustrated in Figure 6.2. Note that during execution the same layout is used

for both the test inputs and outputs.

Padded In the padded layout, tests are stored in a two-dimensional array, in which

each row represents a separate test and each column represents a test input. All tests are

padded with null bytes to the length of the longest test. Each GPU thread executes a

single row of the two-dimensional array. Test execution stops when the padding null

byte is encountered. This test layout is easy and intuitive to implement, but has high

memory requirements and does not allow efficient coalesced memory accesses on the

GPU. Coalesced memory accesses are introduced in Section 2.3.2.

Padded-transposed The padded-transposed layout uses the same two-dimensional

array as the padded layout, but transposes it to allow coalesced memory accesses by

the GPU threads. Each column represents a separate test and each row represents a test

input, allowing the GPU to use coalescing to optimise global memory accesses.
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With-offsets In the with-offsets layout, all tests are concatenated into a single array.

An array of offsets is calculated and used by the threads to point them to the starting

point of each test sequence. This layout is more compact than the other two, as it

does not use padding. This means that during GPU execution, it may utilise the global

memory cache more efficiently, providing performance improvement.

1
2

N

...

Contiguous  memory

(a) Padded

1 2 N...

Contiguous  memory

(b) Padded-transposed

1 2 N
...

[0] [k] [m]

offsets
0 k m...

(c) With-offsets

Figure 6.2: The three test memory layouts. Empty circles represent padding.

6.2.1.3 Placement in GPU Memory

Placement of the FSM and tests in the GPU memory hierarchy is also crucial for GPU

performance. The GPU memory hierarchy is illustrated in Figure 2.3.

The FSM placement in memory is decided by ParTeCL Runtime during execution.

The program calculates the size of the FSM and queries the GPU for the amount of

space available in constant memory and local memory. When there is enough space

available in constant memory, the FSM is placed into it. Constant memory is a fast

read-only portion of global memory which is suitable for the FSM since test execution

does not modify it. When the FSM is too large for constant memory, ParTeCL Runtime
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checks if there is enough space in local memory and places the FSM there. This requires

duplication of the FSM across work-groups, as each work-group has its own portion of

local memory, but allows for faster memory accesses than global memory. Finally, if

there is not enough local memory, the FSM is placed in global memory.

Test inputs and outputs are placed in global memory, where they are accessible to

all threads. Each thread uses different portions of the data. Coalesced memory accesses

and cache utilisation are crucial optimisations for improving GPU performance when

data is stored in global memory.

6.2.2 Sorting the Test Sequences Based on Length

A straightforward and effective optimisation for GPU kernel execution time is sorting

the FSM test sequences based on their length before kernel execution. This is due to the

fact that, as outlined in Section 2.3, all GPU threads are organised into work-groups,

which execute in lock-step with each thread executing the same instruction. This means

that the whole work-group would only run as fast as the thread executing the longest

test sequence. Thus, if the threads within the work-group are executing test sequences

of different lengths, the threads with shorter test sequences will stay idle while waiting

for the threads with longer test sequences to complete execution. However, if all threads

in a work-group are running tests of similar lengths, they will all finish at the same time,

freeing up resources for a new work-group to be scheduled. Sorting the tests based on

their length and launching them on the same work-group would allow work-groups to

execute tests of similar lengths. This would speedup the execution time not only for

the with-offsets layout, but also for the padded and padded-transposed layouts, as each

thread finishes execution when it encounters the first padding (null) character in the

test sequence.

6.2.3 FSM Input Formats for ParTeCL

FSM definitions represent a higher level of abstraction than embedded C code. Input

formats for the FSM and tests are required that are both user-friendly and intuitive to

implement into ParTeCL.

The input format chosen for the FSM is kiss2 [172]. It is a standard tabular FSM

format, used primarily in the circuit design domain. It consists of a header, containing

information about the FSM, and a list of transitions, stored in a text file. It is an intuitive

format that is accessible to the end-user and easy to support in ParTeCL Runtime.
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1 .i 1
2 .o 1
3 .s 4
4 .p 8
5 .r 0
6 H 0 0 0
7 M 0 0 0
8 L 0 1 0
9 H 1 3 1

10 M 1 2 0
11 L 1 1 0
12 H 2 3 1
13 M 2 2 0

Listing 6.1: kiss2 input format for the digital oscilloscope FSM, shown in Figure 2.6

1 1 HH
2 2 HM
3 3 HL
4 4 MH
5 5 MM
6 6 ML
7 7 LH
8 8 LM
9 9 LL

10 10 LLH
11 11 LLM
12 12 LLL
13 13 LMH
14 14 LMM
15 15 LMMH
16 16 LMMM

Listing 6.2: Input format for the test suite for the digital oscilloscope FSM.

To illustrate it, Listing 6.1 shows the kiss2 file for the digital oscilloscope FSM,

shown in Figure 2.6. Lines 1 to 5 contain the header, which holds the following

information: (1) the inputs and outputs have lengths of 1 character (lines 1 and 2

respectively), the number of states in the FSM is 4 (line 3), the number of transitions is

8 (line 4) and the starting state is 0 (line 5). Lines 6 to 13 define the transitions with each

line corresponding to one transition in the format: input start state end state

output. For example, line 6 describes the transition which takes input H, starts in state

0, stays in state 0 and produces output 0. The output is 0 as the destination state, state 0,

is a non-accepting state. Line 9 describes the transition which takes input H, starts in

state 1, transitions to state 3 and produces output 1. The output is 1 as the destination

state, state 3, is an accepting state.
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The input format for the test suite is a text file in which each line corresponds to

a separate test input. Each line contains a test index, followed by the input sequence

for the FSM. Listing 6.2 illustrates an input file, containing a test suite for the digital

oscilloscope FSM in Figure 2.6. This test suite is generated based on the all-transition

pair coverage criterion. The test generation algorithm is discussed in more detail in

Section 7.2.

6.3 Experimental Setup

This section presents the experiments carried out to evaluate the effects which the

memory layouts and optimisations outlined in Section 6.2 have on the performance of

the GPU kernel, when executing FSM tests in parallel. The evaluation focuses on kernel

execution time only and does not take into account data transfer time. The effects of

data transfer overhead on total GPU performance and optimisations for it are addressed

in Chapter 7.

The evaluation uses 12 FSMs from the network intrusion detection domain and one

industry FSM model from the signal processing domain. Full test suites for each FSM

are generated, based on all-transition pair coverage. The subject FSMs, along with test

generation, are presented in more detail in Section 6.3.1. For each FSM, GPU kernel

execution time is measured and compared to the time taken to execute the same tests in

parallel on a 16-core CPU.

The experiments aim to answer the following research questions:

Q1. GPU kernel vs multi-core CPU execution. What is the GPU kernel performance

compared to a 16-core CPU? For each FSM, tests are executed in parallel on

the GPU and on a 16-core CPU, and GPU speedup is calculated based on kernel

execution time. The experiment is performed using test suite sizes ranging from

2048 to the full test suite in order to assess how speedup changes as the test suite

grows. The results presented for this question are the ones achieved by the fastest

GPU implementation overall, as determined in the experiments for Q2, Q3 and

Q4 (dense FSM layout, padded-transposed test layout and sorting of the tests

before execution).

Q2. Effect of FSM layout. Is the GPU kernel performance dependent on the FSM

layout in memory (Sparse vs Dense)? The time taken by the GPU kernel and a

16-core CPU to execute the full test suites of all FSMs, using both layouts, is



6.3. Experimental Setup 81

measured and the GPU speedups are compared. The presented results use the

padded-transposed test layout. Tests are not sorted before execution.

Q3. Effect of test layout. Is the GPU performance dependent on the test layout in

memory (Padded vs Padded-transposed vs With-offsets)? The time taken by the

GPU and 16-core CPU to execute the full test suites of all FSMs, using the three

test layouts, is measured and the GPU speedups are compared. The dense FSM

layout is used and tests are not sorted before execution.

Q4. Effect of test sorting. How does the GPU performance change when the test

sequences are sorted based on length? The experiments for Q3 are repeated, but

with sorted test inputs before its execution. GPU speedup for all three test layouts

are compared in order to assess the effect of test sorting on performance.

6.3.1 Subject FSMs and Tests

This evaluation uses 12 subject FSMs selected at random from the l7-filter pattern

set [173], which contains regular expressions used for network intrusion detection. It

also uses one industry provided FSM from Keysight Technologies, used to perform

transition localisation in the signal processing domain [174]. For all FSMs, full test

suites are generated based on the all-transition pair coverage criteria. Table 6.1 provides

a summary of the FSMs, together with their sizes and numbers of tests.

l7-filter At the time of experimentation, the l7-filter set contains 113 regular expression

patterns and a sample of 12 subjects is selected at random for experimentation. FSMs

are generated from the regular expressions, using the Flex tool [175]. A custom Python

script is used to generate a kiss2 file for each FSM [172]. The input set for the l7-filter

FSMs comprises the 256 ASCII characters.

