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Abstract

Healthy soils support terrestrial life on Earth. Carbon (C) in soils is critical for functional and productive

landscapes, and is a key component of the C cycle. To date, human land use has significantly degraded

global soils and over 116 Pg soil C has been lost; contributing to greenhouse gas emissions.

There exist opportunities to protect and increase soil C stocks through land management, which would

safeguard soil functioning and could remove CO2 from the atmosphere. A growing number of farmers,

businesses, policy makers and standards organisations are hoping to manage soil C to offset green-

house gas emissions, alongside safeguarding environmental health. Quantifying and predicting soil C

storage is critical to the success of such projects, but reliable measurements of soil C stocks and their

change are difficult. To provide quantitative predictions of changes, soil C models are critical.

Whilst several well-researched soil C models exist, their intended purposes vary and the predictions

they make are uncertain. The complexity of many models reduces their accessibility for field scale soil C

prediction. This thesis explores how soil C models can better enable action to benefit soil C stocks, with

a focus on decision support for cropland managers. Each analysis chapter addresses known barriers

to the use and value of soil C models for on-farm decision support.

Reducing the data requirements of soil C modelling is a key lever for increasing access to useful soil C

information. The first analysis chapter in this thesis explores models with very low data requirements.

Using an existing dataset, parsimonious regression models for the impact of cover crops on soil C were

parameterised and compared to meta-analysis response ratios and the simplest IPCC ‘Tier 1’ method.

The model selection approach combined statistical and practical considerations; a parsimonious model

based on unavailable data offers no improvement in accessibility. The results show that cover crop

above-ground biomass is sufficient as a single predictor for soil C change after a change to cover

cropping in temperate climates. The regression model still works well if cover crop biomass is estimated.

Using existing soil C datasets to parameterise simple empirical models can yield methods that are

appropriate for predicting change in soil C at a field scale. Such models may not even require measured

input data to be used, further improving accessibility for farmers and challenging a focus on precisely

measured input data as a precursor to useful model outputs.
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Building on the above, another approach to reducing the data burden for farmers is to utilise public

databases instead of measured field data. The second analysis chapter compared the outputs of the

existing RothC and IPCC Tier 1 models when using primary and secondary data for baseline soil C,

soil clay percentage and mean annual temperature. The secondary data varied between negligibly

and significantly different from the field measurements. The model results show that the capability of

both methods to predict changes in soil C stock is principally dependent on the site, rather than input

data source. These results further challenge prevailing emphasis on accurate input data and instead

indicate that further calibration steps are needed to ensure that soil C models are generic enough for

wide application.

Existing field and modelling studies indicate that impacts of cropland management on soil C are driven

by factors that vary from micro to macro in scale. It is therefore understandable that globally applicable

models are elusive. In recognition of challenges around model universality and uncertainty, recent

updates to Measurement, Reporting and Verification protocols mandate that soil C model predictions

must be validated by field measurements, though they provide scant guidance on methods to do this.

For land managers, this leaves the process of soil C management uncertain.

The final analysis chapter in this thesis looked at options for employing measured data to improve

soil C prediction at a site level. Three modelling methods were applied to time-series datasets. These

were the process-led RothC model, Bayesian hierarchical modelling that combined process knowledge

with data and data-led Bayesian regression. Results show that none of the modelling approaches was

consistently reliable for long-term soil C prediction, but that methods trained on site data can offer some

improvement on sub-decadal scales.

Model predictions and soil C measurement both remain uncertain. Future work on clear methods for

data assimilation into model predictions is critical to enable the desired role of soil C in both adaptation

to and mitigation of climate change.
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Lay Summary

Soils are much more than dirt. Healthy soils are home to a diverse range of living organisms and provide

a place for plants to grow. This is both because of the physical structure of soil and also because soil

contains organic matter and minerals that feed organisms and support plant growth. One of the most

important elements in soil is carbon (C).

Soil organic C cycles over time, but inputs and outputs are usually approximately balanced in natural

environments. Unfortunately, physical disturbance of soil can drive net loss of soil organic C. This can

be through increased decomposition, where organic compounds break down, and increased erosion,

where surface soil is moved by wind or water. Some of this C ends up in the atmosphere as carbon

dioxide (CO2). CO2 is a greenhouse gas: it contributes to climate change by storing extra heat in

the atmosphere. Protection of soil C is vital for preservation of soils, ecosystems and the climate.

Sequestration means increasing the amount of C in the soil: it is a key consideration for sustainable

use of the land.

Agriculture is associated with significant soil C changes because cultivation of the soil is disruptive.

Whilst some things that farmers do reduce soil C, there are also choices that can increase the soil

C stock (the amount of C in the soil). A growing number of farmers, businesses, policy makers and

standards organisations are hoping to manage the C in soils to reduce net greenhouse gas emissions,

alongside safeguarding environmental health. Knowing the amount of C in the soil and being able to

predict changes in that amount is critical to the success of such projects. However, reliable measure-

ment of soil C stocks and how much they change is difficult. This is because soil C varies over small

areas and any changes over time are often small compared to the overall stock. To provide quantitative

predictions of changes, soil C models are critical. Models are equations or combinations of equations

that can estimate numbers of interest. They might be very simple, or highly complex. Soil C models use

statistics and/or knowledge of environmental processes to predict soil C stocks for a given context (for

example, a particular farm with particular crops and management actions).

Since these models are mathematical representations of the real world, which is impossible to sum-

marise in a few equations, their estimates do not always match exactly what happens. Whilst several

well-researched soil C models exist, their intended purposes vary and the predictions they make are

uncertain.
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In order to get outputs from a model, data (information) must be input, then the calculations performed.

Many models require a lot of information before their calculations can be performed. This reduces

their accessibility for farmers aiming to predict soil C changes in their fields. This thesis explores how

soil C models can better enable farmers to take action to benefit soil C stocks. Each analysis chapter

addresses known barriers to the use and value of soil C models for on-farm decision support.

Reducing the amount of data needed to run a model is a key way of increasing farmer access to useful

soil C information. The first analysis chapter in this thesis explores whether models with very low data

requirements can be useful at the field scale. I focused on cover crops, which are plants that are grown

in seasons where the field is not growing crops to sell, and where the plant material usually stays on

the ground rather than being harvested and removed. Using an existing dataset, I built simple models

to predict the impact of cover crops on soil C and compared them to two other simple models. To find

the model that best met my objectives, I combined statistical and practical considerations because a

simple and effective model based on information that is difficult to find would not improve accessibility

for farmers. The results showed that cover crop biomass (the mass of plants grown) is sufficient as

a single predictor for soil C stock change when a farmer begins cover cropping in temperate climates.

This model still works well if estimates for cover crop biomass, rather than precise measured values, are

used. This suggests that simple models can be built that are relatively good at predicting soil C change

over time. This minimises the amount of information that the farmer needs to be able to use the model,

and therefore improves accessibility for farmers. The use of estimated data also raises questions about

the usual assumption that measured input data is required to get useful model outputs.

Building on the above, another way to make it easier for farmers to use soil C models is to utilise

public databases of information (called secondary data) instead of requiring measured field data (called

primary data). In my second analysis chapter, I used two existing models and compared their outputs

when using primary and secondary data for baseline soil C, soil clay content and mean (average)

annual temperature. The secondary data differed to varying degrees from the measured data. This is

to be expected, as the secondary data aimed to represent large areas, whereas measured data was

specific to a particular field. The larger the difference in input data, the larger the expected difference

in model output, though multiple differences may cancel out. The model results show that the capability

of both methods to predict changes in soil C stock is principally determined by site, rather than by the

source of data given to the model. This result is important because it suggests, again, that providing

carefully measured input data does not guarantee more useful soil C model outputs. Instead, further

work is needed to fine-tune models to make sure they are suitable for use across diverse geographies.
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Existing research studies that used field experiments and/or models indicate that impacts of cropland

management on soil C are driven by many different factors. It is perhaps not surprising that models are

not found to be consistently successful in predicting soil C stocks over time in managed landscapes.

Recent updates to soil management protocols mandate that soil C model predictions must be confirmed

to be reasonable through comparison with field measurements. However, they do not provide clear

guidance on how to do this. For land managers, this leaves the process of soil C management uncertain.

The third and final analysis chapter in my thesis looked at ways to use measured soil C data to improve

model predictions of soil C at a field level. Three modelling methods were applied to datasets which

included multiple measurements of soil C at the same location over time. One model was an existing

model based on knowledge of environmental processes (the RothC model), the other two approaches

included statistical modelling. These statistical methods combine what we already know about soil

together with new measured data to provide updated predictions of soil C over time. The relative

weight given to existing soil science knowledge versus new data varies between the two statistical

methods in this chapter. The first of the two combined the RothC model with the measured data and

tested different values of RothC parameters to improve predictions. The second was a simple equation

based on a minimal amount of existing knowledge and giving much more weight to the new data in

generating new site-specific parameter values. The results show that none of the modelling approaches

was consistently reliable for long-term soil C prediction, but that statistical models trained on site data

can offer some improvement on shorter timescales.

Model predictions and soil C measurement are both still uncertain. Future work should look further at

how to combine models and measured data. This is critical for soil C protection and sequestration.
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Chapter 1

Introduction

Remember that all models are wrong; the practical question is how wrong do they have to
be to not be useful
Box and Draper (1987)

Healthy soils support terrestrial life on Earth. A medium for plant growth, water storage and nutrient

transfer, they teem with life and play a key role in ecosystem resilience. The ecosystem services

provided by soil support biodiversity and feed the world. However, human land use has degraded soils

around the world. As climate change, rates of land conversion and agricultural management all continue

to intensify, the risk to global soils increases (Montanarella et al., 2016; Smith, Calvin, et al., 2020).

Carbon (C) in soils is critical for functional and productive landscapes and is a key component of the

C cycle, but 116 Pg C has been lost from the top metre of soil due to human activities, contributing to

net CO2 emissions (Sanderman et al., 2017). There exist opportunities to protect and increase soil C

stocks through land management, which would safeguard soil functioning and could remove CO2 from

the atmosphere. Soil C therefore has a role in both mitigation of and adaptation to our changing climate,

as well as protecting biodiversity and food production.

In this thesis, I ask how we can better enable actions that benefit soil C stocks, with a focus on field-level

soil C modelling applications to support people managing land around the world.

This introductory literature review contextualises soil C within ecosystem functioning and C cycling.

It then considers cropland management as a driver of soil C change and summarises the latest field

evidence for impacts of key practices. The later parts focus on challenges in soil C monitoring, especially

for farmers hoping to manage soil C, and summarise the potential for using models to predict soil C.

The aims of this thesis conclude the chapter.

1
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1.1 Soil functioning and the C cycle

Soils are formed over thousands of years from bedrock and dead or dying plants and animals (organic

matter). As a physical structure and biochemical engine they underpin a large proportion of ecosystem

functioning (Paul, 2016). Soils can regulate water, cycle nutrients, buffer pollutants and sustain plant

and animal life (Smith et al., 2013). Organic matter is critical for these functions, and the carbon that

makes up a major part of soil organic matter (SOM) by mass (Nelson & Sommers, 1996; Pribyl, 2010)

is particularly useful. The natural degradation of soil organic C generates compounds that reduce

soil density and increase stability (Álvarez et al., 2013). Soil organic C enables soils to retain more

water(Manns & Berg, 2014; Weber et al., 2023), increases soil’s nutrient holding capacity and reduces

loss by leaching (Bot & Benites, 2005).

Earth’s soils contain 1,700 Pg C; twice as much as the atmosphere and more than three times as much

as vegetation (see Figure A.1.1; Batjes, 2016; Canadell et al., 2021). Change in soil C stock is the

balance of biomass inputs and outputs through mineralisation, erosion and leaching (Lal et al., 2015).

In natural environments, these fluxes tend to be balanced over time and the soil C stock is stable.

However, during land conversion and cultivation, soil erosion tends to increase and the disturbance

causes oxidation, driving a net loss of soil and soil C (Abdalla et al., 2020; Lal et al., 2015). Globally,

cropland management has driven large soil C losses, intensifying through time (Karstens et al., 2022).

By taking management decisions to increase the inputs and/or decrease the outputs of soil C, it is

hoped that cropland soils could store more C.

In describing soil C and changes therein, care must be taken with terminology (Chenu et al., 2018; Don

et al., 2024). The amount of C in soil is called the soil C stock. Don et al. (2024) found that, across

published literature, soil C storage is used as both a synonym of soil C stock and as a process of

increasing soil C stock. Here it is used to refer to a process. Of particular interest to many parties is

the idea of sequestering carbon, which refers specifically to the removal of CO2 from the atmosphere

(IPCC, 2001), in this case into the soil. Soil C sequestration is therefore relevant to climate change

mitigation. As Don et al. (2024) warn, not all soil C accrual is sequestration (Chenu et al., 2018), and

some changes in soil C stocks are most accurately described as mitigation of soil C loss.
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1.2 The impact of cropland management on soil C

Cropland management decisions including crop choice, fertiliser use, tillage, residue management and

water management can affect fluxes of C into and out of soil; ideally increasing C inputs, decreasing

C losses or reducing disturbance (Smith, 2008). The magnitude of stock change depends significantly

on the preceding conditions, climate and particular management decisions (Lal, 2004; Smith et al.,

2008). The potential for significant loss or gain makes cropland a particularly important focus for soil

C research. Recent studies have examined how different cropland management practices affect soil C.

Below, the research on some management practices is summarised.

1.2.1 Cover crops

Cover crops are grown to cover otherwise un-cropped soil, with a range of potential benefits. As well as

reducing soil erosion and increasing biomass production, cover cropping can help manage soil nitrogen

levels (Thorup-Kristensen et al., 2003): nitrogen-fixing crops help to meet nutrient requirements for

subsequent crops, decreasing the need for fertilisers.

Cash crop residues are often removed from growing sites for use as animal feed or biofuel. This has a

negative impact on soil C stocks, increasing with rates of residue removal and over time (Smith et al.,

2012). The removal disturbs soil structure, alongside depriving the soil of biomass C inputs. In contrast,

cover crop residues provide labile C inputs to the soil, which can increase soil C and subsequent

cash crop yields (Finney et al., 2017; Vendig et al., 2023). Whilst cover crops increase emissions from

respiration, the net greenhouse gas (GHG) emissions, compared to bare soil, may be reduced due to

soil C sequestration and reduced N leaching Abdalla et al. (2019). In addition to providing C inputs,

cover crops prevent 40-96% of soil erosion from both wind and water compared to bare soils (Blanco-

Canqui et al., 2015).

In a meta-analysis, Jian et al. (2020) found that cover crops drove a global mean increase of 15.5%

in soil C stocks, with significant differences between different soil types and climate zones. Clark et al.

(2017) found that cover crop growth was highly dependent on climate conditions during their cultivation

and Koudahe et al. (2022) flag the need to assess the impacts of cover crops in a greater range of

climates and cropping systems.

Poeplau and Don (2015) found a soil C increase rate of 0.24-0.4 Mg C ha−1 yr−1 under cover cropping

in a global dataset with a mean practice duration of 6.8 years, and highlighted that long-term studies of

cover crop impacts are rare (Koudahe et al., 2022). Blanco-Canqui et al. (2013) estimated that, under

no-till systems, cover crops drive an additional 0.10-1 Mg C ha−1 yr−1 storage compared to no cover
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crop. Their meta-analysis suggests time is a key determinant of overall soil C change under cover crops.

Some meta-analyses report that changes are not correlated with time, though these are often datasets

comprised of short-term experiments of less than 5 years (e.g. Alvarez et al., 2017; McClelland et al.,

2021). In short studies, the impacts of cover crops on soil C compared to a no-cover-crop control are

often unclear or insignificant (e.g. Clark et al., 2017), in part due to soil heterogeneity making change

hard to detect (Blanco-Canqui et al., 2015; Poeplau & Don, 2015).

Impacts of cover crops have also been shown to vary depending on cover crop species (Bai et al.,

2019). For example, non-legume crops reduce soil nitrogen content and leaching (Shackelford et al.,

2019) whilst legume crops fix soil nitrogen. Species choice can also affect impacts on soil C. Rosolem

et al. (2016) found legumes were more beneficial for maintaining a stable C:N ratio, which has a long

term benefit for soil C. However, labile soil C is more efficiently increased by grasses than legumes in

the short term, due to slower decomposition of grass residue (Blanco-Canqui et al., 2015).

Some studies found cover cropping to have no significant effect or even negative effect on soil C

(Abdalla et al., 2019; De Notaris et al., 2021; Jian et al., 2020). This could be related to failed es-

tablishment of the cover crop, increased soil disturbance during cover crop management, or to soil-

related mechanisms such as microbial priming, whereby additional C inputs change the rate of SOM

mineralisation by microorganisms (Siles et al., 2022). Liang et al. (2023) found negligible effects overall,

but identified a threshold for cover crop C input, above which soil C accrual was considerable (see

Chapter 2).

The impacts of cover crops on soil C and GHG emissions vary depending on the choice of crop, as well

as the climate and environment they are planted in. Not discussed here are the impacts of termination

method. Overall, whilst some published meta-analyses have drawn statistically significant conclusions

about the direction and magnitude of soil C change due to cover crops, the key drivers identified vary.

1.2.2 Tillage

Tillage practices are often categorised into conventional till, reduced till or no-till. Though these terms

are used across the literature, the definitions applied to them vary between papers (Bai et al., 2019):

meta-analyses tend to apply their own definitions when categorising the datasets used, but mapping

from the source data definitions is not always simple.

In the 1990s, investigations into tillage options focused on the benefits of no-till for reducing soil erosion

(Ogle, Alsaker, et al., 2019). Studies looking at soil C concluded that no-till was beneficial for carbon

storage in comparison with conventional till, as the latter increases soil surface area and disturbs

aggregates, driving decomposition (Paustian, Andrén, et al., 1997). The conclusion that no-till could
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sequester soil C was taken up by many modellers and soil C quantification methodologies, including the

Intergovernmental Panel on Climate Change (IPCC) guidelines for National Greenhouse Gas Invent-

ories (Eggleston et al., 2006). More recently, mixed results have led to this claim being re-examined.

The pattern built in the earlier studies is thought to be linked to the depth of soil C measurements,

which often did not extend to the full plough layer, and to a lack of focus on accounting for bulk density

changes (Ogle, Alsaker, et al., 2019).

Management activities such as tillage reduce soil bulk density in the plough layer and can raise the soil

level without the addition of new material (Ellert & Bettany, 1995). Therefore, measurements of soil C in

tilled and non-tilled soils should not be compared on the basis of depth alone. Studies aiming to quantify

soil C stock changes across managements (particularly including tillage) must account for density

changes by explicitly measuring bulk density and controlling for mass equivalency (Ogle, Alsaker, et

al., 2019; Smith, Soussana, et al., 2020). Newer meta-analyses control for mass equivalency, but at

a cost: in Meurer et al. (2018), the most common reason for excluding a study was issues with bulk

density measurements or depth making the data incomparable.

Building on analysis by Haddaway et al. (2017), Meurer et al. (2018) controlled explicitly for mass

equivalency using the approach by Ellert and Bettany (1995), and confirmed that soil C stock benefits

of no-till and reduced till were limited to the surface soils. Ogle, Alsaker, et al. (2019) also controlled for

mass equivalency and found that soil C stock is higher under no-till from 0-20cm depth, but higher under

full-till at depths below 20cm. Angers and Eriksen-Hamel (2008) found that soil C stocks under no-till

were on average 4.9 Mg C ha−1 higher than full-inversion tillage and that the benefit of no-till increased

slightly, but significantly, over time. However, their meta-analysis did not require a mass equivalency

approach to be taken in the comparison between no-till and full-inversion tillage.

In tillage action, residue and plant material on the soil surface is redistributed within the soil profile. This

slows its decomposition compared to material on the surface and means that an important consideration

for the different impacts between full- and no-till is the C inputs: Virto et al. (2012) found that greater

crop C inputs explained 30% of the stock differences between no-till and full-inversion till.

The impact of tillage may be different depending on climate and soil type, though uncertainties are

large (Tiefenbacher et al., 2021). The benefits of no-till have been found to be greater in warmer and

wetter climates due to better potential physical protection (Haddaway et al., 2017; Ogle, Alsaker, et al.,

2019). Conversely, Sun et al. (2020) found that changing to no-till had different impacts on crop yield

and soil C depending on climate, with dry regions showing increased yield and soil C stocks and cold
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regions showing potential for soil C loss. Ogle, Alsaker, et al. (2019) found that the impact of tillage in

warm climates was less deep in sandy soils than loamy, silty or clayey soils. These apparently differing

conclusions indicate the importance of considering tillage’s impact on (surface and subsurface) micro-

environmental conditions which influence decomposition rates (Chenu et al., 2018).

Taken together, recent studies and meta-analyses suggest that the soil C impact of no-till compared

to conventional till is not clear cut and that site characteristics must be considered (Sun et al., 2020;

Tiefenbacher et al., 2021). Any soil C stock benefits are likely restricted to the surface layers and may

be reversed below 15-20cm. Over the whole soil profile, the change may be negligible (Luo et al., 2010)

as tillage acts to redistribute C more evenly: disrupting the normally steep drop off in C stocks with

depth. Across studies, uncertainties in quantification of these relationships are large and Ogle, Alsaker,

et al. (2019) conclude that no-till is best regarded as a physical resilience method rather than managing

for soil C sequestration.

1.2.3 Organic amendments

Organic amendments are added to soil for purposes including nutrient management and improving soil

structure. A wide range of materials of plant or animal origin can be applied as organic amendments,

including crop residues, manure, compost, wood chips and biochar. Chenu et al. (2018) identified the

poor characterisation of organic amendments as a limitation to assessing the impact of a range of

management options. Rubin et al. (2023) summarised the evidence for soil C sequestration, soil GHG

emissions and life-cycle emissions for organic amendments and found that impacts, their magnitude,

and the level of evidence for these varied between amendment types. In a regional synthesis for

Southeast Asia, Tan and Kuebbing (2023) found that soil C benefits of compost and manure can be

offset by increases in emissions of other GHGs such as methane and nitrous oxide.

Fertilisers can be organic or mineral in origin: studies focused on fertiliser management often include

both. Use of fertiliser can increase soil C accrual, which may be maximised by a combination of mineral

and organic fertilisers (Hijbeek et al., 2019). Several papers found differences with depth: Tautges

et al. (2019) highlight different net soil C stock changes at shallow depths compared to the whole

profile. Campbell et al. (2000) focused on shallow soil C and found the greatest increase in stock was

associated with adequate application of N and P in fertiliser. Fertilisers are often chosen to manage

nutrient availability. Significant correlations are observed between increase in attainable yields and

increase in soil OM when organic inputs are provided, though any potential yield benefit of organic

amendments can be negated if mineral fertiliser has supplied sufficient nutrients (Hijbeek et al., 2017).
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Han et al. (2016) undertook a global meta-analysis of soil organic carbon (SOC) change under different

fertiliser management, finding that the SOC benefits of different manure management relative to initial

SOC were not consistent across climates or time. In most climates, manure is more efficient at C

storage than straw, with the difference most clear in warm temperate climates and the first decade:

manure application sequestered 0.36 g kg−1 yr−1 and straw 0.13 g kg−1 yr−1 (Han et al., 2016). The

rate of SOC change was negatively correlated with initial SOC. Cool temperate climates tended to take

longer to reach a soil C equilibrium compared to tropical sites (Han et al., 2016). Whilst short-term soil

amendment C retention rates vary between amendment types (Angers et al., 2022), long-term retention

rates are similar (Smith et al., 1997).

Many options for organic amendments are similar materials in a different part of a potential ‘lifecycle’.

For example, plant biomass is the major component of crop residues, straw, compost and herbivore

manure. Studies have assessed the difference in soil C stock response to fresh, digested or composted

materials: in the long term (decades to centuries) Cardinael et al. (2015) found that the impact of

straw did not change whether it was fresh or composted, while Thomsen et al. (2013) found that the

storage of C did not vary significantly whether inputs were fresh or digested, having accounted for C

losses in processing. Recent studies seem to suggest that, counterintuitively, the more labile organic

amendments contribute more to SOM in the long term, with several proposed explanatory mechanisms

including greater carbon use efficiency in microbial processing of labile inputs and protection of soluble

compounds in soil through movement to mineral surfaces (Chenu et al., 2018). It has also been shown

that below-ground inputs (such as roots, or amendments buried by soil fauna) are retained at much

higher rates than above-ground inputs (such as plant litter or amendments remaining on the soil surface)

(Jackson et al., 2017).

1.2.4 Summary of cropland impacts on soil C

Overall, evidence suggests that the impacts of cropland management practices on soil C depend on

a wide range of factors. There is a lack of consensus on these drivers (Derrien et al., 2023; Lin et

al., 2023) combined with a lack of data in some agro-environmental contexts (Chenu et al., 2018).

In addition, research studies often focus on one practice comparison at once, whereas farmers are

undertaking combinations of practices (Bradford et al., 2023). In some cases, these combinations may

be referred to as "conservation agriculture" or "regenerative agriculture", which have clear objectives in

terms of soil, but are not completely prescriptive in terms of practices.

Given that soil C stock changes depend on climate, environment, soil characteristics and land use, it is

necessary to quantify soil C at field level to understand the impact of management.
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1.3 Quantifying the impact of cropland management on soil C stocks

1.3.1 Direct measurement

The concentration (%) of soil C in a soil sample can be assessed using a range of laboratory methods

(including wet oxidation, loss-on-ignition and dry combustion); the choice of method can affect the

results (Roper et al., 2019). To measure stocks of soil C (Mg C ha−1) accurately requires volumetric

samples, because the bulk density of the soil must also be calculated. As stocks of soil C change

through the soil profile, measurements of soil C should be given for a particular sampling depth.

There are a number of pertinent challenges to measurement of soil C, particularly for assessing change

over time. These are underpinned by the heterogeneity of soils, constant fluctuations in soil C stocks

and the small scale of management-driven changes relative to the background levels of soil C (Smith,

Soussana, et al., 2020; Stanley et al., 2023; Wiesmeier et al., 2019).

Spatial and temporal aspects of sampling strategies should be designed with these challenges in mind,

typically increasing costs (Campbell & Paustian, 2015; Minasny et al., 2017). Sample numbers should

increase with heterogeneity and each should be analysed separately in the same laboratory (Stanley

et al., 2023), particularly if aiming to detect relatively short term changes in soil C.

To accurately account for changes in soil C stock in managed soils, where practices can change the

bulk density and height of the soil, the need to take a mass equivalency approach is an additional

complication for measurement (see Section 1.2.2; Ellert & Bettany, 1995; Fowler et al., 2023).

The need for such robust sampling makes relying solely on measurement of soil C for monitoring and

decision support infeasible for many (Campbell & Paustian, 2015), particularly considering the cost of

sampling compared to the value of soil C stored (Smith, Soussana, et al., 2020). Even with a careful

sampling strategy, soil C measurement can have significant uncertainty.

If soil C measurements are to be used to inform management decisions, there remains a challenge for

predicting future change from past measurements, particularly for new management options that have

not yet been sampled. Modelling of soil C can help to reduce the need for direct measurement and can

be used to compare the potential soil C impact of a range of practices over time.
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1.3.2 Modelling

Over recent decades, interest in parameterising soil processes for various purposes has led to the

development of soil models that provide predictions of soil C stock evolution over time.

Modelling approaches can be based on a scientific understanding of the environment, a statistical

interpretation of observed data or a combination of both (Derrien et al., 2023). Process-based models

represent known environmental interactions as equations, whereas statistical models are based on

parameterised links in observed data, and therefore are not rooted in the physics of the Earth system.

These approaches have different strengths and weaknesses (Blagodatsky & Smith, 2012). Due to

being based only on data provided to generate them, statistical models are not applicable outside

the calibration space. By representing physical interactions, process-based models are often applicable

across environmental settings. Whilst they are underpinned by a lot of theory, process-based models

require relatively little data for generation and can be flexed or added to as new knowledge develops.

Statistical models require significant amounts of data to generate and can only be applied to the

modelled ‘problem’. The principal advantage of statistical models is the ability to represent relationships

that are too complex, or have too many unknowns, to be represented reliably by mechanistic models.

They cannot be built on, but can be re-parameterised with new data.

In process-based models, the use of several soil C "pools" is a common approach to modelling the

range of different decomposition rates that occur in soil materials (Smith et al., 2012), and this has

been the dominant approach for several decades (Campbell & Paustian, 2015). However, these pools

are defined by decomposition concepts, rather than measurable chemical or physical fractions. This

can make them hard to compare to measurements and challenging to parameterise (Stockmann et al.,

2013). Abramoff et al. (2018) applied the concept of pools to measurable soil C fractions instead, and

compared the outcomes with the CENTURY model - a well-regarded soil C model that includes pools

(Parton et al., 1988). The comparison indicated many areas of similarity in output between the two

models but also indicated divergence in soil C stock change when multiple influences were involved.

Acceptable assumptions in models depend on their intended use: for example, the IPCC provides

methods for national inventories, which need to be able to represent a broad range of environments on

a consistent basis, rather than work to represent specific environments in great detail (Eggleston et al.,

2006). The spatial scale of soil C assessment leads to differing conclusions about what is an important

dependency (Manzoni & Porporato, 2009): plant to field level drivers are often based on soil chemistry

and texture, whereas regional to global relationships are better described by climate and vegetation,

leading to separate indicators being required in models (Blagodatsky & Smith, 2012; Wiesmeier et al.,
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2019). The temporal axis is important, since soil C stocks fluctuate naturally and short-term changes

in overall stocks can be hard to discern. Longer-term models must also consider the context of soil C

equilibrium and saturation (see Section 1.5.2), which takes place over time-spans of decades (Don et

al., 2010; Klumpp et al., 2017).

Chenu et al. (2018) identify key difficulties in using process-based models for soil C dynamics at the

local scale. These can be split into two categories. The first is challenges in providing the input data

needed by the models, i.e. the unknown equilibrium status of the soil at the start of the model run,

initialising the modelled SOC pools and estimating the actual C inputs to the soil. The second source of

difficulty is shortcomings in model ability to explicitly represent observed drivers of local soil C patterns,

such as representation of soil types, subsoils and the impact of practices on decomposition rates. This

means that model validation and calibration are critically important in soil C modelling (Campbell &

Paustian, 2015; Le Noë et al., 2023; Smith, Soussana, et al., 2020).

Model calibration means "fitting model parameters to best reproduce some empirical data", whilst

validation refers to testing model abilities to reproduce observations on which it was not calibrated

(Le Noë et al., 2023). For both, good data are required, which is discussed further in Section 1.5.1.

1.4 Farmer and policy context

A growing number of farmers, businesses, policy makers and standards organisations are looking to

manage soil C for environmental health, food (production) security and/or reducing net greenhouse

gas emissions. The European Union has adopted its first soil monitoring law (European Parliament,

2024) and many net zero pledges rely on soil carbon sequestration (Smith et al., 2022). Quantifying

and predicting soil carbon storage is critical to the success of such projects, but, as discussed, reliable

measurements of soil carbon stocks and their change are difficult.