Keysight The Keysight FSM represents a model for a transition localisation tool

in communication signals [174]. The FSM takes three inputs, L, M and H, which

correspond to Low, Medium and High voltage pulses. It accepts when a low or high

state has been established, identifying a transition in the signal. The size of the FSM

is determined by a parameter p. It defines the number of pulses necessary to establish

that a signal has been sustained long enough to be considered a valid transition and not

simply a glitch. In the experiments, p = 1000 is used as it generates an FSM of similar

size to those from l7-filter, in terms of the number of transitions.
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FSM Domain #States #Inputs Density #Tests

ssl l7-filter 34 256 83% 1,475,251

battlefield2 l7-filter 71 256 56% 1,476,796

dns l7-filter 197 256 83% 8,533,671

aim l7-filter 41 256 58% 1,344,963

rtp l7-filter 28 256 95% 1,536,723

tsp l7-filter 27 256 84% 1,162,511

yahoo l7-filter 54 256 82% 2,627,405

ntp l7-filter 31 256 90% 1,374,296

hotline l7-filter 34 256 66% 1,216,433

h323 l7-filter 46 256 90% 2,241,832

halflife2 l7-filter 24 256 80% 1,088,409

counterstrike l7-filter 30 256 85% 1,472,463

keysight signal processing 4004 3 100% 36,027

Table 6.1: Subject FSMs used in the evaluation. 12 FSMs are from the l7-filter network

intrusion detection protocols and one is a digital signal processing model provided by

Keysight Technologies.

Test Generation In order to perform the evaluation using realistic tests, full test

suites for each of the subject FSMs is generated, using the all-transition pair coverage

criterion. FSM coverage criteria are introduced in Section 3.5. All-transition pair is

chosen, because it has been shown to be a rigorous coverage criterion [138], as it ensures

that events in the system are tested not only individually, but also in relation to one

another. The specific algorithm used to generate the test suites is discussed in more

detail in Chapter 7, which proposes an approach to optimising the test suites.

Table 6.1 shows the size of the resulting test suites for each FSM and Figure 6.3

shows the average test lengths for each test suite. Table 6.1 shows that the keysight

FSM has fewer tests than the other FSMs. It has 36,072 tests, while the average number

of tests across the l7-filter FSMs is 2,129,229. However, the average length of its

tests is larger than that of the l7-filter FSMs. For keysight the average test length is

1,000 inputs, while across the l7-filter FSMs the average test length is 11 inputs. There

are two reasons for these differences: (1) the l7-filter FSMs have fewer states than

keysight (avg. 53 vs 4,004) and (2) they have a larger input set than keysight (256

vs 3). Therefore, for the l7-filter FSMs, a large volume of transition pairs originate in a

small number of states, requiring a large number of shorter test sequences to traverse
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them all. keysight, on the other hand, has the opposite - a small number of transition

pairs go through a large number of states, requiring fewer but longer test sequences to

cover them.
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Figure 6.3: Average test lengths for the subject FSMs. Error bars show standard

deviation within the test suite.

6.3.2 Hardware and Measurements

The same GPU and CPU used in Chapter 5 are used for these experiments. They are

described in Section 5.3.2. Each experimental execution is performed 100 times and

median values are reported.

Multi-core CPU Execution To provide a fair comparison between the GPU and a

multi-core CPU, test execution on the CPU is parallelised using OpenMP. All design

configurations (FSM layout, test layout and test sorting) are executed on the 16-cores

CPU. The GPU speedups reported across Section 6.4 are calculated when compared to

the fastest CPU execution times.

Correctness For each experiment, the testing outputs produced by the GPU are

compared to those from the CPU in order to confirm that they are an exact match
ensure that using the GPU preserves the correctness of test execution.
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6.4 Results and Analysis

This section presents the results and analysis of the experiments described in Section 6.3.

First, the overall GPU kernel execution speedup when compared to a 16-core CPU is

presented in Q1 and then, each individual design choice is assessed in Q2, Q3 and Q4.

Finally, Section 6.4.5 briefly discusses the data transfer overhead for the subject FSMs.

6.4.1 Q1. GPU Kernel vs Multi-Core CPU Execution

Figure 6.4 shows the speedup achieved in kernel execution time on the GPU when

compared to an optimised parallel implementation on a 16-core CPU. For each FSM,

speedup is presented for test suite sizes ranging from 2048 up to the maximum number

of tests in the test suite. As keysight requires fewer tests that the l7-filter FSMs, its

test suite is padded to contain 220 tests, by randomly duplicating its existing tests.

GPU kernel speedup increases with the number of tests in the test suite, since the

GPU is able to utilise more threads as tests are added. This continues up until the GPU’s

saturation point, at approx. 215 tests, after which there are no more GPU threads to be

utilised and the speedup remains stable. Speedup is observed for test suite sizes larger

than 212, over all FSMs, and the highest speedup is achieved for each FSM is for the

largest test suite size. Results for the l7-filter and Keysight FSMs are further discussed

separately.

l7-filter The speedup observed for the l7-filter FSMs ranges between 1.7× for ssl and

12× for counterstrike. The average speedup across all FSMs is 6.4×. The difference

in speedup across the FSMs is due to the difference in the lengths of tests. Figure 6.3

shows the average test lengths of each FSM, as well as the standard deviation across the

test suite. The FSMs which achieve the highest speedup, counterstrike, hotline

and halflife2, are also among the ones which have the longest average test lengths.

Conversely the FSMs with lowest speedup, ssl and dns are among the ones with

shortest average test lengths. The longer test sequences require longer execution per

test both on the GPU and CPU. Since the GPU has a much higher degree of parallelism,

the extra computation per thread is lower than that of each individual CPU core, which

needs to execute multiple tests. This allows the GPU to execute longer test sequences

much faster than the CPU, resulting in higher speedup.
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Figure 6.4: Speedup of GPU kernel execution when compared to a 16-core CPU over

different test suite sizes. The presented speedups are for the fastest GPU and multi-

threaded CPU implementations.
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Keysight For keysight, the GPU achieves speedup of 7.9× for its full test suite

(36,027 tests) when compared to a 16-core CPU. This speedup seems lower than

expected, when compared to the l7-filter FSMs, considering the longer test sequences

of keysight. There are two reasons for this:

1. keysight has only 36,072 tests in its test suite - not enough to completely utilise

the GPU. Figure 6.4 shows that padding the test suite to 220 tests enables the GPU

to achieve higher speedup of up to 12.4×.

2. The longer testing sequences can successfully utilise the high degree of paral-

lelism available on the GPU, resulting in high speedups. Nevertheless, when

executing a test, each step of the FSM traversal involves expensive test input/out-

put reads and writes from/to global memory. Each of these data accesses is more

time consuming on the GPU than the CPU. As keysight’s testing sequences are

2 orders of magnitude longer than those of the l7-filter FSMs, the cumulative

effect of global memory accesses has a negative impact on GPU speedup.

6.4.2 Q2. Effect of FSM Layout
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Figure 6.5: GPU kernel speedup, when compared to a 16-core CPU, for the sparse and

dense FSM layouts. The presented values are for the full test suite for each FSM. The

test layout is padded-transposed and tests are not sorted before execution.

Figure 6.5 shows a comparison of the GPU speedup achieved when using the two

FSM layouts, sparse and dense, for the full test suites of each FSM. With sparse FSM

layout, GPU speedup for the l7-filter FSMs is consistently lower than 1, meaning that
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the GPU is slower than the 16-core CPU. For keysight, it is 1.5×. With dense FSM

layout, GPU speedup is considerably higher for all FSMs. For the l7-filter FSMs it

ranges between 1.2× and 6.2× and for keysight it is 4.3×. For all subject FSMs, the

dense FSM layout outperforms the sparse FSM layout. Furthermore, only with the

dense FSM layout is the GPU faster than a 16-core CPU.

There are two reasons for the differences between GPU performance with the two

FSM layouts, related to their characteristics outlined in Section 6.2.1.1. First, the GPU

is able to perform faster lookups for the next state and output for a given input with the

dense FSM layout. This effect is multiplied over long test sequences, since lookups are

necessary for each input in the test sequence. Second, the density for all subject FSMs

is high. Table 6.1 shows that across all FSMs it ranges between 56% and 100% with an

average of 81%. This means the amount of memory taken by the sparse layout would

be close to that of the dense layout, removing the benefit of using the sparse layout. In

addition, all subject FSMs fit into the constant memory available on the GPU with both

layouts, allowing the dense layout to take advantage of fast access to constant memory.