For farmers, any change in practice represents a risk, through impacts on productivity, costs, or both.

This understandably makes the uncertainty of soil C management unattractive, particularly as the

economics of farming becomes increasingly challenging. De-risking these transitions for farmers is

pivotal to turning the tide on soil degradation and soil C loss.

Financial return is one option to reduce risk for farmers changing practices. This underpins the idea

of carbon markets, where carbon is traded at prices subject to supply and demand market dynam-

ics. Carbon markets are a mechanism to reduce net GHG emissions by polluters paying for "carbon

credits" from projects that store carbon, counting the sequestered carbon as a negative emission to

offset their continued positive emissions. Trading carbon for money offers an incentive for projects to
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sequester carbon. However, some main principles for effective carbon credits are that the carbon is

measurable, stored permanently and is additional to any change that would have happened without the

project. These guarantees are hard to make in soil C management projects. When there is uncertainty,

carbon credits are usually discounted (Black et al., 2022); reducing the return on investment for carbon

sequestration projects. The reduced financial benefit of selling carbon credits from soil C management

may, then, not be worth the burden of the restrictions that the project places on land managers or even

cover the costs of undertaking the project.

Whilst a growing number of countries have environmental policies that incentivise more sustainable

farming practices, the absence of specific policy for soil C sequestration means the market for (outcome-

based) carbon credits has tended to operate in a private or NGO space (Black et al., 2022; Phelan

et al., 2024). This landscape, combined with carbon accounting challenges, has led to inconsistencies

between different standards and protocols which drive uncertainty in the equivalency of credits between

markets (Oldfield, Lavallee, et al., 2022).

For soil C sequestration projects, measurement, reporting and verification (MRV) protocols must outline

how soil C stock changes are to be quantified. Currently, many protocols allow the use of models, often

in combination with measurements to verify (or re-calibrate) model predictions, though guidance on how

to use models and data in this way is sparse (Oldfield, Lavallee, et al., 2022).

Some socio-economic barriers to adoption of soil carbon management and carbon credits are still not

well understood (Davidson, 2022), and are probably difficult to generalise. However, recent research

around farmer perceptions and willingness to engage in carbon markets highlights challenges. Farmer

confidence in crediting mechanisms is undermined by inconsistencies between schemes, administrative

complexity and a lack of methodological transparency (Phelan et al., 2024, and references therein).

There are also critical incongruities between the demands of carbon crediting methods and the realities

of farming (Amin et al., 2023). An important example here is timescales. Carbon crediting requirements

must ensure appropriate permanence of soil C accrual and (as discussed in Section 1.2) practices must

be guaranteed to be undertaken for a number of years in order to have a clear impact. The business

case for agreeing to these requirements has to be compelling and science cannot always provide clear

answers with a palatable level of uncertainty (Oldfield, Lavallee, et al., 2022).

Decision support tools have a role in tackling key challenges for effective soil C management. By

presenting relevant information in a way that is accessible to non-experts, they can simplify some of the

mechanistic complexity described in Section 1.2 and improve farmer understanding of soil processes.

By facilitating prediction of multiple scenarios before any investment is made, risks can be examined and

reduced. By consolidating and standardising scientific understanding and management information,
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decision support tools can also aid collaboration between actors. As discussed, there are a variety

of drivers behind soil C management, including resilience, direct financial incentive and optimising

resource use. Different tools are targeted towards particular drivers; they must apply appropriate soil C

models and report outputs responsibly, including uncertainty.

Farmers are knowledgeable about their work and soil (Eze et al., 2021) and peer-to-peer learning has

a role for expanding the uptake of practices to improve soil (Mattila et al., 2022). The roles for scientists

in overcoming these challenges include translating scientific knowledge into useful information (Phelan

et al., 2024) and improving models, including by generating datasets to test and refine them (Oldfield,

Lavallee, et al., 2022). The complexity of models and burden of data provision is a barrier to farmers

being equipped with useful information to enable soil C sequestration (Dechow et al., 2019).

1.5 Current state of soil monitoring research for soil C modelling

This section draws attention to two topics shaping the recent discourse on soil C modelling. The first is

data quality and quantity. The second is evidence for soil C saturation and equilibrium, which informs

potential for soil C sequestration and common assumptions during model initialisation.

1.5.1 Data

As identified in Section 1.3.2, good soil C datasets are needed for model calibration and validation,

and to build understanding of soil C dynamics. Many recent studies highlight shortcomings in data

for properly assessing soil C: this includes lack of data at or below the plough depth and missing

bulk density measurements which are crucial in assessing practices with a significant impact on soil

structure (like tillage) (Raffeld et al., 2024). In a meta-analysis Poeplau and Don (2015) warned that

soil C stocks or bulk density (to calculate soil C stocks) were only reported in 13 studies (30%) and

only 3 studies included data below typical plough depth. Tautges et al. (2019) conclude that ignoring

changes in soil C at depth may result in false conclusions about the impact of management. Though

soil C stocks are estimable through pedotransfer functions and mass equivalency, this represents a

weakness in conclusions drawn by resulting meta-analyses.
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Harden et al. (2018) state that many data useful for measuring soil C change at annual scales are rarely

consolidated and highlight opportunities of large soil datasets; including generating empirical models.

Todd-Brown et al. (2022) and Malhotra et al. (2019), among others, also outline how consolidating

soil data could drive progress across a number of soil research areas. However, the myriad ways in

which soil data has been collected, logged and stored are a significant barrier to dataset consolidation,

meaning that a community standard on data collection and management is required (Todd-Brown et al.,

2022).

1.5.2 Saturation, equilibrium and model initialisation

As understanding of soil mechanisms developed, the idea of an upper limit on soil C stocks (saturation

point) in a given soil emerged (Lal, 2008; Stewart et al., 2007). The discourse on whether there is a

limit and what the limit would be continues. Begill et al. (2023) found no upper limit in a broad analysis

of German soils; a conclusion that is challenged by Six et al. (2024) who identify six key principles

necessary to draw reliable conclusions about saturation levels on the basis of soil type. The existence

of an upper limit on soil C stocks means that soils further from saturation can store more C and that all

sequestration potentials are finite. Therefore baseline (or initial) soil C stocks are relevant to assessing

the long-term potential impact of management (Stewart et al., 2007). This has been found in many field

experiments, though is also true that the appearance of greater C storage in soils with low C compared

to those with high C can be driven by statistical artefacts (Slessarev et al., 2022), so care must be taken.

Overall, most managed soils are far from saturation, but it remains important to consider in long-term

soil C modelling (Six et al., 2024).

In addition to an absolute limit, there is also the idea that soil C stock reaches an equilibrium under

consistent conditions (natural or managed). In such a steady-state, inputs to soil C are balanced with

outputs over time (Paustian, Collins, & Paul, 1997). Most soil C models include equilibrium dynamics

(Stewart et al., 2007), though time periods over which equilibrium is reached vary from decades (Don

et al., 2010; Jensen et al., 2022; Nayak et al., 2019) to centuries (Wutzler & Reichstein, 2007).

As mentioned in Section 1.3.2, many process-based models are based on conceptual pools of soil

C characterised by different decomposition rates. In order to perform a forward run of the model,

the initial pool sizes must be given: a challenge for these unmeasurable quantities. This initialisation

step therefore often requires an assumption. The most common approach is a spin-up run (Herbst

et al., 2018; Taghizadeh-Toosi et al., 2020). This refers to running the model in reverse to establish

pool values, and assumes soil C stocks are in some equilibrium at the start of the forward run. Other

suggested initialisation methods either map measurable fractions to conceptual fractions (e.g. Zimmer-
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mann et al., 2007), or account for long-term land use history - which requires data (Don et al., 2010;

Taghizadeh-Toosi et al., 2020). Whilst these alternative methods have been shown to have benefits for

model prediction in some cases, their higher data needs are often hard to meet (Klumpp et al., 2017;

Yeluripati et al., 2009).

The validity and impact of the spin-up equilibrium assumption is somewhat unclear. Wutzler and Reich-

stein (2007) concluded that a spin-up run is only valid where the model is calibrated for a similar

disturbance history. Herbst et al. (2018) warn that the assumption of equilibrium for long-term arable

sites can cause errors. Foereid et al. (2012) and Yeluripati et al. (2009) found that modelled rates

of change were sensitive to initialisation method whilst Dimassi et al. (2018) found that the role of

initialisation in soil C projection uncertainty (using the CENTURY model) was negligible. Klumpp et al.

(2017) compared RothC model initialisation approaches and found the most effective method to be

adjusting spin-up C inputs so that the modelled SOC matches measured initial total SOC, rather than

assuming equilibrium. This approach is also pragmatic in avoiding the need for extensive historical data.

Overall, soil C modelling must consider equilibrium and saturation dynamics. Model implementation

decisions must be appropriate for the scenario to be represented.

1.6 Conclusions and aims and structure of this thesis

Sustainable and resilient agriculture requires fertile soils, which require carbon (Lal, 2004). It is critical to

issues of ecosystem health, food security and climate change to understand and be able to predict how

agricultural management affects soil C and, in particular, which options can sequester or retain soil C.

The impacts of cropland management on soil C are varied, uncertain and context specific, with drivers

spanning spatio-temporal scales. Soil C models are a key tool to handle this complexity. However, for

land management applications, their data requirements are an obstacle, vague or wide uncertainties

are a risk and the resulting information is not always what is needed to support decisions. There is a

need for greater attention to provision of meaningful decision support that achieves maximum accuracy

with minimum complexity, despite continuing debate in soil science (Derrien et al., 2023).

Therefore, the overarching aim of this thesis is to enable useful soil carbon modelling at field scale to

support cropland management decisions. This means reducing the data burden of modelling and/or

increasing the value of model outputs. Specific objectives are:

1. Establish useful empirical models for soil C prediction with cover crops as a focus prac-

tice: Chapter 2
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2. Understand the impact of using public datasets instead of measured data as model inputs:

Chapter 3

3. Explore methods to combine models with site data: Chapter 4

4. Reflect on implications for soil science, land managers and protocols: Chapter 5

Chapter 2 has been published, and Chapters 3 and 4 are structured in a paper style. Chapter 5 draws

together the findings from the earlier chapters and concludes the thesis.



Chapter 2

Modelling the soil C impacts of cover

crops in temperate regions

Chapter 2 has been published as:

Hughes, H.M., McClelland, S.C., Schipanski, M.E. and Hillier, J., 2023. Modelling the soil C im-

pacts of cover crops in temperate regions. Agricultural Systems, 209, p.103663.

With the following author contributions:

HH and JH formulated the research question. HH designed and carried out the analysis and wrote

the first draft of the manuscript. SM and MS provided the dataset. All authors discussed findings and

reviewed the manuscript.
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2.1 Introduction

As introduced in Section 1.2, cover crops are planted as an alternative to bare soil between cash crop

production seasons. The motivations for this include physical protection of the soil, increased organic

matter input to the soil and increased plant biodiversity which all support ecosystem productivity and

resilience (Schipanski et al., 2014). Cover crop biomass provides C to soil, so the practice is proposed

as a way to protect and increase soil C stocks. The growing evidence base for cover cropping impacts

on soil C suggests that stocks can increase at rates of 0.1 to 1 Mg C ha−1 yr−1 (Blanco-Canqui et al.,

2013; McClelland et al., 2021; Poeplau & Don, 2015), with impacts varying by climate, environment and

management characteristics.

As a potential multi-benefit practice that has resource and time costs, understanding the impact of cover

crops is of value to farmers and land managers. Many soil C predictions require a baseline soil C value

because rates of change in soil C are believed to be related to existing stocks; as either a function

of existing stocks or of a perceived deficit in existing stocks compared to potential stocks (Slessarev

et al., 2022; Stewart et al., 2007). However, measuring soil C is challenging. Establishing a reliable

baseline value for comparison requires particular rigour; it is important to contextualise it with land use

and management history and for it to be valid across the intended area of use, meaning that sufficient

sampling is key.

This published chapter utilised existing data to parameterise parsimonious regression models for the

soil C impact of cover cropping in temperate climates without using a baseline soil C stock figure.

We compared the predictive ability of these to meta-analysis response ratios and the simplest IPCC

’Tier 1’ method. The response variable used was the annual change in soil C (∆SCyr). Not only is this

appropriate for the intended application of these models on farms, where decisions are taken on daily

to yearly scales, it also removes the requirement for any existing soil C measurement.

The model structures are simple and the methodology for model selection combines statistical and

practical considerations, since a parsimonious model that utilises unknown input data remains inac-

cessible.
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predicted negative changes in soil C, which IPCC and meta-analysis factor approaches could not. A single var-
iable regression model based on cover crop biomass (dry matter) production was the best combination of sta-
tistical power, biological relevance and parsimony. In temperate climates, we predicted an increase in soil C 
stocks as long as cover crop biomass production exceeded 1.3 Mg ha− 1 yr− 1. 
SIGNIFICANCE: Our final model can be applied with estimated user input data, and avoids the need for baseline 
soil C as an input; this makes it relatively accessible for farmers. Parsimonious models for soil C change under 
land management practices can be effective and are an opportunity to increase access to soil C management 
information for farmers.   

1. Introduction 

Carbon (C) sustains soil health by increasing water and nutrient 
retention, supporting resilient soil structures and the soil microbial 
community (Nieder and Benbi, 2008; Lal, 2018). It is a crucial element 
of functioning ecosystems, both managed and natural. Globally, the 
impact of historical land conversion to cropland and cropland man-
agement on soil C stock has been substantial and detrimental. Due to 
greater direct physical and chemical disruption of soils, cropland is 
associated with higher rates of soil C loss than grazing or forestry 
management (Lal, 2004). Net loss of soil C impacts ecosystem function 
and contributes to greenhouse gas (GHG) emissions that are driving 
ongoing climate change (Lal, 2014). 

Globally, a soil C sequestration rate of 0.4% per year would offset 
20–35% of anthropogenic GHG emissions; this target is the centre of a 
major initiative, “4 per mille”, for agricultural soils to tackle the climate 
crisis (Minasny et al., 2017). To achieve this emissions benefit, alongside 
protecting ecosystems and ensuring sustained crop yields, crop man-
agement decisions can be taken to decrease soil C losses, increase soil C 
additions or both (Lal, 2004). As an opportunity to tackle net GHG 
emissions, soil C sequestration and storage are likely to have lower 
impacts on land, water and energy, and cost less than other negative 
emission technologies (Smith, 2016). The principal limitations are that 
the soil C sink capacity is limited, and any storage of C is easily reversible 
(Smith, 2016). For arable land managers to consider soil C stocks, the 
ability to monitor them reliably at appropriate spatial and temporal 
scales is critical. 

Soil C stocks are heterogeneous at all spatial scales and measure-
ments are time consuming, costly and often unreliable (Campbell and 
Paustian, 2015). Given this, and the increasing focus on protecting and 
improving soil C stocks, models for soil C change have been developed 
over the last four decades. Available methods range from process-based 
(RothC (Coleman and Jenkinson, 1996), CENTURY (Parton et al., 1988), 
DAYCENT (Parton et al., 1998), DNDC (Li et al., 1992)) to empirical 
(IPCC National GHG inventories (Eggleston et al., 2006), Smith et al., 
1997), with varying data requirements and underlying assumptions. 
Depending on the intended application, modelling minimises the need 
for soil C measurement over time and can also indicate potential impacts 
of land management decisions ex ante. Since these models were devel-
oped, evidence for the impacts of management practices on soil C has 
expanded and available modelling methods have evolved (Smith et al., 
2020). 