6.4.3 Q3. Effect of Test Layout
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Figure 6.6: GPU kernel speedup, when compared to a 16-core CPU, for the padded,

padded-transposed and with-offsets test layouts. The results are for the full test suite for

each FSM. The FSM layout is dense and tests are not sorted before execution.

Figure 6.6 shows the GPU kernel speedup achieved when using the three test layouts,

padded, padded-transposed and with-offsets, for the full test suites of each subject FSM.

This section analyses the results for the l7-filter FSMs and keysight separately.
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l7-filter Figure 6.6 shows a variation in performance across the different FSMs and

test layouts. In some cases, for FSMs with shorter test inputs (yahoo and tsp), the

highest GPU speedup is achieved with the with-offsets test layout (up to 2.8× for

tsp). In contrast, for FSMs with longer test inputs (h323, hotline, halflife2 and

counterstrike), padded-transposed achieves the highest speedup (up to 7.2× for

counterstrike).

There are two factors which contribute to the efficiency of the test layout. These are

the ability of the GPU to (1) use the global memory cache and (2) to perform coalesced

memory accesses. They explain why with-offsets can be the fastest test layout for FSMs

with short tests, while padded-transposed is the fastest test layout for FSMs with long

tests. With-offsets provides a more compact test representation, which fits easily into

the global memory cache for FSMs with short test sequences. As test sequences grow,

they no longer fit in the GPU cache and the ability to perform coalesced memory access

becomes more beneficial. This is provided by the padded-transposed test layout and

explains the higher speedup achieved with it for the FSMs with long test suites.

Keysight Figure 6.6 shows that for keysight, the GPU kernel speedup with the

padded and with-offsets test layouts is less than 1 - the GPU is slower than the 16-

core CPU. In contrast, with the padded-transposed layout, GPU speedup improves

considerably, reaching a value of 4.2×. This large difference is due to the long test

sequences in keysight’s test suite. Figure 6.3 shows that the average length of its test

inputs is approx. 1000. Each input is a value encoded as a character. This means that

the average test takes approx. 1MB of memory, making it impossible to fit into the

GPU’s global memory cache.

With the padded and with-offsets layouts, at every input traversal step, every GPU

thread is performing two expensive memory accesses (reading test input and writing test

output) without the help of the GPU cache, resulting in an inefficient GPU computation.

This effect is multiplied by a factor of 1000 with the long test sequences, resulting in

poor GPU performance for these layouts. Performance is dramatically improved with

the padded-transposed test layout, which allows memory coalescing. With it, for every

input, separate GPU threads perform accesses to consecutive addresses in memory.

This allows the GPU architecture to combine memory accesses into a single efficient

memory transaction across a work-group, resulting in improved performance.
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6.4.4 Q4. Effect of Test Sorting
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Figure 6.7: GPU kernel speedup, when compared to a 16-core CPU, sorted and unsorted

test suites, for each test layout. Tests are sorted based on the length of the testing

sequences. The results are for the full test suite for each FSM. The FSM layout is dense.

Figure 6.7 shows the effect of sorting the tests based on length on GPU kernel

speedup. Sorting the tests improves speedup across all FSMs and test layouts. For

FSMs with long test inputs (counterstrike, hotline, h323, ntp and keysight) the

improvement is by a factor of approx. 2. This brings the maximum GPU speedup to

12× (for counterstrike), with an average across all FSMs of 6.5×.

These results are expected, based on the discussion in Section 6.2.2. Sorting the

tests prior to execution ensures that all threads within a work-group have tests of similar

lengths and finish executing them at the same time, immediately freeing resources for

another work-group to be scheduled. This leads to less time spent by threads being idle

and improves performance.

6.4.5 Assessing Data Transfer Overhead

The results presented so far are for GPU kernel execution only. This Section discusses

the overhead of data transfer time. This is the time taken to transfer the test inputs and

outputs between main memory and GPU memory. It is a well known limitation of GPU

architecture that data transfer time is slow due to the high latency of the interface and

can have significant negative impact on GPU performance.
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FSM
Overhead Overhead

without overlap with overlap

ssl 64% 9%

battlefield2 86% 30%

dns 75% 16%

aim 80% 22%

rtp 80% 13%

tsp 81% 20%

yahoo 78% 16%

ntp 87% 34%

hotline 91% 47%

h323 85% 28%

halflife2 90% 50%

counterstrike 90% 54%

keysight 92% 56%

Table 6.2: Data transfer overhead as % of total GPU time for l7-filter FSMs.

Table 6.2 shows the overhead of data transfer as a fraction of the total GPU time (data

transfer and kernel execution time combined) for the fastest GPU kernel implementation.

It shows that for all FSMs, data transfer incurs a large overhead, ranging from 64%

(for ssl) to 92% (for keysight). Unsurprisingly, ssl and keysight, the FSMs with

the shortest and longest tests, respectively, have the lowest and highest overhead,

respectively.

This high degree of data transfer overhead is explained by the fact that the approach

presented in this chapter optimises the kernel execution time. This results in it becoming

only a small proportion of total GPU time and data transfer becoming the dominant

factor. Therefore, optimising data transfer is an important next step to improving total

GPU speedup.

Optimisation. It is possible to mitigate the impact of large data transfer overhead by

using data transfer overlap, as described in Section 4.5.2. Table 6.2 shows the reduction

in overhead achievable by overlapping data transfer with kernel execution. As most of

the total time on the GPU is spent in data transfer, this optimisation would lead to better

overall performance on the GPU for all FSMs.
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6.5 Summary

This chapter establishes the feasibility of accelerating test execution for finite state

machines on the GPU, using the approach and tools presented in Chapter 4. To allow

FSM test execution, ParTeCL Runtime is extended to accept user-friendly formats

for the input FSM and its tests. In addition, two memory layouts for the FSM and

three memory layouts for the test suites are defined, implemented into separate OpenCL

kernels and evaluated based on their impact on the performance of GPU kernel execution.

The performance evaluation uses 13 subject FSMs from the network intrusion detection

and signal processing domains. It reveals that the GPU kernel is up to 12× faster

(average of 6.5× across all FSMs) when compared to a 16-core CPU and that it is

fastest for FSMs with long test sequences. In addition, the experiments reveal that using

the dense FSM layout results in better GPU performance across all FSMs. With regards

to test layout, the results show that with-offsets tends to perform better on the GPU for

FSMs with short test sequences, while padded-transposed is more suitable for FSMs

with long sequences. Finally, the evaluation demonstrates that sorting the tests based on

their length before execution on the GPU considerably improves its performance.

This chapter focused on the performance of the GPU kernel only. The next chapter

addresses the challenges that large FSM test suites pose to total GPU performance and

to the scalability of the approach.





Chapter 7

Testing Finite State Machine Models:

Evaluating Performance and Scale

7.1 Introduction

Chapter 6 demonstrates that GPUs can be used to automatically execute tests for FSM

model validation. It evaluates and establishes the optimal memory layouts for the

FSM and tests which achieve the fastest kernel execution times, but leaves unaddressed

challenges, related to the large sizes of FSM test suites. These challenges are:

Data transfer overhead. Chapter 6 optimises kernel performance, after the FSM and

tests are transferred to GPU memory, but does not address time spent in transferring test

inputs and outputs between main memory and GPU memory. It is well known that data

transfer time adds a large overhead to total GPU time, which may severely limit the

achieved performance. This is a significant challenge for FSM validation, as complex

FSMs have large test suites with long test sequences.

Scalability with FSM size. The evaluation in Chapter 6 uses 13 FSMs, all of which

fit into GPU memory together with their test suites, but without optimisations this

approach will not scale to larger FSMs whose test suites do not fit in GPU memory.

Test input generation. The FSM test inputs used in Chapters 6 and 7 are generated

based on the all-transition pair coverage criterion for state machines. The algorithm

used for test generation ensures that the test suites meet the coverage criterion, but

does not attempt to optimise the size of the test suite. As a result, test suites contain

distinct tests that are redundant and do not contribute to coverage. This means that

they cover only transition pairs that are already covered by other tests and could be

removed without impacting coverage. Redundant tests add to the size of the test suite

93
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and exacerbate the remaining challenges. Removing them could reduce transfer time of

the test suite and can be used in addition to data transfer optimisations on the GPU.

This chapter expands the work in Chapter 6 by addressing the above challenges.