This paper focuses on the practice of cover cropping and its influence 
on soil C. Cover crops are grown to cover otherwise un-cropped soil in 
time and/or space. The most common application of cover crops is 
planting between cash crop seasons, i.e. instead of a fallow field (Poe-
plau and Don, 2015). However, cover cropping can also refer to planting 
alongside the main crop, called ‘companion cropping’ or ‘intercropping’. 
Here, cover crops are plants grown where the residues are not harvested, 
unless otherwise specified. 

Previous research indicates that soil C stocks respond positively to 
cover cropping, though magnitudes vary. Poeplau and Don (2015) found 
a soil C increase rate of 0.24–0.4 Mg C ha 1 yr 1 under cover cropping, 
in a dataset with a mean practice duration of 6.8 years. Blanco-Canqui 
et al. (2013) estimated that, in no-till systems, cover crops drive an 

additional 0.10–1 Mg C ha 1 yr 1 storage compared to no cover crop. 
McClelland et al. (2021) found an average increase of 1.11 Mg C ha 1 

across their dataset on temperate cover crops over a range of time pe-
riods. If annualised, this gives an estimate of 0.21 Mg C ha 1 yr 1, albeit 
the authors note that time since cover crop introduction was a poor 
predictor of soil C response. 

Soil C sequestration takes place over years to decades, whilst land 
management decisions are made by farmers on a daily basis. Tools to 
support farmer consideration of GHGs must include those management 
options that have an impact on soil C. Additionally, input data must be 
reliably retrievable by users, processes should be comprehensible and 
outputs must be valuable information to aid decisions. The Cool Farm 
Tool (CFT) is an example of a tool developed using these principles and 
prioritises farmer usability alongside peer-reviewed methods (Hillier 
et al., 2011). Many soil C calculations within the CFT are underpinned 
by Intergovernmental Panel on Climate Change (IPCC) ‘Tier 1’ methods 
for GHG inventories, which apply default factors to estimate the impact 
of a management change on existing soil C stocks, based on climate, land 
use and practices (Eggleston et al., 2006). The impact is applied for 20 
years after the practice change, at which point soil C stocks are assumed 
to be at equilibrium. The IPCC methods were parameterised through 
synthesis of peer-reviewed research into the GHG impacts of land use 
and are designed for use at a national scale. By requiring only current 
soil C and management information, the IPCC Tier 1 methods have a 
particularly low data cost and are therefore ideal for resource con-
strained or non-expert users. The global applicability of the IPCC and 
CFT makes them more easily comparable across sites and supply chains 
than localised approaches. The IPCC methodology does not have a 
specific cover crops factor, so the CFT uses the C input factor to represent 
the impact of a change in cover cropping. 

At the time of writing, no further information on practices or envi-
ronment is required from users for the CFT to estimate the impact of a 
change in cover cropping. However, the impact of cover crops on soil C 
is observed to vary across environments and with management de-
cisions. It depends on whether the cover crop is a grass, legume or non- 
legume (Shackelford et al., 2019;Rosolem et al., 2016; Blanco-Canqui 
et al., 2013; Abdalla et al., 2019; Finney et al., 2017), on climate con-
ditions (Clark et al., 2017) and growing season (Poeplau and Don, 2015; 
Alvarez et al., 2017; Amado et al., 2006). In short-term studies, the 
impacts of cover crops on soil C compared to a no cover crop control are 
often unclear or insignificant (e.g. Clark et al., 2017), in part due to soil 
heterogeneity making change hard to detect (Blanco-Canqui et al., 
2015). 

Evidence suggests that cover crops provide an opportunity for 
farmers to protect or improve soil C stocks in their fields, but that the 
impact depends on some combination of environmental and manage-
ment factors. The recent meta-analysis by McClelland et al. (2021) 
showed that cover crop aboveground biomass production, climate, 
cover crop growing season and soil clay content were the most powerful 
indicators for the impact of cover cropping on soil C. Using their existing 
dataset, this analysis parameterised a number of simple (parsimonious) 
regression models for the annual change in soil C under cover cropping 
in temperate topsoils (0-30 cm), employing a range of biological, envi-
ronmental and management indicators. It then aimed to select the best 
available structure for predicting field-scale soil C changes under cover 
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cropping. 

2. Methods 

2.1. Data 

The collation and initial manipulation methods for the dataset used 
in this analysis are set out in McClelland et al. (2021). The dataset in-
cludes information from 40 papers (181 observations) comparing a 
cover crop experiment to a no cover crop control. The dataset is focused 
on temperate and sub-tropical climates, with 27/40 studies reporting on 
sites in the USA. The complete dataset includes 58 applicable indicators 
for each study site: location, climate, environmental and soil indicators 
and crop information, alongside some descriptive statistics. The most 
common cash crops in the dataset were cereals (maize, wheat, sorghum), 
soybeans, cotton and tomatoes. Cover crop species included were 
roughly evenly split between legume, non-legume and a mix of both (57, 
67 and 57 observations, respectively). 

Several characteristics of the McClelland dataset are noted here. 
Firstly, not all indicators were available in each study. Secondly, where 
possible, indicators were standardised and gaps were calculated as fol-
lows: soil carbon data were standardised to 0-30 cm depth using the 
methods set out by Jobbagy and Jackson (2000), as measurements 
ranged from 0-2.5 cm to 0-100 cm. When bulk density measurements 
were not available, site locations were used to extract the data from the 
USDA soil survey ‘SSURGO’ (Soil Survey Staff, 2017) for sites in the U.S. 
A. For studies outside the U.S.A., study authors were contacted directly 
for these data. These steps were necessary due to a lack of stand-
ardisation in soil C measurement and reporting. 

2.2. Preparation for modelling 

Analysis was completed in R (version 4.1.0). Prior to analysis, the 
following steps ensured that the parameterisation was applied to the 
most relevant data from the McClelland et al. (2021) dataset. 

The basis for comparison was an experiment (cover crop) plot and a 
control (no cover crop) plot. The impact of having a cover crop can be 
described as the difference between the experiment and control out-
comes at the end of the experiment. The response variable was annual 
soil C stock change in Mg ha 1 yr 1 (ΔSCyr) calculated using Eq. (1). 

ΔSCyr =

(
SCexp SCcont

)

yrs
(1)  

Where yrs = years since cover cropping began, SCexp = mean soil C in 
the experiment plot (Mg ha 1), SCcont = mean soil C in the control plot 
(Mg ha 1). 

The few cases with calculated ΔSCyr > 15 Mg ha 1 yr 1 (n = 2) were 
removed as outliers and deemed to be beyond the scope of our model. 
This rate of sequestration from cover cropping alone, in excess of 
approximately 30 Mg ha 1 yr 1 of organic dry matter, is infeasible, and 
an order of magnitude greater than published average sequestration 
rates (e.g. Poeplau and Don, 2015; Blanco-Canqui et al., 2013). In 
addition to this, points where ΔSCyr exceeded the total above-ground 
cover crop (CC) biomass (Mg dry matter ha 1 yr 1) (n = 7) were 
excluded as unrealistic based on the following rationale. Cover crop 
biomass is expected to be the primary source of additional C in experi-
mental plots. Though above-ground biomass excludes root biomass and 
rhizosphere contributions to soil C, only approximately half of biomass 
is C. A majority of biomass C inputs to soil mineralise rapidly (Angers 
et al., 2022; Berthelin et al., 2022); Villarino et al. (2021) and Castellano 
et al. (2015) suggest that only approximately 30% of input biomass C is 
successfully incorporated into the soil. With these balancing factors, we 
consider above-ground biomass produced as a sensible upper bound for 
ΔSCyr. 

We excluded studies of only one year in length (n = 26) as they were 

deemed unreliable for considering soil C change over time (Blanco- 
Canqui et al., 2015). Finally, studies with cover crops present year round 
(n = 14) were excluded: these are likely to better reflect perennial sys-
tems, which we also consider to be beyond the scope of our model. Given 
some overlap, these steps removed 34 data points in total, leaving 147 
available for regression analysis. 

The comparison between experiment and control is most valid where 
the two plots have the same environmental characteristics and have 
been identically managed during the cash crop season(s), as the cover 
crop is then assumed to be the driver of any soil C stock difference be-
tween the two sites. In this dataset, the environmental characteristics of 
the experiment and control sites are well matched in this way. In terms 
of management, 83% (122/147) of sites are appropriately matched and 
the remaining 17% have a difference in tillage or fertiliser (presence, 
type or amount). A grouping variable ′Ref′ was created based on the 
study the data came from and any within-study difference in how the 
control and experiment plots were managed. 

Fertiliser quantities were standardised to kg N ha 1. 
Indicators were excluded where their coverage was not adequate for 

modelling cover crops across all temperate cropping scenarios. This 
principally applied to categorical variables and there were two main 
issues: categorical completeness (e.g. not all countries represented) and 
data density (sparse data in certain categories). Three indicators were 
excluded on this basis: country, cash crop type and cash crop fertiliser 
type. 

Following the exclusions described, the dataset contained 24 rele-
vant indicators with n ≥ 5 observations that could be included in a 
model to explain the impact of cover crops on soil C (see Table 1). Since 
C input is a key driver of soil C change, we added a 25th indicator- 
‘additional C input’- categorising whether the experiment plot had any 
other organic C amendments (e.g. compost, manure) and whether this 
was additional to the control plot. 

2.3. Regression modelling 

As ΔSCyr was approximately normally distributed across our dataset, 
linear regressions were fitted using the R functions ‘lm’ and ‘lmer’ from 
the lme4 package (Bates et al., 2015). As the models were to be 
compared across different fixed effects, those with random effects were 
fitted with maximum likelihood rather than residual maximum likeli-
hood. The first linear regressions used each of the 25 variables in turn as 
a single predictor variable for ΔSCyr: in the form of M1 (lm) and M1r 
(lmer) (Eqs. (2) and (3)). For categorical variables, slope coefficients 
were calculated for each unique level. The Ref grouping variable was 
modelled as a random intercept; included because it was assumed that 
some of the variance in data was driven by between-study variance, as 

Table 1 
Variables from McClelland et al. (2021) utilised in modelling the impact of cover 
crops on soil C stocks.  

Numeric variables Categorical variables 

Label n Label n 

Experiment duration 147 CC frequency 147 
Mean control plot SOC 147 CC frequency [group] 147 
Bulk density 147 Ag. System 147 
Soil pH 87 Experiment tillage 147 
Percent (%) sand in soil 138 Soil texture 146 
Percent (%) silt in soil 138 Agro-ecological zone (AEZ) 147 
Percent (%) clay in soil 138 CC season 136 
Mean annual temperature (MAT) 147 CC termination method 138 
Mean annual precipitation (MAP) 147 Cash crop system 147 
CC biomass (aboveground) 84 CC type 147 
CC C:N ratio 57 CC system 147 
Cash crop fertiliser amount 81 CC mix 147   

Additional C input 147 

n number of observations, CC cover crop. All variables refer to the exper-
iment plot unless otherwise indicated. 
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well as sampling error. In this study, the random effect was modelled 
with a random intercept only to simplify the application of these models 
to out-of-sample data- i.e. for prediction. 

Multiple mixed effects linear models were generated using lmer for 
each pair of variables using M2r and M2ri (Eqs. (4) and (5)). These 
models extended to include two predictive variables and their interac-
tion (as fixed effects). Using Cook’s distance with a threshold of 1 (Cook 
and Weisberg, 1982), points with an excessively strong influence on the 
model were omitted and the model re-parameterised without them. 

M1 : ΔSCyr ∼ var1 (2)  

M1r : ΔSCyr ∼ var1+(1|Ref ) (3)  

M2r : ΔSCyr ∼ var1+ var2+(1|Ref ) (4)  

M2ri : ΔSCyr ∼ var1+ var2+ var1 : var2+(1|Ref ) (5)  

2.3.1. Initial regression model selection 
Applying each of Eqs. (2)–(5) to the 25 candidate variables generated 

650 regression models. The Generalised Variance Inflation Factor (Fox 
and Monette, 1992) was used to test for significant multicollinearity. 
Models including a term with GVIF

1
2*df > 4 (analogous to VIF > 16) were 

removed from consideration: this removed two models from M2r and 
141 from M2ri. 

An initial selection amongst of nested models was performed before 
considering their prediction performance with test data where nested 
means that the larger of two models contains all the terms from the 
smaller, with at least one additional term. Therefore, all four model 
structures are nested for each var1 and var2 pair. Given the different 
data (densities) amongst the parameterised models, model comparison 
is easier amongst nested models than non-nested models (e.g. comparing 
across models M1). For comparing nested regression models, marginal 
R2 (Rm

2 ) calculated using the MuMin package (Barton, 2019) was used; 
Rm

2 focuses on the variance explained by fixed effects. This left 300 
unique models. 

The 300 models were then evaluated using three criteria: Rm
2 , Akaike 

Information Criterion (AIC, Burnham and Anderson, 2002; Akaike, 
1998), and the intercept p-value (pint). We used the lmer package to 
calculate p values by the Satterthwaite method, which is a preferred 
method (Luke, 2017). The 10 models with the lowest AIC values which 
also satisfied Rm

2>0.1 and pint < 0.05 were retained for testing. 

2.4. Other models 

A variety of model structures is available to estimate the impact of 
cover crops on soil C. Here, we follow the principle of parsimony and 
focus on simple models, which have the benefit of low data cost. Two 
additional model structures and an input simplification were included 
for comparison with our selected regression models. First, the response 
ratios calculated from the same dataset in McClelland et al. (2021), and 
secondly the IPCC Tier 1 approach (using factors from Ogle et al., 2005). 
The latter is globally applicable and widely used, and is designed for 
national level inventories rather than field scale estimations. Ogle et al. 
(2005) factors are the result of a meta-analysis and a parsimonious 
approach to estimating soil C stock change; they are used here as a 
benchmark for other models. 

We adapted these models for annualised soil C stock change as fol-
lows:  

- McClelland et al.: 

ΔSCyr = mean.c*
(elnRR 1)

5.2yrs  

where 5.2 yrs is the average duration of training dataset and lnRR =

ln
(

XCC
XNCC

)
where XCC is the mean SOC value for cover crop treatments, 

and XNCC is the mean SOC value for no cover crop controls.  
- Ogle factor: 

ΔSCyr = mean.c*

⎛

⎜
⎝

1
0.91 1

20

⎞

⎟
⎠

where 0.91 is the response ratio for a change from medium to low 
input in a moist climate (Ogle et al., 2005). This method is the cur-
rent approach used in the Cool Farm Tool (Hillier et al., 2011). In 
2019, an update to the earlier IPCC factors was published (IPCC, 
2019); the relevant factor difference is slight and would not affect the 
evaluation of the relative merits of the models described here.  

- Input data bins: some models were also tested with the input data 
binned into stated ranges; a common approach when users can only 
estimate the value required. The models then calculated the response 
variable using the mid-points of the bin ranges rather than a specific 
measurement.  
1.1. Model testing 

We compiled a supplementary set of independent test data (Fig. 1), 
comprising 29 data points from eight studies (Bhardwaj et al. (2019), 
Blanco-Canqui et al. (2011), Blanco-Canqui et al. (2013), Constantin 
et al. (2010), Parkin and Kaspar (2006), Rochester (2011), Ruis et al. 
(2020), White et al. (2020)). These eight sources were not included in 
the final dataset of McClelland et al. (2021) but were, or would have 
been, identified using the initial search protocol set out in McClelland 
et al. (2021) and could be supplemented where necessary. 

The test data were applied alongside the training data to test the 
shortlisted models. Like any out-of-sample data, the new test data does 
not have an applicable value for the regressions’ random effect, and the 
mean intercept is taken. For testing, the random effects in the training 
data were also treated as unknown. The models are therefore applied to 
both subsets of the available data as they would be to any new, out of 
sample prediction. 

Prediction intervals for input data were calculated using R functions 
predict() and predictInterval() from the merTools package (Knowles and 
Frederick, 2016). 

3. Results 

Out of 300 combinations of two variables, 278 nested comparisons 
found two variable models (M2r or M2ri) that performed better than 
single variable alternatives (M1 or M1r). Of these, 117 included an 
interaction (M2ri) and 161 did not (M2r). Of the 22 single variable 
models found, 19/22 included the random effect (M1r). 

Fig. 1. Measured annual soil C change in training and testing datasets.  
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Focusing on the strongest 300 models, 54 met the criteria of having 
both Rm

2 > 0.1 and pint < 0.05. We then shortlisted the following 10 
models as having the lowest AIC values. All were two-variable models 

and three included interaction terms. 
M2r: Bulk density & CC biomass 
M2r: CC C:N ratio & % clay in soil 
M2r: CC C:N ratio & % silt in soil 
M2r: CC C:N ratio & Experiment duration 
M2r: CC C:N ratio & MAP 
M2r: CC C:N ratio & MAT 
M2r: MAP & Soil pH 
M2ri: AEZ & CC C:N ratio 
M2ri: CC C:N ratio & Tillage 
M2ri: CC season & CC biomass 
Fig. 2 shows the model predicted change in soil C against the 

measured change in soil C for each shortlisted model (further model 
statistics in Supplementary Table 1). Seven of these models include the 
C:N ratio of the cover crop, which has positive coefficients indicating 
that a higher C:N ratio leads to greater soil C sequestration; studies have 
found that a higher C:N ratio reduces SOM decomposition (Thomsen 
et al., 2008). In all seven models including cover crop C:N ratio, either 
the intercept or the second variable included a negative coefficient. 
Where the other variable had a negative sign, cover crop C:N ratio limits 
the negative impact of that indicator on soil C; this is true for subtropic 
AEZs, percent silt in the soil, MAP, MAT and experiment duration. Over 
the 10 models, 12 variables were represented, nine of which are nu-
merical. Due to data gaps not all models were assessed using the same 
number of data points, with the range in number of data points for each 
model from 53 to 79 out of a potential 147. 

Having used nested comparison, Rm
2 , pint and AIC to identify the 10 

strongest regression models based on the training dataset, we turned to 
testing. All types of model were applied to the extended testing dataset. 

Models tested were the 10 shortlisted regression models, their constit-
uent one variable regression models (all with random effects assumed 
unknown), the response ratios from McClelland et al. (2021), the IPCC 
factor, the CFT approach and two one-variable regression models with 
input data in bins. 

We examined RMSE values, using the IPCC Tier 1 methodology 
(based on Ogle et al., 2005) as a lower bound for acceptable RMSE 
values: since this method is for national GHG accounting, reasonable 
models for field scale prediction of soil C change should outperform the 
IPCC factor in this application. 

RMSE values for the extended dataset indicate several models 
perform better than the IPCC tier 1 method (Fig. 3). Despite not being 
analytically shortlisted, several one-variable regression models have 
competitive RMSE values. 

Our dataset has an interquartile range of measured ΔSCyr of 
0.013–0.682 Mg C ha 1 yr 1, and overall range between 1.863 and 
5.457 Mg C ha 1 yr 1 (Fig. 1). Fig. 4 shows that many regression models 
with favourable RMSE values predict a similar ΔSCyr across the range of 
input data and thus do not capture this variation. Three models amongst 
those with strong RMSE values predict some of the observed negative 
changes: M2r CC C:N ratio & % silt in soil, M1 CC biomass and M2r Bulk 
density & CC biomass. The latter two models, including CC biomass, 
successfully predict the direction of change for the majority of points 
with observed negative ΔSCyr. 

M1 CC biomass (Eq. (6)) models a decrease in soil C stock of 0.27 Mg 
C ha 1 yr 1 if no CC aboveground biomass is present, increasing by 0.21 
Mg C ha 1 yr 1 for each Mg of dry matter produced. The 95% confidence 
intervals for model predictions of ΔSCyr for M1 CC biomass (Fig. 5) are 
approximately ±2 Mg C ha 1 yr 1. 

M2r Bulk density & CC biomass (Eq. (7)) suggests that greater bulk 
density (within the range modelled, 1.01–1.77 g cm 3) and biomass 
production are both valuable for carbon sequestration. Carbon 

Fig. 2. Annual soil C change: observed and predicted, for models shortlisted using nested comparison, Rm
2 , pint and AIC combined, using the training dataset. The line 

y x is shown, which represents perfect prediction, n number of observations modelled. Rm
2 indicates the variance explained by fixed effects in each model. 
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sequestration would be predicted with a bulk density over the mean of 
1.41, regardless of CC biomass production. With a low bulk density, 
significant CC biomass production is needed to reach positive C storage. 

M1CCbiomass :ΔSCyr

= 0.273 [ 0.801,0.255]+0.213 [0.106,0.320]*CC biomass
(6)  

M2r Bulk density&CC biomass : ΔSCyr

= 3.361 [ 6.409, 0.313 ] + 2.391 [0.268, 4.5141]*
Bulk density+ 0.145 [0.070, 0.220]*CC biomass

(7)  

4. Discussion 

4.1. Statistical model selection 

In general, two variable regression models explained more variance 
in soil C storage under cover cropping than one variable models, and 
interaction terms were often useful. The best performing models often 
combined an environmental indicator (climate, soil characteristics) and 
a cover crop indicator (C:N ratio, biomass). Although tillage and mixing 
of residues within the soil are known to affect crop residue decompo-
sition, these indicators appeared rarely in top performing statistical 
models; they added little in the context of more important explanatory 
variables. Cover crop termination method, whether the cover crop was 

incorporated into the soil or not, was not part of a regression model that 
explained ΔSCyr well, despite being considered important (Potter et al., 
2007). The descriptor of whether additional organic C (beyond CC in-
puts) was provided to the soil was also not part of the best performing 
models, which implies that cover crops may be able to increase soil C in 
systems already using organic amendments. 

All of these models are relatively parsimonious. This is congruent 
with the aim to identify a simple and widely applicable model for the 
impacts of temperate cover cropping on soil C at the field scale. In any 
case, the dataset size (n = 147) makes parameterising regression models 
with many variables impossible and effectively rules out backwards 
model selection. 

The initial model selection steps in this analysis were statistical, 
further selection steps focused on model prediction and sought to bring 
together statistical metrics with priorities for model use. The choice of 
AIC as the final statistical selection criterion had a significant impact on 
the models selected. Compared to selection based on the best Rm

2 the AIC 
calculation leads to selection of more numerical variables, and often 
those models with fewer data points. The 10 highest Rm

2 values overlap 
50% with the lowest AIC values, and, had we used Rm

2 as the basis for our 
selection we would have selected five different models that all include 
CC season with ≥138 data points, three of which have a second cate-
gorical variable. In spite of this, it is important to note in the following 
that, although the discussion is specific to our use of the AIC criterion, 
the final conclusions are unaffected by this choice. 

Fig. 3. RMSE values of soil C change for tested models-with IPCC RMSE as a lower bound.  
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4.2. Soil depth 

In initial modelling, a strong sensitivity to soil depth measurement 
was observed. Whilst the papers in this dataset measured soil C to depths 
between 2.5 and 100 cm, McClelland et al. (2021) standardised the 
dataset to 0-30 cm using a method from Jobbagy and Jackson (2000). 
While vertical soil C density profiles vary (Sun et al., 2020), we perform 
standardisation with the intention of removing this sensitivity from our 
data and regression models. To test the standardisation equation, we 
assessed the difference between applying the standardisation and actual 
soil C stock using the subset of studies that had taken soil measurements 
at multiple depth increments. The soil C stock numbers from a.) the 
Jobbagy and Jackson (2000) standardisation formula applied to the 
topmost layer of soil and b.) the sum across measured layers were 
compared, assuming that the latter is the ‘true’ value. 

For studies measuring multiple increments between 0 and 30 cm (n 
= 39, 7 studies), the median discrepancy between standardisation and 
sum is 3%, though the overall range is between 27% and + 11%. 
When including the two further studies where summing and stand-
ardisation are both required (i.e. there are multiple layers, but not to 
exactly 30 cm depth), the range of difference is much greater, up to 
100%. Though these differences are not marginal, no clear relationship 
(linear or polynomial) could be easily identified in this dataset, except 
some evidence of similar discrepancies between measurements from the 
same study, which is used as a grouping effect. Another function for 
calculating soil C to a given depth was also tested in this way (Feliciano 
et al., 2018- based on Smith et al., 2000) and the differences between 
summed and standardised stocks were similar. This, along with the other 
gap-filling and standardisation steps set out in the methods, demon-
strates the limitations of collating soil C data from an evidence base with 
no standardised best practice. This is familiar in soil C review studies: 
Poeplau and Don (2015) found that soil C stocks or bulk density (to 

calculate soil C stocks) were only given in 30% of studies, and that only 
7% of studies included data below typical plough depth. 

4.3. Response variable 

The choice of response variable, ΔSCyr, is driven by target applica-
tions for the model, rather than determining a precise estimate of soil C 
change over superannual timescales. Many land management decisions 
are made on a yearly basis and GHG monitoring is often based on this 
timescale; an annual C stock change suits these uses and allocation of 
impacts to single crops in the context of crop-based C footprinting. We 
do note that studies have found that the early impact of any practice 
change is hard to disaggregate (Smith et al., 2020) and that time is not a 
good predictor of overall soil C stock change measured in cover crop 
studies, which are often only a few years in length (McClelland et al., 
2021). Additionally, whilst microbial priming effects of organic C inputs 
can be significant in croplands (Mo et al., 2022) and priming effects of 
cover cropping can have a negative effect on SOC storage (Camarotto 
et al., 2020), these are not disaggregated parameters in our model. 
Finally, soil C sequestration rates are rarely linear and not limitless; 
equilibrium and, possibly, saturation will be reached (Smith, 2008). The 
database does not include time series data and has an average mea-
surement duration of 5.2 years, which is shorter than the 20 year time 
horizon applied by the IPCC. These factors increase uncertainty in the 
models and the models should therefore be used with this context in 
mind. 

4.4. Baseline model skill 

Whilst the IPCC factor approach is globally applicable and has low 
data requirements, it is parameterised for national scale GHG in-
ventories. In theory, field-scale parameterisations allow for assessment 

Fig. 4. Annual soil C change: observed and predicted, for models with a lower RMSE value than the IPCC factor, using the extended dataset (training data and test 
data). The line y x is shown, which represents perfect prediction. 
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that is more precise. The tested response ratios from McClelland et al. 
(2021) had lower RMSE values than the IPCC method. Structurally, the 
response ratios are equivalent to the IPCC methodology: the reference 
(control) soil C value is multiplied by a factor that represents a rate of 
change. These models are better suited for estimating long-term stock 
change factors when a baseline and management change is known, 
whilst the regression approach is better for our criteria. 

Several regression models with two variables have much lower 
RMSE results than the IPCC methods. Considering the data cost of these 
different models (Table 2), it is also notable that several one variable 
regression models represent an improvement. 

4.5. Direction of change in soil C stocks 

The IPCC factor predicts a modest positive change in soil C stock in 
the first 20 years of cover cropping. Whilst cover crops have a positive 

impact on soil C stocks on average, this is not universally true. A prin-
cipal function of models for soil C storage change is indicating direction 
of change. Fig. 4 shows that insensitivity in our models often results in 

Fig. 5. Prediction intervals for M1 CC biomass regression model (actual and binned input).  

Table 2 
Summary of model structures analysed.  

Model 
category 

Baseline soil C Total number of data points required 

Regression 
model 

Only where used as an 
indicator 

1–2 

McClelland 
RRs 

Yes 2–3 

IPCC/Ogle 
factor 

Yes 1 

Bin (Inherited) 1–2 as estimated range, exact 
measurement not required.  
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observed negative ΔSCyr (soil C storage reduction) being modelled as 
positive (C sequestration). The majority of our statistically selected 
models do not have the ability to predict a negative change in soil C, 
despite observations. 

The models that successfully predict some negative change within 
the extended dataset seem to support existing environmental evidence. 
The M1 CC biomass model requires a minimum of 1.3 Mg ha 1 above-
ground biomass production to reach a positive ΔSCyr (sequestration) 
associated with cover cropping. This suggests that if the cover crop is not 
productive (e.g. poorly established or otherwise unsuccessful) there is 
insufficient carbon being added to the soil to offset soil C turnover from 
disturbance associated with its cultivation. It further supports the 
consensus that plant C inputs are a primary requirement for soil C 
sequestration (Minasny et al., 2022; Janzen et al., 2022). If aiming to 
increase soil C, increasing net primary productivity through cover 
cropping and the subsequent delivery of cover crop biomass to the soil 
should be prioritised. 

The M2r Bulk density & CC biomass equation suggests that greater 
bulk density and biomass production are both valuable for carbon 
sequestration. A significant amount of CC biomass production is 
required to offset C loss in a lighter soil, whilst a reasonable bulk density 
can ensure some C sequestration. 

4.6. Data requirements 

In this study, we selected for parsimonious models with potential for 
broad application. Whilst models that are more complex may yield more 
predictive power, they also risk over-parameterisation and can exclude 
certain application where limited data are available. For field scale soil C 
management, farmers are the primary user group. They bring a wide 
range of contexts and are (mostly) non-modellers. To have value, deci-
sion support tools must have attainable input requirements, compre-
hensible processes and relevant outputs. The IPCC factor model requires 
baseline soil C stock, which remains hard to measure. On the other hand, 
for example, for a given location, climate data is often publicly available. 
Some decision support tools looking at soil C tackle data limitations 
using GIS and existing databases to supplement user inputs, for example 
COMET-Farm (Paustian et al., 2017). COMET-Farm relies on detailed 
management inputs and specific field locations to parameterise its 
process-based model, drawing on available soil and climate data. This 
may result in more accurate outputs, but limits geographical use to areas 
with supporting data. 

In the absence of reliable measurements, growers can often provide a 
reasonable estimate of conditions on their farm. For example, CC 
biomass is not always measured, but is observable aboveground and so 
estimable. To assess the impact of estimating input data, binning ap-
proaches were applied to the IPCC factor, M2r Bulk density & CC 
biomass and M1 CC biomass. We binned CC biomass input data ac-
cording to approximate quartiles (Table 3), and rounded bulk density 
values to the nearest of a low, medium, high level (1.3, 1.5, 1.7 g cm 3). 
In the CC biomass approach, this allows the user to select a range within 
which their value sits, rather than providing a specific value. The model 
then approximates the true value to be the mid-point of the range. A 
qualitative assessment, such as a low, medium, high assessment of bulk 
density is often simpler for users. 

In the three models tested here, binning input data does not have a 

material impact on overall RMSE, and the regression approaches both 
retain their ability to model soil C reduction at low CC biomass or bulk 
density levels. For M1 CC biomass, the resulting concentration of output 
values reduces model performance most for biomass between 3 and 7 
Mg ha 1 (Fig. 6). A greater number of bins could tackle this, provided 
that the ranges are not too narrow for growers’ estimates. 