Data transfer overlap, presented in Chapter 4, is applied to FSM test execution to

minimise data transfer overhead and improve scalability. Test suite reduction, which

removes redundant tests from the test suite, is applied and its effectiveness is analysed in

order to determine if the large test suits are necessary for coverage. Thorough empirical

evaluation, using 15 large FSMs from the Snort [176] network intrusion detection

protocol, is performed. Total GPU performance, comprising both data transfer and

kernel execution time, is measured, analysed and compared to that of a 16-core CPU.

The evaluation results show that with the optimisations presented in this chapter,

the GPU is up to 9.3× faster (average 4.5×) than a 16-core CPU in test execution for

FSM model validation. This is total GPU speedup, including both data transfer and

kernel execution times, which is achieved completely automatically with the use of

ParTeCL Runtime. Test suite reduction results show that for large FSMs with high

density, test suites generated based on all-transition pair coverage have a negligible

number of redundant tests, only up to 0.4% across all subject FSMs. This demonstrates

the need for large test suites for large FSMs and confirms the importance of finding

other effective techniques to accelerate execution.

The rest of this chapter is organised as follows. Section 7.2 presents the optimisation

approaches: (1) for splitting FSM test inputs into groups to use data transfer overlap

(2) for removing redundant test inputs from the test suites. Section 7.3 describes the

experimental setup and subject FSMs used for evaluation, while the results and analysis

are presented in Section 7.4. Finally, Section 7.5 summarises this chapter’s findings.

7.2 Approach

Two techniques are used improve the performance and scalability of using GPUs to

accelerate FSM testing. The first is using data transfer overlap to pipeline test transfers

and kernel execution, presented in Section 4.5.2. Section 7.2.1 describes the application

of this strategy to FSM input sequences. The second technique is applying test suite

reduction - finding and removing redundant input sequences from the test suites. To

present test suite reduction, Section 7.2.2 first describes the algorithm used for test input

generation based on all-transition pair coverage and Section 7.2.3 then presents the test

suite reduction method.
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7.2.1 Data Transfer Overlap: Dynamic Splitting of Tests Into Groups

ParTeCL Runtime is used to perform dynamic splitting of the test suites into test

groups of equal sizes for data transfer overlap. The size of the groups is an input

parameter provided by the user. Figure 7.1 illustrates FSM tests before and after they

are split into groups. Tests are read into main memory and stored in the padded layout

(Section 6.2.1.2). Tests are sorted based on their length, following the performance

results in Section 6.4.4. Each test is padded to the length of the longest test. ParTeCL

Runtime goes over the tests one by one and adds them to the current group, until the

size of the group becomes equal to the required group size. At this point, a new group

is started and this process is continued until all tests are assigned into a group.

As a result, some groups have a larger number of shorter tests and other groups have

a smaller number of longer tests, but the size of each group in Bytes is roughly equal,

maintaining the data transfer time between groups. In addition, memory is saved in

padding, as tests within each group need to be padded only to the length of the longest

test in the respective group and not the longest test in the whole test suite. This is

illustrated in Figure 7.1b.

Each group is then transposed before transferring to GPU memory to utilise the

padded-transposed test layout, following performance results in Section 6.4.3.

Choosing the Size of the Test Groups With respect to performance, data transfer

overlap is most effective when data transfer and kernel execution time per test group are

balanced. Therefore, it is important to choose the size of the test group in a way which

achieves optimal performance. In order to allow benchmarking to choose the optimal

group size for each FSM, ParTeCL Runtime takes the group size as an input argument,

in KBytes. It then divides the tests into groups based on the supplied group size.

In the evaluation experiments in Section 7.3, GPU test execution for each FSM and

test suite size is performed over a range of test group sizes. The range starts from 64 KB

and continuously doubles the size of the test groups up to 524 MB1. For each FSM

and test suite size, the lowest total GPU time2 is presented. Thus, the results shown in

Section 7.4 use the optimal test group size for each FSM and test suite size.

1In other words, the test group sizes are 64 KB, 128 KB, 256 KB and so on up to 524 MB.
2Total GPU time is the overall time taken by the GPU, including data transfer and kernel execution

time, as defined in Section 7.3
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Figure 7.1: Splitting of FSM tests into groups for data transfer overlap. Empty circles

represent padding.
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7.2.2 Generating FSM Test Inputs

The FSM test input sequences used in this study are generated based on the all-transition

pair coverage criterion to serve as a representation of a realistic test suite. All-transition

pair is chosen for this work, because it has been shown to be a rigorous coverage

criterion with strong fault finding capabilities [138].

1 HH
2 HM
3 HL
4 MH
5 MM
6 ML
7 LH
8 LM
9 LL

10 LLH
11 LLM
12 LLL
13 LMH
14 LMM

15 LMMH
16 LMMM

Tests

Transition pairs

HH 0 0 0
HM 0 0 0
HL 0 0 1
MH 0 0 0
MM 0 0 0
ML 0 0 1
LH 0 1 3
LM 0 1 2
LL 0 1 1

LH 1 1 3
LM 1 1 2
LL 1 1 1
MH 1 2 3
MM 1 2 2

MH 2 2 3
MM 2 2 2

Paths

0 
1 L
2 LM
3 LH

Figure 7.2: Test input generation for the digital oscilloscope FSM shown in Figure 2.6.

The transition pairs are characterised by their transition inputs, start state, middle state

and end state. The FSM has 16 transition pairs and 16 tests, each of which covers a

separate transition pair.

All-transition pair coverage requires that for each pair of adjacent transitions in

the FSM, the test suite contains a test which traverses it in sequence. Two transitions

are adjacent when one of them enters and the other exits the same state. To generate

the FSM test suites, a three step approach is used. First, the full list of transition pairs

is generated for the FSM. Then, Dijkstra’s algorithm [177] is used to generate the

shortest path to each state, from the FSM’s starting state. Finally, each transition pair
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is concatenated to the shortest path to its start state, resulting in a test sequence which

starts in the FSM’s start state and ends with the transition pair.

Figure 7.2 illustrates this process for the digital oscilloscope FSM, shown in Fig-

ure 2.6 in Section 2.5.2. The FSM has 4 states and 8 transitions, which result in 16

transition pairs. Each transition pair is characterised by its two transition inputs, start

state, middle state and end state. Figure 7.2 shows that the first 9 transition pairs start in

state B0, the next 5 transition pairs start in state B1 and the last two transition pairs start

in state B3. It also shows the shortest paths to each of the four states. Concatenating

each transition pair to the shortest path to its start state generates a test sequences that

covers that transition pair. Therefore, there are 16 tests, each of which covers a separate

transition pair. In this way, the generated test suite provides full transition pair coverage

for the FSM.

7.2.3 Test Suite Reduction

The test generation algorithm ensures that the test suite meets the coverage criterion,

but does not necessarily lead to the smallest possible test suite. Thus, there could be

redundant tests in the test suites that cover only transition pairs already covered by other

tests. This is illustrated in the example shown in Figure 7.2. One redundant test in this

example is test 8, LM. It covers only one transition pair, which starts in state 0, uses

transition L to move to state 1 and then uses transition M to move to state 2. But this

transition pair is covered by other tests, such as tests 15 and 16, which cover additional

transition pairs. Therefore, test 8 is redundant. Removing redundant tests would reduce

the size of the test suites, making them faster to transfer and execute, while maintaining

coverage. It could compliment other approaches to improving the performance and

scalability of GPU test acceleration.

To remove redundant tests, Algorithm 1 is designed and implemented. The key

observation behind it is that shorter tests are more likely to be redundant than longer

tests. Since all tests start from the same starting state, only longer tests are able to cover

transition pairs that are far from the starting state. Shorter tests, on the other hand, are

more likely to be redundant, since they might comprise part of the path of a longer test.

The algorithm requires three inputs: (1) the FSM tests, sorted by length in decreasing

order, (2) the FSM transition pairs, each of which consists of the inputs for the two

transitions, as well as start state, middle state and end state, where the transitions meet,

and (3) the start state for the FSM. The algorithm iterates over all tests, marking all
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ALGORITHM 1
Test suite reduction algorithm. It finds and removes redundant tests from an FSM test

suite. Redundant tests are tests which cover only transition pairs that are already covered

by other tests.
Require: T - tests, sorted by length, decreasing order

T P - transition pairs in the FSM

start state - the start state of the FSM

for each t in T do
visits new t p← f alse

current state← start state

for each input in the test sequence of t do
find corresponding transition pair t p in T P

if t p has not been visited then
mark t p as visited

visits new t p← true

end if
current state← t p.middle state

end for
if visits new t p is f alse then

remove t from T

end if
end for
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transition pairs that a test covers as visited. At each step, it also checks if the test covers

transition pairs that have not been marked as visited by previous tests. If it does not,

then the test is redundant and removed from the test suite.

Implementation Both test generation and test suite reduction are implemented as

stand-alone programs in C.

7.3 Experimental Setup

This section presents the experiments carried out to evaluate the performance of FSM

test execution on the GPU and the effectiveness of the optimisations outlined in Sec-

tion 7.2. The evaluation uses 15 large FSMs from the Snort [176] network intrusion

detection protocols. For each FSM, testing time on the GPU is measured and compared

to the time taken to execute the same tests in parallel on a 16-core CPU. For test

execution on the GPU, the following measurements are taken:

• Data transfer time: time taken to transfer the FSM and tests from main memory

to GPU memory, plus time taken to transfer the test outputs back from GPU

memory to main memory.

• Kernel execution time: time taken by the GPU to execute the tests.

• Total GPU time: the overall time taken by the GPU; it comprises the sum of data

transfer and kernel execution time.

The experiments aim to answer the following research questions:

Q1. Speedup in total GPU time, without data transfer overlap. What is the speedup

in total GPU time compared to a 16-core CPU, without data transfer overlap?

For all FSMs, test suites are executed in parallel on the GPU and on a 16-core

CPU, and GPU speedup is calculated based on total GPU time. No data transfer

overlap is performed and this speedup is used as a baseline for comparison to the

results for Q2. The experiments are performed using different test suite sizes,

ranging from 2048(211) to the full test suite, in order to assess how the speedup

changes as the size of the test suite increases. To measure the overhead of data

transfer time, separate measurements for data transfer, kernel execution and total

GPU time are taken and compared.



7.3. Experimental Setup 101

Q2. Data transfer overlap: effect on performance. Does data transfer overlap

improve GPU speedup? For all FSMs, test suites are executed by overlapping data

transfer with kernel execution. The speedup of total GPU time (over a 16-core

CPU) with data transfer overlap is compared to the speedup without data transfer

overlap.

Q3. Data transfer overlap: effect on scalability. Does data transfer overlap allow

the execution of larger test suites? For each FSM, the number of tests which can

fit into GPU memory with data transfer overlap is compared to that without data

transfer overlap.

Q4. Test suite reduction. Can the number of tests the test suite be reduced by

removing redundant tests? For each FSM, test suite reduction is performed by

removing redundant tests with respect to all-transition pair coverage, as described

in Section 7.2.3, and measuring the percentage reduction in test suite size.

7.3.1 Subject FSMs and Tests

This evaluation uses 15 subject FSMs from the Snort [176] Community ruleset for

network intrusion detection. The ruleset contains regular expressions representing

network intrusion detection protocols. The Flex tool [175] is used to convert the

regular expressions into FSMs, along with a custom Python script to generate a file for

each FSM in the kiss2 format [172]. The set of possible inputs for each of the FSMs

comprises the 256 ASCII characters.

At the time of experimentation, the Snort ruleset contains 821 regular expressions.

All of them are converted into FSMs and a sample of 15 subject FSMs is chosen for

experimentation in such a way that they represent a wide range of sizes in terms of

number of states (ranging between 204 and 2,169) and transitions (ranging between

48K and 547K). Table 7.1 provides a summary of the subject FSMs, showing their sizes.

All FSMs are chosen to be larger than the ones used in Chapter 6.

Test Generation A full test suite for each FSM is generated, based on the all-transition

pair coverage criterion, using the approach outlined in Section 7.2.2. Table 7.1 shows

the number of tests, while Figure 7.3 shows the average length of the tests for each

FSM. The sizes of the test suites range between 12M and 138M tests and the test suites

vary in terms of the average length of tests, ranging between 100 and 544 inputs.
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FSM #States (|S|) #Transitions Density #Tests

fsm42 204 48,079 94% 12M

fsm247 215 50,610 94% 13M

fsm239 221 50,617 91% 13M

fsm216 269 64,524 95% 15M

fsm263 273 63,764 93% 15M

fsm265 275 63,766 92% 15M

fsm261 548 129,578 93% 33M

fsm286 445 109,304 97% 28M

fsm291 445 109,304 97% 28M

fsm287 446 109,305 97% 28M

fsm37 515 126,510 97% 32M

fsm770 1,565 379,565 95% 96M

fsm213 2,031 509,562 98% 129M

fsm382 2,169 546,994 99% 138M

fsm268 2,169 546,994 99% 138M

Table 7.1: Subject FSMs used in the evaluation. All FSMs are from the Snort Community

ruleset for network intrusion detection.
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deviation within the test suite.
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FSM Density FSM density is defined in Section 2.5. It is the percentage of transitions

present in the FSM out of the maximum number of transitions possible for the FSM.

In this case, for all subject FSMs there are 256 possible input characters for each state,

thus 256 possible transitions. Therefore, the maximum number of transitions in any of

the subject FSMs is |S| ∗256, where S is the set of states. Table 7.1 shows the densities

of the subject FSMs. All of them have high densities between 91% and 99%, which

indicates that for most states a large number of transitions are present and as a result,

there is a high degree of branching and path divergence within the FSMs.

7.3.2 Hardware and Measurements

The same GPU and CPU used in Chapter 5 are used for these experiments. They are

described in Section 5.3.2. Each experimental execution is performed 11 times and

median values are reported.

Multi-core CPU Execution Test execution on the CPU is parallelised using OpenMP

and FSM tests are executed in parallel on the 16 cores.

Correctness For each experiment, the testing outputs produced by the GPU are

compared to those from the CPU in order to confirm that they are an exact match
ensure that using the GPU preserves the correctness of test execution.

7.4 Results and Analysis

This section presents the results and analysis of the experiments described in Section 7.3.

First, the speedup for total GPU time compared to a 16-core CPU without data transfer

overlap is evaluated in Q1. Then, the effectiveness of data transfer overlap is assessed

in Q2 and Q3. Finally, the effectiveness of test suite reduction is evaluated in Q4.

7.4.1 Q1. Speedup in Total GPU Time, No Data Transfer Overlap.

Figure 7.4 shows the speedup achieved by the GPU for total GPU time when compared

to a parallel test execution on a 16-core CPU for different test suite sizes, without data

transfer overlap. For all FSMs, the GPU is consistently faster than the 16-core CPU

with a maximum speedup of 5.6× and an average speedup across all FSMs of 2.9×.
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Figure 7.4: Speedup in total GPU time when compared to a 16-core CPU over different

test suite sizes, without data transfer overlap.
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Figure 7.5: Efficiency of the GPU and CPU measured as number of tests executed per

millisecond.
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Speedup Trend Figure 7.4 shows that for all FSMs, speedup increases with the sizes

of the test suite to up to approx. 218 tests, after which there is a dip. To aid analysing

this trend, Figure 7.5 illustrates the ways in which execution times change both on

the CPU and the GPU as the number of tests increases. It shows the efficiency of the

GPU and CPU, measured as number of tests executed per millisecond. For the GPU,

efficiency increases with the size of the test suite for all FSMs up to 215 tests, after

which it remains the same. This is expected, because up to 215 tests, the GPU has

free threads to utilise, after which all of its resources are saturated and its efficiency

is constant. In contrast, on the CPU all cores are utilised for all test suite sizes and

therefore the efficiency of the CPU remains the same as more tests are added, up to

approx. 218 tests. These trends explain the increase of GPU speedup up to approx. 218

tests, which is shown in Figure 7.4.

In addition, CPU efficiency increases for test suite sizes greater than 218 tests,

corresponding to the dip in GPU speedup observed in Figure 7.4. The likely reason for

this is a hardware optimisation, called automatic frequency scaling. It is a power saving

optimisation, which dynamically reduces or increases the processor frequency based

on the workload. When executing larger test suites, the CPU frequency is increased,

providing a boost to its performance. Therefore, the dip in GPU speedup is not due to

the loss of efficiency in the GPU, but due to an improvement in performance on the

CPU for larger test suites.

Scalability to Large Test Suites In Figure 7.5 shows that for 9 FSMs the GPU does

not execute the largest test suite sizes. These are fsm37, fsm268, fsm770, fsm261,

fsm213, fsm382, fsm191, fsm187 and fsm186. This is because the larger test suites

do not fit into GPU memory, illustrating the scalability limitations of a naive approach.

This problem is address with the use of data transfer overlap and evaluated in Q3

(Section 7.4.3).

Data Transfer Overhead Figure 7.4 shows the speedup of total GPU time, which

includes both data transfer and kernel execution time on the GPU. For comparison,

Figure 7.6 shows the speedup of the GPU kernel, when data transfer is not taken into

account. GPU kernel speedup is up to 45.1× compared to the 16-core CPU, with an

average of 20× across FSMs. This is an order of magnitude higher than total GPU

speedup presented in Figure 7.4, demonstrating the large overhead of data transfer and

its strong effect on GPU speedup.
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Figure 7.6: Speedup in GPU kernel time only when compared to a 16-core CPU over

different test suite sizes.