4.7. Final model selection 

Model testing highlighted differences in model suitability across 
several criteria key for decision support. Having shortlisted statistically 
explanatory models, the main considerations are data requirements 
from the user and geographical applicability. The lower the resources 
required for data collection, the wider the reach of the decision support 
tool can be. IPCC Tier 1 methods are globally applicable and have low 
data requirements, so any proposed model must represent an improve-
ment to that. 

There are multiple models that have an RMSE lower (better) than the 
IPCC methods, but only two can reliably capture negative soil C change- 
a specific improvement on the IPCC factor approach. Using the binning 
approaches outlined, both M1 CC biomass and M2r Bulk density & CC 
biomass perform well if the input data is estimated, rather than 
measured. However, as discussed above, bulk density is notoriously 
heterogenous across time and small spatial scales, and therefore harder 
for non-experts to estimate at a field scale. 

The performance of M1 CC biomass represents the best value for 
input data. The proposed linear relationship between CC biomass pro-
duction and soil C stock change is environmentally valid across climates. 
If re-parameterised for tropical climates, we might expect the regression 
coefficients to reflect the faster soil C turnover in warmer, wetter con-
ditions (Paustian et al., 1997). The lower soil C benefit of each unit of 
biomass input may be balanced where overall biomass production is 
higher. To some extent, the intercept reflects the role of cover crops in 
preventing soil erosion, so this may become more negative in geogra-
phies with high erosion risk (for example dry, steep or windy areas) 
where the soil C cost of bare soil is greater. 

5. Conclusions 

Cropland soil C stocks must be preserved or increased for continued 
productivity, ecosystem health and GHG management, but direct mea-
surement remains impractical for numerous reasons. To establish a 
simple model suitable for farmers to predict the impact of cover crops on 
temperate soil C stocks, this analysis parameterised a large number of 
linear regression models. Omitting soil C saturation and equilibrium 
dynamics, these models are suitable for use over medium timescales 
following practice change. The statistically prioritised models tended to 
combine environmental and cover crop information, which reflects 
conclusions drawn in the literature. We then tested the statistically 
selected models against simple meta-analysis response ratios and the 
IPCC Tier 1 method, considering user contexts. The single variable 
model using CC biomass data best satisfied our criteria for a fit-for- 
purpose predictive model. 

Though models selected through statistical methods may have sig-
nificant explanatory power, models for more global use must be 
considered in the context of user access and value. For modelling soil C 
impacts of land management, identifying the direction of C stock change 
and reliably accessible input data are key, as well as meaningful repre-
sentation of practices on the ground. The M1 CC biomass model predicts 
negative soil C stock change at low biomass production, as less C is 
delivered to the soil. In severely data limited scenarios, total CC biomass 
production can be estimated without the need for averaging across 
complex heterogeneity at micro scales. We found that using estimated 
input data did not materially affect model performance, though care 
should be taken that defined bins retain key model characteristics. 

Against a backdrop of measurement challenges and significant 

Table 3 
Binning approach tested for the M1 CC biomass regression model.  

Biomass range Biomass value used ΔSCyr 

Mg ha 1 Mg ha 1 Mg ha 1 yr 1 

0 ≤ x < 1 0.5 0.167 
1 ≤ x < 3 2 0.153 
3 ≤ x < 7 5 0.793 
x > 7 8 1.432  
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prediction uncertainty, we have parameterised new parsimonious 
models for soil C change under cover cropping with no loss of effec-
tiveness. Unlike other common methods, prediction based on CC 
biomass does not require an estimate of baseline soil C, which many 
making management decisions struggle to provide. This model is suit-
able for wide application in temperate climates as a representation of 
known environmental processes, but also due to its minimal input data 
requirements. 
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2.2.1 Methodological clarifications

1. The statistical evaluation criteria were chosen to combine consideration of relative predictive

accuracy between models (AIC) with explanatory power of the fixed effects (R2
m). The criterion

pint < 0.05 reflects evidence that use of a non-zero intercept in the model is useful.

2. In Section 2.4 of the paper, the calculations for ∆SCyr for cover crops from McClelland et al. (2021)

and the IPCC (Ogle et al., 2005) are led by the fact that these sources present proportional soil C

impacts which must be combined with a baseline soil C stock value. In these cases, therefore, the

mean control (no cover crop) soil C stock is multiplied by the annualised net change factor. In the

McClelland et al. calculation, the expected proportional change of cover crops is the overall meta-

analysis response ratio minus 1, annualised by dividing by the average length of experiment in

the dataset. In the IPCC case, the expected proportional change is the SOC impact of changing

from low to medium C inputs minus 1, annualised by dividing by the IPCC default time period of

20 years.

3. Test data were selected to closely match the criteria of the McClelland et al. (2021) search and to

fulfill the data needs of models to be tested, but were not selected systematically due to resource

constraints. It was important to compile an independent test dataset since in McClelland et al.

(2021) the entire dataset was included in calculating the lnRR values subsequently used in this

analysis and so could not be split into training and testing subsets.

2.3 Conclusion

The results here show that models with extremely low data requirements can give useful indications of

the soil C impacts of cover cropping.

Successful establishment and growth of cover crops underpins all the potential benefits that the practice

can have. This is reflected in the final selection of cover crop biomass as the most useful explanatory

variable in predicting ∆SCyr. Indeed, biomass production is the main difference between the non-cover

crop control and cover crop treatments in the dataset. The model is applicable to a change to cover

cropping over short to medium timelines (< 20 years) in temperate climates.
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The focus on estimating change in soil C stocks over medium timescales due to a single specific practice

change contributes to the effectiveness and validity of these parsimonious models. The regression

models are based on comparing two soil C stock values, and are not aiming to construct a time series

of soil C evolution. This means that some context of the site (such as temperature, precipitation, soil

type) can be somewhat stripped out of the models. Avoiding predicting total soil C stock evolution under

the complexity of multi-practice management means that factors known to be important in soil processes

can be omitted from the models without fundamental loss of predictive skill.

The 95% confidence intervals for the M1 cover crop biomass model are wide compared to the predicted

∆SCyr. The width of the confidence intervals indicates an uncertain estimate and that there is variation in

the data not explained by the variables used. In soil C management, this is particularly important where

the interval crosses zero and means that soil C could be lost or gained, though wide uncertainties are

common, for example IPCC (2019) has ±50% for many T1 soil C factors. A larger training dataset may

have led to narrower confidence intervals.

The loss of soil C with low cover crop biomass production shown in this analysis was also found by

Liang et al. (2023), who found a similar threshold of 0.7-1.1 Mg dry matter ha−1 and identified a switch

from positive to negative soil organic C priming.

The use of estimated input data for some of the more statistically explanatory models did not have signi-

ficant impacts on their predictive capability. The application of estimated data was carefully matched to

the model, for example ensuring representation of the negative ∆SCyr rates associated with low cover

crop biomass production. This finding prompts questions about the relative importance of accurate,

measured input data specific to the site to be modelled. A focus on accurate input data is common in

environmental modelling and is another facet of the data cost burden for users.



Chapter 3

The potential for public databases to

increase farmer access to soil C

modelling for decision support

3.1 Introduction

Soil organic carbon (SOC) is a pivotal part of ecosystem health and productivity, as well as a considera-

tion for the C balance of agriculture. As part of a dynamic system, it is widely believed that soil C stocks

tend to decrease under conventional cultivation and achieve a new equilibrium when carbon inputs to

the soil equal outputs due to soil loss and decomposition (Don et al., 2024; Stewart et al., 2007). To

protect or increase the soil C stock, management action can aim to reduce soil C loss or to increase

soil C input. A common approach to the latter is to provide additional organic C through amendments in

the form of plant residues, farmyard manure (FYM), compost or similar (Crystal-Ornelas et al., 2021). A

wide variety of different amendments are used in practice and short-term retention of amendment C in

soils varies between amendment types (Angers et al., 2022; Dechow et al., 2019), although at longer

timescales a fairly similar proportion is stabilised (Smith et al., 1997; Thomsen et al., 2013). As well

as stabilising or increasing soil organic C stocks, organic amendments provide nutrients which benefit

crop yields in a similar way to mineral fertilisers (Celestina et al., 2019; Oldfield, Bradford, et al., 2022).

Since organic amendments are a finite resource, we need to know when and where their application

will have the desired effect of building soil organic matter (SOM).

Key drivers for farmers and land managers to seek support for soil management decisions include

avoiding the cost and challenges of regular SOC sampling and measurement, and an interest in under-

standing the potential impact of management before committing resources to a change. For a decision

support tool to be accessible to a potential user, its input data requirements must be feasible for them

to fulfill. For the tool to be of value, output data must be accurate, easily interpreted and related to

available actions with relevant outcomes. In the case of soil C, the challenge of bridging accurate

modelling and in-field decisions centres on the spatio-temporal complexity of the processes being

32
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parameterised. The evolution of the overall soil C pool over time depends on myriad factors, including

management, environment and climate influencing soil physical, biological and chemical properties

and their interactions (McClelland et al., 2021). Decisions at the field scale are accounting for soil

processes operating from microscopic to landscape scales (Wiesmeier et al., 2019) and, to achieve

accurate outputs, models must emulate the same. To enhance the real-world impact of SOC modelling

on ecosystem functioning, the accuracy of model outputs must be maximised whilst the user cost of the

input data is minimised (Dechow et al., 2019).

Model input data requirements vary; as a rule, the more granular the modelled scope, the more data

are required to run the model, with process-based models typically requiring more data than empir-

ical models (Sykes et al., 2019). Process-based models often use several conceptual pools of SOC

to parameterise decomposition dynamics (Jenkinson et al., 1990; Parton et al., 1994). Typical data

requirements include a baseline SOC measurement, quantified C inputs, management information,

climate and soil measurements for the site. Simpler empirical methods have been designed to estimate

national and regional SOC stocks and changes (Ogle, Kurz, et al., 2019; Smith et al., 1997); accepting

that the approach works for a statistically ’average’ field. In these cases, a subset of similar information

may be used, and broad categories (e.g. climate zone, soil type) can be applied to reduce the need for

site measurement.

Among the options that exist to enable accurate modelling of soil carbon stock in relation to manage-

ment, two approaches have been widely attempted to date:

1. Maximise value of model results by targeting models to user requirements

User purposes for a soil decision support tool can vary across benchmarking, reporting, monit-

oring, and comparison (Arulnathan et al., 2020). Each SOC model is designed with a particular

purpose in mind, and has limitations and assumptions that should be considered by the user

(Le Noë et al., 2023; Paustian et al., 2019). A farmer may need to quantify SOC stocks for the

purpose of carbon credits, to compare the (real or potential) impact of multiple management op-

tions or to estimate the rate of change of SOC storage to understand the impacts of management

on soil health. The goal in this case might be to achieve quantitative predictions of SOC change

which are; (i) conservative in nature, (ii) accurate, (iii) directionally correct.

2. Minimise cost to run models by utilising secondary datasets

Some adaptations to minimise input data cost are already in use: the Cool Farm Tool (Hillier et

al., 2011) allows the user to select a quantitative range or qualitative category for inputs that

would be harder to measure, then translates this into the necessary model input. Hughes et al.

(2023) showed that well-parameterised binning of input data can still lead to reasonable model

outputs. Whilst providing extensive measured data remains a challenge, recent data science
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developments provide opportunities for instant public access to global spatial datasets containing,

for example, climate and soil information for latitude-longitude pairs. Whilst spatial resolution of

these datasets is coarser than field scale, they are typically built from observed data and can be

updated regularly. It may be that these are acceptable substitutes for primary measured data.

This chapter investigates the impact of secondary data inputs on two SOC models often used at farm

scale, the Intergovernmental Panel on Climate Change (IPCC) Tier 1 (T1) methodology and RothC,

when applied to a dataset of field studies where organic amendments have been applied and SOC

measurements recorded. It assesses where model data requirements can be streamlined with minimal

loss of model performance and relates this to farmer decision support needs.

3.2 Methods

3.2.1 Outline of models applied

IPCC Tier 1

The IPCC T1 soil C method for mineral soils is an empirical approach used as part of the Guidelines

for National GHG Inventories (IPCC, 2019). It is based on multiplicative factors derived from extensive

meta-analyses (Ogle et al., 2005; Ogle, Kurz, et al., 2019). Whilst IPCC T1 was designed for national

inventories, the method has often been utilised for field-level estimates (e.g. Hillier et al., 2011; Peter et

al., 2016). It is a useful benchmark here because it has very low data requirements, supported by its

broad classifications for environment and management.

The IPCC T1 calculations predict new equilibrium SOC stocks to 30 cm depth from reference SOC

stocks based on SOC stocks under native vegetation (SOCre f ), and factors based on land use, manage-

ment and inputs. SOCre f depends on the site’s climate and soil type. If initial SOC has been measured,

the T1 method can be adapted to predict SOC stock change using this as a baseline (i.e. instead of

reference SOC), taking care to choose the correct factors, see Equation 3.1 (adapted from Equation

2.25 in Ogle, Kurz, et al. 2019). The IPCC approach assumes that equilibrium is reached after 20 years.

For experiments undertaken for less than 20 years the intermediate SOC stock can be calculated using

Equation 3.2.

In Equation 3.1 and 3.2, SOC is the soil organic carbon stock to 30 cm depth (Mg C ha−1), t and T

are the time point and experiment duration in years, c is the IPCC climate zone and s is the IPCC soil

type for the site, FLU , FMG and FI are SOC change factors for land use, tillage and inputs respectively

(applied factors from Ogle, Kurz, et al. 2019 are shown in Table A.3.1).
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SOCt≥20c,s = SOCt=0c,s ·
(
FLUc,s ·FMGc,s ·FIc,s

)
(3.1)

SOCt=Tc,s = SOCt=0c,s +
(
SOCt≥20c,s − SOCt=0c,s

)
· T

20
f or T < 20 (3.2)

RothC

The RothC model is a process-based model for SOM decomposition with five conceptual SOM pools

which differ in their decomposition rates and patterns (Figure 3.1). It was used here since it has been

widely applied in scientific research, but also for decision support and SOC verification (e.g. Black et al.,

2022; Woollen et al., 2017). RothC data requirements are considerably higher than IPCC T1, though

lower than some other process-based models (e.g CENTURY, Parton et al. 1988).

Decomposition rates are based on the clay % of the soil, site temperature, precipitation, potential evapo-

transpiration (PET) and soil cover. The user must also provide values for organic C inputs (FYM and

plant residues). Organic C inputs are split into the pools depending on how resistant or decomposable

the material is. Plant residues are split into DPM and RPM pools (see Figure 3.1), using a ratio of 1.44

in crops and improved grassland (Coleman & Jenkinson, 1987). FYM is split DPM 49%, RPM 49%

and HUM 2% (Coleman & Jenkinson, 1987). The RothC model, as originally set out, does not explicitly

include physical disturbance (e.g. tillage) as a consideration.

Figure 3.1: Structure of the RothC Model from Coleman and Jenkinson (1987)
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3.2.2 Primary field data

This analysis used the dataset from Foster et al. (2020), collated through a systematic review of agricul-

tural experiments quantifying the soil C impacts of organic amendments. In brief, the dataset includes

peer-reviewed studies of field experiments including organic amendments with a control and replicates

(Foster et al., 2020). In the dataset, experiment managements are labelled as organic amendment

(OA), chemical fertiliser only (CF) or zero input (Cmin). These have been relabelled as OA, MF (mineral

fertiliser only) and ZI (zero inputs). Any management including an organic amendment is labelled OA;

it may also include mineral fertiliser (Table 3.1).

For the aim of this chapter, I required SOC stock measurements. Therefore, I ignored other variables

in the dataset, including SOC concentration data without associated bulk density data. This left 68

experiments from 25 studies.

Standardisation and preparation of primary data

To comply with the IPCC framework, I standardised the soil C stocks to 30 cm using the methods set

out by Jobbágy and Jackson (2000) as described by Abdalla et al. (2019), see Equation 3.3.

SOC30 =

(
1−β 30

1−β d0

)
·SOCd0 (3.3)

Where 30 and d0 relate to soil depths (cm). SOC30 is the soil C stock to 30 cm depth (Mg ha−1), SOCd0

is the soil C stock to depth d0 reported in the study (Mg ha−1), β has a value of 0.9786 and is the

relative rate of decrease in soil C with depth (Abdalla et al., 2019).

Where multiple layers of soil C were measured, these were summed to the interval closest to 30 cm

before standardisation. The same intervals were used for initial SOC and final SOC stocks. Where two

intervals were equidistant from 30 cm (e.g. 20 cm and 40 cm), the deeper increment was included so

that the standardisation was based on as much information as possible. Whilst the Foster et al. (2020)

dataset included available land use, mean annual precipitation (MAP) and mean annual temperature

(MAT) data, it did not include potential evapotranspiration (PET) data, which was required for RothC

modelling and IPCC climate zone classification. PET data were extracted from CRU TS 4.06 for 1980-

2010 (Climatic Research Unit et al., 2022).

Additional management data not included in Foster et al. (2020) are required to run RothC: whether

the soil is bare or covered and the clay % of the soil. I extracted these from the subset of studies in the

dataset that reported them (Figure 3.2).
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Of the organic amendments listed in Table 3.1, FYM and poultry litter were categorised as a manure-

type C input to RothC. Straw, residues, mulch, biosolids and sulphitation pressmud were categorised

as plant residue C inputs.

3.2.3 Secondary data sources for model inputs

I ran the IPCC T1 and RothC models with different combinations of primary (measured) and secondary

input data. Most secondary data used are publicly available and spatially or environmentally determined.

Spatially determined data are lower resolution than measured data, and the primary and secondary

values might be a close match or very different: this study is not a sensitivity analysis.

Initial SOC

IPCC SOCre f values based on climate and soil type were used as secondary initial SOC in both IPCC

and RothC model runs.

Clay

Clay % of soil was extracted from the Harmonised World Soil Database (HWSD) (Wieder et al., 2014)

using the hwsdr package (Hufkens, 2021).

Mean Annual Temperature

RothC requires monthly average temperatures. Most often, studies publish MAT. Monthly average

temperatures were extracted from CRU TS 4.06 for 1980-2010 (Climatic Research Unit et al., 2022)

and used as secondary data. To generate monthly average temperatures from primary MAT values,

the difference between the CRU MAT and the measured MAT was added to the CRU monthly average

temperatures. Thus, the distribution of monthly average temperatures is identical, but adjusted to the

primary MAT value.

Input Organic C

Measured values for organic C inputs from both organic amendments were varied by ± 25% to simulate

over- or under-estimation by the user.

Table 3.1 summarises the eight studies (20 experiments) with sufficient primary and/or secondary data

to run RothC in SoilR.
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3.2.4 Model runs in R

IPCC Tier 1

IPCC climate zones were determined using Figure 3A.5.2 from IPCC (2019) and the data extracted

from CRU TS 4.06 (Climatic Research Unit et al., 2022). The lack of reported PET data precluded the

use of primary climate data to determine IPCC climate classes; mixed data sources would have led

to erroneous conclusions, particularly in the MAP:PET ratio utilised in the classification approach. The

IPCC soil type for each site was extracted from the HWSD (Wieder et al., 2014) using the hwsdr R

package (Hufkens, 2021).

Figure 3.2: Location of sites with SOC stock data and input data for RothC and IPCC T1
models. Colours reflect the IPCC climate zone of the site. Filled circles are sites with sufficient
data to run RothC, open circles are sites with SOC stock data but insufficient data to run
RothC.

IPCC Input factor levels were matched as follows; OA: high with manure, MF: medium input, ZI: low

input (see Table A.3.1). These factors have a significant impact on the predicted change in SOC. Default

factors for ’low input’ indicate a reduction in SOC, ’medium input’ has no SOC change and ’high input’

indicates SOC increase. Irrigation and other practices had no impact on the choice of input factor.
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RothC

The RothC model was applied using the SoilR R package (Sierra et al., 2012). A critical limitation of

the SoilR package is that soil cover (1 or 0) is stated for the entire run of the model, rather than by

month of the year. I ran the SoilR RothC function with soil bare when soil was not cropped for more

than half of the year (S601- bare all year, S686- bare seven months, S781- bare eight months) and

covered otherwise: in this dataset, sites modelled with covered soil had at least eight months of plant

cover. Residues left in the field after harvest did not affect the bare/covered assessment of soil.

To spin-up the RothC model to equilibrium at the start of the experiment, plant residue inputs (PRI)

were optimised to reach the desired initial SOC (either SOCinit or SOCre f ). This involved iterating over

possible PRI values between zero and 20 Mg ha−1 yr −1 and identifying the PRI quantity that results in

the closest RothC prediction of initial SOC; similar to the method used by Jordon et al. (2022). Klumpp et

al. (2017) found this method of RothC initialisation performed best in terms of matching observed SOC

stocks. Forward runs assumed that the only change in C input came from the organic amendments

applied. PRI was set at spin-up levels and was not varied: the implications of this are explored in the

Discussion section of this chapter.
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Table 3.1: Site and management information for experiments modelled. SOC stocks to 30 cm depth. Sources: 363: Sainju et al. (2008); 445: Bhattacharyya et al.
(2010); 601: Lenka and Lal (2013); 624: Liu et al. (2013); 651: Li et al. (2013); 655: Sun et al. (2013); 686: Srinivasarao et al. (2014); 781: Yucel et al. (2015); 890:
Das et al. (2017); 926: Shahid et al. (2017); 1036: Datta et al. (2018). AN = ammonium nitrate, DAP = diammonium phosphate, ND = no data, SPM = sulphitation
pressmud.

# Site location Duration
(years)

IPCC
climate zone

MAP
(mm)

MAT
(°C)

CRU
MAT
(°C)

Measured
clay
(%)

HWSD
clay
(%)

IPCC
soil class

SOCinit
(Mg ha−1)

SOCre f
(Mg ha−1)

Crops Treatment name OA MF ZI OA - MF
comparison

Reps IPCC
till code

Irrigated
OA C

(Mg ha−1

yr−1)

363
Alabama,
USA

10
Warm
Temperate,
Moist

1177 16 16 27 25 LAC 52.5 55 ± 8%
cotton,
rye,
maize

S363_5-CT_100 Poultry litter AN - Constant N 3 Full till Yes 1.7
S363_7_MT_100 Poultry litter AN - Constant N 3 Low till Yes 1.7
S363_9_NT_100 Poultry litter AN - Constant N 3 No till Yes 1.7

445
Uttarakhand,
India

30
Tropical
Montane

1043 18 22.9 6 47 HAC 22.5 51 ± 10%
soy,
wheat

S445_NPK+FYM FYM + NPK NPK Yes Additional 6 Full till No 1.6

601
Ohio,
USA

15
Warm
Temperate,
Dry

1016 11 10.8 ND 21 HAC ND 24 ± 5% wheat
S601_mulch_16 Mulch - Yes - 3 No till ND 6.8
S601_mulch_8 Mulch - Yes - 3 No till ND 3.4

624
Gansu,
China

29
Warm
Temperate,
Dry

540 9.8 10.1 ND 19 HAC ND 24 ± 5%
maize,
soy,
wheat

S624_FYM FYM - Yes - 3 Full till ND 0.4
S624_NP+FYM FYM + NP NP Yes Additional 3 Full till ND 0.4
S624_NP+S Straw + NP NP Yes Additional 3 Full till ND 2.5

651
Xinjiang,
China

20
Cool
Temperate,
Dry

164 6.9 9.7 ND 23 HAC ND 43 ± 8% wheat
S651_N2P2R Straw + NP NPK Yes Additional NP,

constant K
4 Full till Yes 2.1

S651_NPKR Straw + NPK NPK Yes Additional 3 Full till Yes 1.0

655
Guanzhong
Plain,
China

6
Warm
Temperate,
Dry

600 12.9 12.5 27 ND HAC 26.0 24 ± 5%
maize,
wheat

S655_CT+SR
Straw + urea
+ DAP

Urea + DAP - Additional 3 Full till Yes 4.9

S655_NT+SR
Straw + urea
+ DAP

Urea + DAP - Additional 3 No till Yes 4.8

S655_RT+SR
Straw + urea
+ DAP

Urea + DAP - Additional 3 Low till Yes 4.9

S655_SST+SR
Straw + urea
+ DAP

Urea + DAP - Additional 3 Low till Yes 5.1

686
Gujarat,
India

18
Tropical,
Dry

550 ND 27.3 11 ND HAC ND 21 ± 5%
millet,
bean,
castor

S686_50 % F
+ 50 % FYM

FYM + urea Urea Yes Constant N 4 Full till No 1.5

S686_50 % FYM FYM Urea Yes Constant N 4 Full till No 1.5
S686_Farmers FYM - Yes - 4 Full till No 0.5

781
Ohio,
USA

13
Warm
Temperate,
Moist

950 13.6 11.3 23 21 HAC ND 64 ± 5%
maize,
soy

S781_25 Biosolid + PK PK - Additional 4 No till ND 0.9

890
Meerut,
India

18
Tropical,
Dry

823 ND
25 10 21 HAC ND 21 ± 5%

rice,
wheat

S890_NPK+CR Straw + NPK NPKZn Yes Constant N 3 Full till Yes 4.2
S890_NPK+FYM FYM + NPK NPKZn Yes Constant N 3 Full till Yes 1.3
S890_NPK+GR Residue + NPK NPKZn Yes Constant N 3 Full till Yes 0.7

S890_NPK+GR+FYM
Residue +
FYM + NPK

NPKZn Yes Constant N 3 Full till Yes 2

S890_NPK+SPM SPM + NPK NPKZn Yes Constant N 3 Full till Yes 1.1

926
Cuttack,
India

41
Tropical,
Moist

1500 27.6 27.5 31 10 LAC 23.9 38 ± 5% rice
S926_FYM FYM - Yes - 3 Full till Yes 0.9
S926_N+FYM FYM + N N - Additional 3 Full till Yes 0.9
S926_NPK+FYM FYM + NPK NPK - Additional 3 Full till Yes 0.9

1036
Maharastra,
India

28
Tropical,
Dry

847 ND 26.3 30 55 HAC ND 21 ± 5%
sorghum,
wheat

S1036_NPK+FYM FYM + NPK NPK Yes Constant N 3 Full till Yes 4.3
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3.2.5 Models generated and naming

The maximum number of model scenarios per experiment was 26 (two IPCC models with two initial

SOC options and 24 RothC models comprising each permutation of two initial SOC options, two clay

options, two MAT options and three amendment C options). RothC model runs used between zero

and four substitute data values (initial SOC stock, clay, MAT, amendment C), whilst IPCC T1 estimates

varied only the initial SOC stock.

Due to missing data in both the experiment measurements and the public datasets used to estimate

data, not all model permutations could be run for all experiments (Table 3.1). Critically, some studies did

not publish SOCinit values or any other time series data. Not only does this mean that models cannot

be run using known starting SOC stocks, it also means that measured ∆SCyr cannot be calculated and

compared with model results.

Experiment names

To aid traceability, studies (i.e. sites) are referred to using the reference number assigned by Foster et

al. (2020), e.g. S363. Experiments are similarly referred to by their names from Foster et al. (2020);

see Table 3.1. To keep comparison between treatments clear, experiment names are related to the OA

treatment and are not altered when referring to the related MF or ZI treatments: references to particular

treatment classes are made clear in the text and figures. Where multiple OA treatments at a site are

matched with the same MF and ZI controls these duplicate model results are only counted once in

summary statistics.

Model codes

Given the large number of models analysed, the models are referred to by the concatenated names

of the input data used. Table 3.2 lists the names used for this purpose. For example, values from

RothC_re fC_HWSD_MAT _0.75 refer to the RothC model run with secondary initial soil C and clay

data, primary MAT data and the organic amendment C input adjusted to 75 % of the measured total.
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Table 3.2: Model naming conventions

Input data units Primary
data name

Secondary
data name

Initial soil C at start
of experiment

Mg C ha−1 initC refC

Soil clay % % mclay HWSD
MAT °C MAT CRU MAT
Organic C
input factor

- 1 0.75 or 1.25

3.3 Results

3.3.1 Differences between measured and estimated input values

Across the whole Foster et al. (2020) dataset (i.e. before restricting to studies with SOC stocks and

model data), the mean difference between measured and HWSD clay data was 1 % (n.s.) and the mean

difference between measured and CRU MAT data was -0.83 °C (95% CI: -1.50, -0.16 °C, significantly

different from zero with p < 0.05).

Within the modelled subset, the secondary data differed to varying degrees from the measured data

(Figure 3.3). For example, CRU MAT for S445 was almost 5 °C higher than the measured MAT, while

HWSD clay was 41% higher than measured clay (Panels B and A, respectively, Figure 3.3). The primary

and secondary MAT values were within 0.5 °C of each other for study sites except S445, S651 and

S781.

For two studies reporting SOCinit data, the absolute difference between SOCinit and SOCre f was under

2.6 Mg C ha−1 (Table 3.1; Panel C, Figure 3.3). For S926, SOCre f was 14 Mg C ha−1 larger than

SOCinit and for S445 SOCre f was 28 Mg C ha−1 higher: more than double the measured SOCinit .

The variation in OA amendment C was proportional to the measured amount of amendment C applied

(Figure 3.3, Panel D).

3.3.2 Rates of soil C change

Figure 3.4 shows RothC model trajectories were generally similar across different OA treatments within

a site, though measured changes varied. Regardless of the input data used, RothC tended to un-

derestimate the rate of change in SOC stocks (∆SCyr) in experiments with < 2 Mg C ha−1 yr−1 organic

amendment applied (p < 0.001). The largest underestimations of ∆SCyr in OA treatments by RothC were

seen in longer experiments with lower amendment C input that also included inorganic fertilisers (e.g.
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Figure 3.3: A, B & C: primary and secondary model input values for clay, MAT and initial SOC,
respectively. D: total measured C input and variation in modelled amendment C. Colours
denote sites.

S445_NPK+FYM, S926_N+FYM, S926_NPK+FYM). Particularly given the RothC spin-up assumptions

used here, the amount of amendment C is a key determinant of RothC’s modelled ∆SCyr at a given site.

In some cases, overestimating C input by 25 % still resulted in RothC underestimating ∆SCyr (Figure

3.5).