To further analyse data transfer overhead, Figure 7.7 shows the breakdown of total

GPU time into data transfer and kernel execution times. The pattern is similar for all

FSMs. The smaller the test suite sizes, the smaller the data transfer overhead. For 211

tests only approx. 20% of the time is spent in data transfer and 80% is spent in kernel

execution. As the size of the test suite grows and the GPU threads get saturated after

215 tests, the proportions gradually change until approx. 90% of the execution time is

spent in data transfer, while only about 10% is spent in kernel execution. The reason

for this is that unlike kernel execution, data transfer is not parallelised at all. Therefore,

for large test suites, data transfer represents a significant overhead, which explains the

order of magnitude difference between the total GPU and kernel speedups.

This demonstrates the importance of optimising data transfer, as even small reduc-

tions in its time could lead to considerable gains in speedup for total GPU execution.

This is addressed using data transfer overlap and evaluated in Q2.
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Figure 7.7: Breakdown of total GPU time into data transfer and kernel execution times.

7.4.2 Q2. Data Transfer Overlap: Effect on Performance

Figure 7.8 shows the speedup achieved in total GPU time, compared to the 16-core CPU,

with data transfer overlap. It also shows GPU speedup without data transfer overlap to

aid comparison. For all FSMs, GPU speedup in both cases is similar for small test suite

size of up to approx. 214 tests. This is not surprising, as in both cases, up to this point,

the GPU threads are not saturated and the GPU is not working at its full capacity. In

addition, as seen in Figure 7.7, small test suites comprise only a small portion of total

GPU time even without data transfer overlap. In contrast, for test suites larger than 214,

after all GPU threads are employed, there is improvement in total GPU speedup with

data transfer overlap versus without, across all FSMs. The maximum speedup with data

transfer overlap is 9.3× and the average speedup across all FSMs is 4.5×. On average,

the increase in speedup compared to execution without data transfer overlap is 58.95%.
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Figure 7.8: Comparison between speedup in total GPU time, with and without data

transfer overlap, with different test suite sizes. Speedup is over a 16-core CPU.
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Figure 7.9: Correlation between the average test length in the test suite and the maximum

GPU speedup. Pearson correlation coefficient is 0.71.

Difference in Speedup Across FSMs The maximum GPU speedup across all FSMs

ranges between 4.3× (for fsm263) and 9.3× (for fsm37), with an average of 6.9×. The

reason for the difference across FSMs lies in the length of the tests in their test suites.

Analysis of evaluation results in Section 6.4.1 suggest that a positive correlation exists

between the average length of tests in the test suite and the maximum GPU speedup for

a given FSM. Figure 7.9 shows that there is indeed a strong positive correlation between

the two, with a Pearson correlation coefficient of 0.71, for the subject FSMs used in

this evaluation. The longer the tests in the test suites, the higher the speedup achieved

by the GPU. This is because longer test sequences require longer execution per test

both on the GPU and CPU. As the GPU has a higher degree of parallelism, the extra

computation for the longer tests per thread is lower than that of each individual CPU

core, which needs to execute multiple tests. This allows the GPU to execute longer test

sequences faster than the CPU, resulting in higher speedup.

7.4.3 Q3. Data Transfer Overlap: Effect on Scalability

Table 7.2 shows the number of tests that can be executed on the GPU without data trans-

fer overlap and with data transfer overlap. Without data transfer overlap, the full test

suites for six of the FSMs can be executed, while for the remaining nine FSMs, only up

to approx. 222 tests can be executed. When executing the full test suites for these FSMs,
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GPU execution is failing with OpenCL’s CL MEM OBJECT ALLOCAT ION FAILURE

error, indicating that the GPU is running out of memory. This is because for these

FSMs, the full test suites are large, requiring a large amount of memory to accommodate

both the test inputs and outputs, which is not available on the GPU. In particular, the

GPU used for the experiments has 12 GB of global memory. For the first six FSMs

in Table 7.2, the combined sizes of test inputs and outputs vary between 1.36 GB

and 4.50 GB, while for the remaining nine FSMs, they vary between 14.8 GB and

145.52 GB, not fitting into the global memory of the GPU.

FSM #Tests #Exec on GPU no overlap? #Exec. on GPU with overlap?

fsm42 12M (223) 223 (3) 223 (3)

fsm147 13M (223) 223 (3) 223 (3)

fsm139 13M (223) 223 (3) 223 (3)

fsm116 16M (223) 223 (3) 223 (3)

fsm263 16M (223) 223 (3) 223 (3)

fsm265 16M (223) 223 (3) 223 (3)

fsm261 33M (224) 223 (7) 224 (3)

fsm186 28M (224) 222 (7) 224 (3)

fsm191 28M (224) 222 (7) 224 (3)

fsm187 28M (224) 222 (7) 224 (3)

fsm37 32M (224) 222 (7) 224 (3)

fsm770 96M (226) 222 (7) 226 (3)

fsm213 129M (226) 222 (7) 226 (3)

fsm382 138M (227) 222 (7) 227 (3)

fsm268 138M (227) 222 (7) 227 (3)

Table 7.2: Number of tests executed on the GPU with and without data transfer overlap.

In contrast, when data transfer overlap is used, the full test suites for all FSMs can

be executed on the GPU, as shown in Table 7.2. This is because data transfer overlap

removes the need to store the full test suite in GPU memory. Instead, the test suite

is split into groups which are swapped in and out of GPU memory as tests are being

executed. For larger test suites, there are more groups, but the amount of memory

required on the GPU at any one time is always the same - equal to the size of the group.

Thus, data transfer overlap makes testing on the GPU scalable to larger FSMs with

larger test suites than is possible without it.
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In addition, the same limitation can be observed for the CPU. Even though modern

CPUs tend to have more memory than GPUs, it is finite. For FSMs whose tests do not

fit into CPU memory, the same strategy can by employed by reading tests in groups

from the hard disk.

7.4.4 Q4. Test Suite Reduction

Figure 7.10 shows the reduction in the number of tests after removing redundant tests

from the test suites of the subject FSMs, while maintaining all-transition pair coverage.

Across all FSMs, the reduction is negligible, only up to approx. 0.4%. The reason for

this lies in the high density of the subject FSMs, which is shown in Table 7.1. All of

them have densities over 90%. Since high density indicates a high degree of branching

and path divergence in the FSM, there is little overlap among the paths covered by the

tests and thus, only a small number of redundant tests.

0.0

0.1

0.2

0.3

0.4

0.5

fs
m

42

fs
m

14
7

fs
m

13
9

fs
m

26
3

fs
m

26
5

fs
m

11
6

fs
m

18
6

fs
m

19
1

fs
m

18
7

fs
m

37

fs
m

26
1

fs
m

77
0

fs
m

21
3

fs
m

26
8

fs
m

38
2

N
um

be
r 

of
 te

st
s 

−
 %

 r
ed

uc
tio

n

Figure 7.10: Percentage change in the number of tests after test suite reduction for all

subject FSMs.

To confirm this, the correlation between FSM density and test suite reduction is

calculated and shown in Figure 7.11. For the purpose of having a wider range of FSM

densities, 13 additional FSMs from the Snort ruleset with densities ranging between 2%

and 84% are chosen, noted as additional FSMs in Figure 7.11. For all of them, a full
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Figure 7.11: Correlation between the density of the FSM and the % reduction in number

of tests. Pearson correlation coefficient is −0.75.

test suite based on all-transition pair coverage is generated and then test reduction is

performed. Figure 7.11 shows that there is a strong negative correlation between FSM

density and test suite reduction, with a Pearson correlation coefficient of −0.75; the

higher the density of the FSM, the lower the reduction.

This shows that for large FSMs with high density test suite reduction is not effective.

Such FSMs need large test suites to satisfy rigorous coverage criteria. This confirms

the importance of developing alternative techniques, such as using GPUs, for the

acceleration of test execution.

7.5 Summary

This chapter presents approaches to improve the performance and scalability of using

GPUs to accelerate test execution for large FSMs. It extends the work presented in

Chapter 6 by considering the time taken to transfer data between main memory and

GPU memory and mitigating its impact on total GPU performance and scalability by

(1) using data transfer overlap to pipeline data transfer time with GPU kernel execution,

and (2) performing test suite reduction for large test suites, while maintaining coverage.

To assess the effectiveness of these techniques, an extensive empirical evaluation is

performed using 15 large FSMs from the Snort ruleset for network intrusion detection.
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In contrast to Chapter 7 which focuses the performance of the GPU kernel only, this

chapter evaluates total GPU performance, which includes both kernel execution and data

transfer. The results reveal that by using data transfer overlap, the GPU outperforms a

parallel test execution by a 16-core CPU by up to 9.3×, average 4.5× across all subject

FSMs. This an average performance improvement of 58.95%, achieved by data transfer

overlap. In addition, data transfer overlap improves scalability to large FSMs with more

than 2K states and 500K transitions, by splitting large test suites that would otherwise

not fit in GPU memory, into smaller groups.

With respect to test suite reduction, for the 15 subject FSMs, the maximum percent-

age reduction in the number of tests is only 0.4%. This is owing to the high density

of the subject FSMs, which is more than 90% for all of them. Analysis of the results

reveals that the percentage of redundant tests in the test suite is inversely correlated

with the density of the FSM. For these reasons, all of the tests in the test suites of these

FSMs are needed to maintain coverage, limiting the effectiveness of test suite reduction

and requiring alternative approaches to test execution speedup, such as using GPU

hardware.



Chapter 8

Conclusion

This thesis presents a novel approach to accelerate software test execution by parallelis-

ing it using GPU architectures. It addresses challenges related to the usability, scope,

performance and scalability of the approach and demonstrates that GPUs can effectively

reduce test execution time in certain contexts. Chapter 4 presents the underlying ap-

proach and tools used throughout this thesis in the form of ParTeCL - a fully automated

testing framework, which transforms the SUT into GPU source code and launches test

execution in parallel on the GPU threads. Chapter 5 evaluates the applicability and

performance of the approach when applied to the embedded systems domain, using

programs from the EEMBC benchmark suite. Chapter 6 demonstrates the feasibility of

the approach when applied to the testing of FSM models by defining and evaluating

suitable memory layouts for the FSM and its test suite. Finally, Chapter 7 extends the

work in Chapter 6 by exploring techniques to improve the performance and scalability

of the approach for FSM test execution.

This chapter concludes the work presented in this thesis. Section 8.1 summarises the

main contributions, Section 8.2 presents a critical analysis of the work and Section 8.3

discusses future research directions. Finally, Section 8.4 provides concluding remarks.

8.1 Contributions

This thesis makes three main contributions, representing first steps towards the adoption

of GPU architectures for accelerated test execution.

115
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Automated GPU Test Execution

Usability represents a serious challenge to the adoption of GPUs in software engineering,

as writing GPU software requires specialist architecture knowledge and the use of niche

low-level programming models. To address this challenge, Chapter 4 presents ParTeCL,

an automated testing framework for the GPU, which targets sequential C programs. It

uses compiler-based source-to-source transformations to generate OpenCL kernels for

the SUT and launches test execution in parallel on the GPU threads.

By automating the entire testing process on the GPU, ParTeCL removes the need

to manually write GPU code, improving the usability of the approach and making it

accessible to all software engineers. Furthermore, automation is crucial for the adoption

of any novel method that improves regression test execution, as it ensures that it can be

reused with minimal effort in regular test runs [178]. Finally, ParTeCL forms the basis

for the research in this thesis, as it is framework in which the scope performance and

scalability optimisations are implemented and evaluated.

Accelerated Embedded System and FSM Testing

Chapters 5 and 6 evaluate the applicability of using GPUs for test executions for two

types of applications. The first is C programs from the embedded systems domain.

Chapter 5 shows that through the use of ParTeCL, 17 out of 33 applications from the

EEMBC benchmark suite can be successfully tested on the GPU. These are applications

primarily from the automotive and telecommunications domains. This is achieved

through the use of compiler-based source-to-source transformations inside ParTeCL,

targeting global scope variables, command line arguments, standard input and output

and standard library calls, which are not readily available in OpenCL. Chapter 5 also

analyses features within the rest of the EEMBC programs, which prevent them from

being compiled for the GPU and limit the scope of the approach. These features include

dynamic memory operations, file IO, function pointers and some data structures.

The second type of application is FSM models. Chapter 6 demonstrates the feasibil-

ity of using ParTeCL to automatically accelerate FSM test execution by defining and

implementing two memory layouts for the FSM and three memory layouts for the test

suites. It evaluates them using 12 FSMs from the network intrusion detection and 1

FSM from the signal processing domains, establishing which implementation lead to

best GPU kernel performance for test execution. Chapter 7 improves the scalability of

the approach to large FSMs by using techniques implemented in ParTeCL.
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Performance Optimisations and Analysis

Throughout this thesis, GPU performance for test execution is optimised and analysed.

First, Chapter 4 implements two standard techniques for the optimisation of data

transfer between main memory and GPU memory: (1) using DMA controllers and (2)

overlapping data transfer and kernel execution on the GPU. Then, Chapter 5 provides

performance analysis for embedded system testing, showing that, with the standard

optimisations, the GPU outperforms a 16-core CPU by up to 4× (avg. 1.4×). Chapter 6

analyses the performance of GPU kernel execution for FSM testing, in order to discover

the optimal memory layouts for the FSM and test suite. Finally, Chapter 7 analyses

total GPU performance for FSM test execution, which includes both kernel execution

and data transfer time. It demonstrates that, with optimisations, the GPU is up to 9.3×
(avg. 4.5×) faster when executing FSM tests than a 16-core CPU.

These performance results demonstrate that GPUs can achieve better performance

for test execution when compared to parallel execution on a multi-core CPU.

8.2 Critical Analysis

The novel approach presented in this thesis remains a prototype and several issues need

to be addressed before it can be applied to real-world scenarios.

Limited Scope of C Programs

Chapter 5 analyses the applicability of the approach to sequential C programs from

the embedded systems domain. 16 out of the 33 programs in the EEMBC benchmark

suite cannot be compiled for execution on the GPU, due to using features that are

unsupported by the GPU architecture and programming models. Such features are

dynamic memory allocation, file I/O, function pointers and some data structures. Of

these, dynamic memory allocation is the one present in most applications (13 out of 16).

Another feature which is not supported on the GPU is recursion.

It is unclear how prevalent these features are in most C programs, but some of them,

such as dynamic memory allocation and recursion, are likely to occur frequently in

other applications. Therefore, these GPU limitations considerably restrict the current

scope of the approach and its applicability in real-world settings. Section 4.4 discusses

the unsupported features and briefly outlines ideas for potential solutions, but further

work is necessary to explore them.
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Scalability to Large C Programs

The C programs from the EEMBC benchmark suite used in Chapter 5 are small, each

consisting of a single core algorithm, and they are fast to execute. While representative

of the types of computations in the embedded system domain, they are not representative

of complex real-world C programs with multiple functions. Thus, the current evaluation

does not demonstrate how well the approach will scale to larger C programs.

Scalability to larger programs could be limited by GPU memory. Limited constant

memory is the reason for one EEMBC benchmark, ttsprk01, to fail to execute on the

GPU in Section 5.2.2. GPUs tend to have less memory than CPUs and have no access

to a hard disk. When executing tests in parallel, GPU memory is shared by all instances

of the SUT, further limiting the amount of memory available per test. On the other

hand, using integrated GPUs which have access to main memory might alleviate these

issues. Furthermore, as GPU architectures evolve their memory tends to grow, and this

limitation may be less of a problem in the future. Nevertheless, further evaluation with

larger C programs is needed to analyse the scalability of the approach.

Validity of Embedded Software Testing on the GPU

A key characteristic of embedded software is its close relationship with the hardware on

which it executes. Embedded software is typically developed and executed on specific

target platforms using distinct tool-chains. GPUs represent a very different environment

to the ones in which an embedded SUT will operate, posing a threat to the validity of

the testing results produced on the GPU. For example, bugs in the GPU acceleration

tool-chain could lead to tests passing when they should actually fail or vice versa.

Similarly, bugs in the embedded system tool-chain could lead to the deployed system

failing, but will be missed during testing when GPU acceleration is used. Differences

can also arise due to divergence in implementation-defined and undefined behaviours

between the GPU and target platforms.

This problem can be avoided by occasionally executing the full test suite in the target

environment. Therefore, GPUs are not suitable as the sole method for testing embedded

software. They can be used to accelerate regular testing during development, together

with less frequent test executions on the target hardware with the target tool-chain.
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Generality of FSMs

Evaluations in Chapters 6 and 7 demonstrate that GPUs are well suited to parallelising

test executions for validating FSM models. All subject FSMs are successfully tested on

the GPU, achieving better performance than a 16-core CPU. While they represent a range

of sizes (from 24 to 2,169 states) and densities (from 56% to 99%), all of them, except

for one, are from a single domain - network intrusion detection protocols. Therefore, it

remains unclear if the performance results in these chapters are representative for FSMs

in other domains. Generalising the results requires further empirical evaluation.

Performance Dependence on the GPU Architecture

Only one type of GPU architecture, the NVidia Tesla K40m, is used for all experiments

in this thesis. Nevertheless, performance is known to vary across GPU architectures,

as they differ in their hardware characteristics. For example, optimisations performed

in this work rely on the availability of specific GPU hardware components - a DMA

controller, for low-latency data transfers, and a dual copy engine, for overlapping

data transfers of test inputs and outputs (Figure 4.4b). To find out how much of an

effect different GPU architectures have on the performance of test execution, further

experiments using alternative GPU architectures are necessary.

8.3 Future Work

All of the issues discussed in Section 8.2 represent interesting problems for future work.

This section presents additional directions for future research.

Performance Impact of Work-group Sizes

GPU performance is dependent on selecting the optimal value for the work-group size

(Section 1.2.3). The performance experiments presented in Chapter 5 are executed using

a range of work-group sizes and the fastest results are presented. For Chapters 6 and 7,

the work-group size value is fixed at 256, in order to reduce experimentation effort, but

different values can be expected to lead to different performance results.

In future work, measuring and analysing the effect of the work-group size on GPU

test execution performance could provide useful insight into how important it is to

select an appropriate value. An interesting next step could be exploring if existing

dynamic approaches for work-group size tuning [21, 22] could be integrated into the

testing process.
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Parallel Testing of Separate Program Units

In the approach presented in this thesis, the whole GPU is dedicated to the testing of

a single SUT, which can be a whole program or a subprogram. However, a system’s

test suite may consist of several test suites for individual units or modules. These could

be compiled into separate OpenCL kernels and launched simultaneously on different

compute units on GPUs which allow partitioning, using OpenCL’s clCreateSubDe-

vices [179]. Different scheduling strategies will need to be explored in order to optimise

performance, depending on the program and test data.

Hybrid Test Acceleration. In a related research direction, a hybrid approach could

be developed, in which the test for some functions are executed on the GPU, while

others are simultaneously executed on a multi-core CPU. This could be particularly

useful as a way to address challenges related to the limited support for C features. In

large programs consisting of multiple functions, those which use unsupported features

could be tested on the CPU, while others are simultaneously tested on the GPU. In

addition, partitioning test execution in this way could also provide a way to support

larger applications, addressing the scalability challenge.

Using Other Heterogeneous Architectures

Modern computer hardware is increasingly heterogeneous, parallel and aimed at acceler-

ation. OpenCL is an open standard that offers functional portability across architectures.

Based on the OpenCL programming model, the tools implemented in this thesis could

be extended and used to explore the applicability of other types of heterogeneous

architectures to the task of accelerating software test execution.

These could include GPU architectures with different hardware and software capabil-

ities, such as integrated graphics cards and unified memory GPUs. Integrated graphics

cards are GPUs that are built into the processor and share main memory with the CPU.

A common example are the Intel Graphics processors [180], which are widely available

in laptops and desktops. While they are typically less powerful than a dedicated GPU,

using them does not require moving data before and after GPU computation. This could

have significant performance advantages for parallel test execution, which uses data in

the form of large test suites, and could compensate for slowdowns in kernel performance.

Unified memory GPUs [181] have a single unified virtual address space for the CPU

and GPU memory. Its purpose is to simplify GPU programming by providing a single

pointer to the allocated memory, which can be accessed by both the CPU and GPU. The
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system software then transparently and efficiently transfers the data between the CPU

and GPU memories when it is needed, making use of data locality and memory page

faulting for automatic synchronisations.

Assessing the performance that can be achieved for test execution on these types of

GPU architectures would be a useful addition to the research in this thesis.

Beyond C Source Code

The emergence of new GPU programming models, frameworks and compilers opens

up the possibility of using the GPU to accelerate testing for programming languages

beyond C. A promising option is SYCL [19] - a programming model which allows

using the C++ programming language to write GPU programs. It provides support for

standard C++ features and libraries and allows the programmers to write the host and

kernel applications together in a single source file. The SYCL compiler then cross-

compiles the source code for the CPU and GPU, using OpenCL as an intermediate

language for the kernel. In future work, SYCL’s capabilities could be explored to assess

if C++ programs, or parts of them, can be translated into OpenCL kernels to be used by

ParTeCL Runtime for parallel test execution on the GPU.

Integration with Existing Testing Frameworks

Extending the ParTeCL tool-chain to integrate test suites that are implemented in

existing testing frameworks, such as GoogleTest [29], is an important part of future

work. It will help future empirical evaluations that are more representative of real-world

testing scenarios. It will also allow the approach to be adopted with little effort into

existing automated test environments.

8.4 Concluding Remarks

Software testing is a crucial but costly and time-consuming part of the software devel-

opment process. This thesis proposes a novel approach to speeding up expensive test

executions by leveraging the high degree of parallelism available in GPU architectures.

Performance results are promising but there is much work to be done to enable the

adoption of this approach in real-world software testing. The main barriers are still

the limited support for certain program features and limited GPU memory. As GPU

architectures and programming models continue to evolve, challenges related to these
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limitations may not pose the same restrictions in the future. Furthermore, with the

emergence of new heterogeneous architectures, related and hybrid approaches could

also prove successful in addressing some of these issues.

Despite its challenges, or perhaps because of them, heterogeneous computing is

a fast evolving and exciting area. It is the author’s hope that the work presented in

this thesis will inspire and serve as a basis for future research in the possibilities that

heterogeneous parallelism could bring to software testing.
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[98] F. Böhr. Model-based statistical testing of embedded systems. In 2011 IEEE

Fourth International Conference on Software Testing, Verification and Validation

Workshops, pages 18–25, 2011. doi:10.1109/ICSTW.2011.11.

[99] H. Lei and Y. Wang. A model-driven testing framework based on requirement

for embedded software. In 2016 11th International Conference on Reliability,

Maintainability and Safety (ICRMS), pages 1–6, 2016. doi:10.1109/ICRMS.

2016.8050100.

[100] C. P. Vudatha, S. Nalliboena, S. K. Jammalamadaka, B. K. K. Duvvuri, and

L. S. S. Reddy. Automated generation of test cases from output domain and

https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1016/S0950-5849(01)00189-6
https://doi.org/10.1007/978-3-642-39742-4_10
https://doi.org/10.1007/978-3-642-39742-4_10
https://doi.org/10.1145/3133918
https://doi.org/10.1145/566171.566191
https://doi.org/10.1109/MS.2018.2801541
https://doi.org/10.1109/MS.2018.2801541
https://doi.org/10.1109/ICSTW.2011.11
https://doi.org/10.1109/ICRMS.2016.8050100
https://doi.org/10.1109/ICRMS.2016.8050100


134 Bibliography

critical regions of embedded systems using genetic algorithms. In 2011 2nd

National Conference on Emerging Trends and Applications in Computer Science,

pages 1–6, 2011. doi:10.1109/NCETACS.2011.5751411.

[101] Chengyu Zhang, Yichen Yan, Hanru Zhou, Yinbo Yao, Ke Wu, Ting Su, Weikai

Miao, and Geguang Pu. Smartunit: Empirical evaluations for automated unit

testing of embedded software in industry. In Proceedings of the 40th International

Conference on Software Engineering: Software Engineering in Practice, ICSE-

SEIP ’18, page 296–305, New York, NY, USA, 2018. Association for Computing

Machinery. doi:10.1145/3183519.3183554.

[102] Swarnendu Biswas, Rajib Mall, Manoranjan Satpathy, and Srihari Sukumaran.

A model-based regression test selection approach for embedded applications.

SIGSOFT Softw. Eng. Notes, 34(4):1–9, July 2009. doi:10.1145/1543405.

1543413.

[103] S. Biswas, R. Mall, and M. Satpathy. Task dependency analysis for regression test

selection of embedded programs. IEEE Embedded Systems Letters, 3(4):117–120,

2011. doi:10.1109/LES.2011.2173293.

[104] Swarnendu Biswas, Rajib Mall, and Manoranjan Satpathy. A regression test

selection technique for embedded software. ACM Trans. Embed. Comput. Syst.,

13(3), December 2013. doi:10.1145/2539036.2539043.

[105] Matthew H. Netkow and Dennis Brylow. Xest: An automated framework for

regression testing of embedded software. In Proceedings of the 2010 Work-

shop on Embedded Systems Education, WESE ’10, New York, NY, USA, 2010.

Association for Computing Machinery. doi:10.1145/1930277.1930284.

[106] Patrick Cousot. Abstract interpretation based formal methods and future

challenges. In Informatics, pages 138–156. Springer, 2001. doi:10.1007/

3-540-44577-3_10.

[107] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent
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