In experiments reporting SOCinit , both OA and MF managements had a discernible impact on SOC

stocks, despite a range of land use histories and environmental contexts (Figures 3.6). In MF scenarios,

RothC and/or IPCC predicted little or no change in SOC stock over time. For RothC, because the model

started at equilibrium SOC and the associated equilibrium PRI is included in the forward run, predicted

∆SCyr will be small in the absence of a change in C input. Figure 3.6 shows that whilst measured ∆SCyr

is typically greatest when management includes addition of organic C, chemical fertilisers can prompt

significant ∆SCyr in some situations.
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With all other parameters held equal, RothC projects (to practical precision levels) the same ∆SCyr

regardless of whether SOCinit or SOCre f was used at the start of the model (Figure 3.4). IPCC T1

factors are multiplicative, and the implied rates of change in stock are therefore determined by the initial

SOC value.
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Figure 3.4: Measured and modelled SOC stocks from experiments that reported SOCinit , showing model results with various combinations of input
data but where the amendment C quantity equalled measured values. Annual measured amount of organic amendment C added is shown. Colours
refer to measurement (black) or different models. Point shapes indicate the soil C type (SOCinit , SOCre f , OA, MF, ZI). Standard deviation (SD) ranges
are shown for measured soil C values: black bars were reported in the study, grey bars are the dataset weighted mean (see Wiebe et al. 2006)



3.3.R
esults

46

Figure 3.5: Measured and modelled SOC stocks from experiments that reported SOCinit , showing RothC model results where the only estimate was
the amendment C quantity. Annual measured amount of organic amendment C added is shown. Colours refer to measurement (black) or different
models. Point shapes indicate the soil C type (SOCinit , SOCre f , OA, MF, ZI). Standard deviation (SD) ranges are shown for measured soil C values:
black bars were reported in the study, grey bars are the dataset weighted mean (see Wiebe et al. 2006)
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For many treatments, no model predicted ∆SCyr to reasonable accuracy (Figures 3.4, 3.5). Figure 3.6

shows the measured ∆SCyr compared to the closest modelled prediction. Across all managements and

experiments with SOCinit data (n = 23), eight different models predicted at least one of the measured

∆SCyr rates best. There are patterns in which model performs best for a particular site, though rarely

total consistency. In OA treatments, 8/11 ∆SCyr rates were best calculated using RothC (Figure 3.6).

In all eight of these treatments, there was no prediction skill lost (and possibly some improvement) by

utilising SOCre f and at least one other secondary data point. In addition, seven of these eight cases

were best modelled with a ±25 % variation in organic amendment C input.

Figure 3.6: Measured rates of SOC stock change (black points) compared with the closest
modelled rate of SOC stock change (coloured bars). Where multiple models had the same
rate of change, the model with the lowest data cost (i.e. with the most estimated input values)
was chosen. For non-OA treatments, there is no impact of the input C factor on model inputs
or outputs.

3.3.3 Soil C stocks

For a given initial SOC value, predicted SOC stocks at the end of the experiment (SOCp) for each MF

or ZI treatment were similar to each other across models (maximum difference between models 0.40

Mg C ha−1, Figures 3.8; 3.9; A.3.1), though they were not always similar to measured SOC at the end

of the experiment (SOCt ). The spread of SOCp is larger for OA treatments (Figure 3.7), showing that

input C values drive difference between predictions more than than MAT or clay data.
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Figure 3.7: SOCp for OA treatments from each model. The red shading shows the range ± 1 SD from SOCt . The closest model prediction of each
treatment’s SOCt is shown by the black box in each column.
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Figure 3.8: SOCp for MF treatments from each model. The red shading shows the range ± 1 SD from SOCt . The closest model prediction of each
treatment’s SOCt is shown by the black box in each column.
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Figure 3.9: SOCp for ZI treatments from each model. The red shading shows the range ± 1 SD from SOCt . The closest model prediction of each
treatment’s SOCt is shown by the black box in each column.
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Comparing model predictions and measured values

SOCt ranged from 10 Mg C ha−1 to 62 Mg C ha−1. SOCp ranged from 17 Mg C ha−1 to 70 Mg C

ha−1. The largest differences between measured and modelled values were associated with particular

treatments, rather than particular models (Figures 3.7; A.3.1). Across all treatment types, SOCp was

greater than SOCt in 44 % of simulations. IPCC calculations underestimated SOCt regardless of initial

SOC stock (p < 0.001). RothC predictions utilising measured SOCinit underestimated SOCt (p < 0.001),

whilst those using SOCre f overestimated SOCt (p < 0.005). The proportion of model results within ±

1.96 SD of the measured mean varied significantly across models and treatments and estimating initial

SOC had a negative impact on the model’s ability to predict final SOC correctly (Figure 3.10). Overall,

60 % of models using SOCinit were within ± 1.96 SD, compared to 25 % of models using SOCre f .

Figure 3.10: Total number of models (light green) and number of SOCp results within ± 1.96
SD of SOCt (dark green), by treatment type and initial SOC. SD values are as reported; if not
reported, the dataset weighted mean is used (see Wiebe et al. 2006)

For OA treatments, annualised median SOC stock errors were usually negative when SOCinit was used:

SOCt was underestimated at more sites (Figure 3.11).
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Some data were not available for some sites (Table 3.1), limiting the models that were run (see, for

example, Figures 3.7, 3.8 and 3.9). Given that model errors were similar for a given treatment, but not

across sites, aggregating results across sites must be done carefully. The range of errors shown for

each model in Figure 3.11 is related to the specific subset of treatments modelled, not just the model

used. The impact of this can be seen in comparing errors for the whole dataset with those for the subset

of sites with both SOCre f and SOCinit values reported: the median and inter-quartile range of errors are

materially different.

For the subset of sites with both SOCre f and SOCinit values reported, the IPCC median error did not

change significantly when SOCre f was used, though the range of errors widened (Figure 3.11).

When SOCre f was used in RothC the median error normalised by time was positive (Figure 3.11). Over-

estimating amendment C tended to increase the spread compared to the same model with measured

amendment C. Notably, the spread of errors for RothC with primary data was larger than for some of

the RothC models using secondary data (Figure 3.11).
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Figure 3.11: Model errors normalised by time (SOCp − SOCt / duration) for OA treatments. Solid boxes are for the subset of sites with reported
SOCi, dotted boxes are for the full set of sites in Table 3.1. The number of treatments modelled is shown, with numbers for the full set (dotted boxes)
in parentheses.
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3.4 Discussion

There are several valuable pieces of information that a SOC model can predict to support agricultural

decisions; ∆SCyr in the event of a practice change, SOC stock at a given point in time for a given

management and/or the difference in rates and/or stocks between potential management scenarios.

This analysis compared the predictive ability of two models and different input data sources when

predicting SOC stock at field sites using organic amendments and non-amended comparisons.

3.4.1 Model parameterisation

By reducing data collection burdens for farmers and agronomists, secondary data sources could broaden

access to useful SOC information. This analysis found that, at site level, secondary data for SOC

modelling differed to varying degrees from measured site data. Across the dataset, CRU MAT data was

significantly different from measured site MAT (p < 0.05). The larger the difference between primary and

secondary input data, the greater the expected difference between respective modelled SOC values

might be, though impacts of combined differences may cancel out. In the case of S445, the influence

of the overestimated MAT value (increased decomposition) was moderated by the overestimated clay

value (increased humus formation). RothC sensitivity to different parameters is known to vary (Poeplau,

2016); in general, predictions will vary less when secondary data are used for less sensitive variables.

A practical recommendation arising here is user review of secondary data. Though farmers may not

be able to provide robustly sampled measured data for SOC modelling, they will often be able to

sense check secondary data with their own information. If collated, sense check information could

help clarify errors or bias in secondary datasets. Crucially, for online tools where secondary data can

be automatically fetched (e.g. via an application programming interface (API)), it should still be made

visible to the user, with an option to refine the data.

This study was not a systematic sensitivity analysis, and included experimental data with many different

managements, durations and site characteristics. Whilst the number of model runs was significant (n=

798), the patchiness of input data (both primary and secondary) means that not all models were run for

all sites. Results must be considered within this context and all conclusions drawn here would benefit

from testing on a larger dataset and in different agricultural contexts. The shortcomings of soil data

reporting are well discussed elsewhere (Poeplau & Don, 2015; Todd-Brown et al., 2022). In particular it

is noted that Tautges et al. (2019) found different net impacts on soil C stocks at the depths modelled

here (30 cm) compared to the whole profile.
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Input biomass data for these modelling applications are another key consideration (Poeplau, 2016). A

limitation of the RothC parameterisation presented here is the use of the fixed baseline PRI value in

forward model runs, since the provision of nutrients through both organic and/or inorganic soil additions

often increases crop productivity (Hijbeek et al., 2017). Given that the PRI value was used to optimise

the RothC spin-up SOC to match initial SOC, altering it post-initialisation is not simple without time-

series data on crop productivity. For OA treatments, the lack of such data is somewhat ameliorated by

modelling the amendment C at ± 25 % of measured levels. Model runs for MF and ZI treatments do not

reflect any changes in C input from the baseline PRI level, which results in minimal predicted change in

SOC over time: a poor prediction for many of the MF treatments in the dataset (Figure 3.6).

3.4.2 Model results

Over modelled time horizons, predicted ∆SCyr values from RothC models using SOCre f were similar to

the equivalent model using SOCinit . Therefore, the use of SOCre f did not reduce the accuracy of RothC

prediction of ∆SCyr (Figure 3.6). In addition, Figure 3.6 suggests that the use of secondary clay or MAT

data are, at worst, no less accurate for predicting ∆SCyr than primary data. These findings suggest that

farm decision makers could use secondary data for initial SOC, MAT and clay % without significantly

affecting modelled ∆SCyr. However, at some sites, no available model replicated the observed ∆SCyr

adequately and the predicted rate may still be far from the actual ∆SCyr .

As parameterised here, the variation in organic amendment C quantities is the main driver of differ-

ence between RothC’s predicted ∆SCyr within a treatment: there is greater variation in SOCp values

between models for experiments that have greater C inputs and any difference increases over time

(i.e. more years of the same modelled management). Despite varying organic amendment C by ± 25

%, RothC consistently either overestimated (one site) or underestimated (three sites) ∆SCyr compared

to measured rates for all amendment C scenarios. The general underestimation of ∆SCyr in longer

experiments with low amendment C and/or inorganic fertiliser rates might be improved by including

forecasted net primary productivity (NPP) increases driven by organic and inorganic fertilisers not

otherwise represented within RothC (discussed above). However, the consistent site-level over- or

under-estimation by RothC suggests that further calibration of decomposition rates is also needed.

For model users, it may be hard to predict changes in NPP without guidance, though organic and mineral

soil amendments may be expected to affect productivity. If changes in NPP cannot be estimated, the

RothC model should not be utilised for MF management, since there would be no representation of

a potential impact on C inputs. RothC can be utilised for ZI management, where negligible change to



3.4. Discussion 56

NPP is expected, and OA management where direct amendment C inputs are represented. Whilst this

dataset is insufficient to derive new parameters, these findings suggest that, with this implementation, it

is preferable to underestimate the amendment C input when supply to the soil is high and overestimate

otherwise, particularly when inorganic inputs are applied.

Within a site, the initial SOC value drives clusters of RothC model predictions of SOC stock (Figure

3.7). SOCinit yielded better predictions of SOCt than SOCre f across treatments and models (Figure

3.10). In addition, Figure 3.11 suggests that using SOCinit is more likely to return a conservative value

for SOC stock than using SOCre f . This is affected by SOCre f being greater than SOCinit in 3/4 sites

modelled here. Whilst this is not a large sample, it is likely that IPCC SOCre f values designed for native

vegetation (i.e. undisturbed land) will overestimate the initial SOC on land converted to, and/or with a

long history of, cultivation since land conversion and cultivation tends to reduce SOC stock (Amelung et

al., 2020; Jian et al., 2020, and references therein). The median model errors being consistently greater

than zero for models using SOCre f supports this.

With the exception of overestimated C input, the replacement of primary data with secondary data

did not systematically widen the inter-quartile range of RothC prediction errors. The impact of using

secondary data for MAT and clay % instead of primary data was minor and generally did not change

whether SOCp was within ± 1 SD of SOCt (Figure 3.7). This result challenges the assumption that

primary data will systematically yield higher-quality information from SOC models than secondary data

and is therefore worth the investment. This rather indicates that some secondary data can be applied

to predict SOC stock over management time horizons without significant loss of model accuracy. This

finding is partially a result of the spin-up approach used, which flexes PRI to match the desired initial

SOC value. Using this approach limits the influence of the climate and soil data to the forward change

in SOC; i.e. to the change in SOC from the given initial SOC value. The analysis here highlights how

model implementation choices must support the needs of the relevant decision context, explored further

below.

These results show clearly that the ability of the IPCC T1 method and RothC to replicate observed

stocks and changes in SOC varies primarily by site, rather than by data sources and OA treatments.

SOCp errors were generally more similar for models and treatments within a site than between sites

(Figures 3.4, 3.7, A.3.1). The site specificity of model ability to predict SOC stock change can be seen

in Figure 3.11 when comparing the subset of sites with SOCinit and the full dataset: the inter-quartile

range of model error (SOCp - SOCt / duration) extends for all models based on inclusion of more sites.

This is a striking outcome, as it means that RothC- as parameterised here- is not successfully generic

across the modelled contexts.
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Though the modelled dataset includes field studies between 6 and 41 years in length, there was no

clear pattern of model accuracy over time beyond that an error in predicted ∆SCyr leads to a greater

discrepancy between SOCp and SOCt .

3.4.3 Implications for decision support applications

Across treatment types, it is more likely that the RothC model can predict within a useful range of

measured values for SOC stock and ∆SCyr than IPCC T1, even when secondary data are used. The

IPCC T1 method was a worse predictor of both SOC stocks and ∆SCyr, though it was consistently

conservative and could be utilised where conservative estimates are a priority. Whilst it performed

better overall, there is capacity for this implementation of RothC to provide significantly incorrect values

regardless of the use of primary or secondary data. In aggregate, then, these findings suggest that

utilising secondary data is a useful option for activities like project scoping and design, when data

is often scarce, but that the accurate modelling of soil C for outcome-based projects requires more

attention to model calibration.

Recommendations made above for using secondary data with RothC (assuming equilibrium SOC at

the start of forward runs) are summarised here:

• Model users should review secondary data to reduce potentially large differences from field-level

values.

• Secondary MAT and clay % can be utilised without loss of model skill for both ∆SCyr and SOC

stock prediction.

• Using RothC with inorganic fertilisers, whether or not organic amendments are also used, re-

quires including the impact of inorganic fertilisers on crop productivity.

• Avoid overestimating C input to the soil when overall supply is high, and vice versa when supply

is low.

• SOCre f can be used to predict rates of SOC change (Mg C ha−1 yr−1, not %) , but is less reliable

for SOC stocks.

3.4.4 Implications for modellers

Whilst this analysis yields some useful recommendations for farm decision makers seeking to under-

stand SOC impacts of management, there are also important revelations for modellers and model

builders. These revolve around site-specific model performance and representation of practices that

have an observed impact on SOC.
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Firstly, these results do not support the broad assumption by modellers that field-measured input data

are the linchpin of strong model predictions. Rather, they indicate that sense-checked input data from

secondary sources does not have universally negative impacts on model prediction. In many cases,

secondary sources of RothC input data may be utilised with minimal loss of model skill for various

predictions. In fact, given the quantified uncertainties and standardised methods in these datasets, they

may have advantages over sparse primary data.

The primary patterns of difference in prediction accuracy here are the sites, not the input data; at

some sites, RothC provides a poor prediction of SOC change and SOC stocks after a change in

management. Aside from errors or bias in input data, sources of error in modelling include model

parameters and model structure. Soil functioning is complex and there are remaining knowledge gaps,

which are limitations for developing a ’correct’ process-based model. For modellers assuming that the

conceptual structure of RothC is correct, these results indicate that the model parameters are poorly

calibrated for broad application.

To use models to distinguish between SOC impacts of management options, the accurate represent-

ation of management impacts on SOC is a priority. The IPCC T1 method explicitly captures more

management choices that are seen to have an effect on SOC than RothC (e.g. tillage, use of inorganic

fertilisers), though these do not often translate into more accurate predictions (Figures 3.6, 3.7). In

theory, one benefit of a process-based model over an empirical one is the representation of interactions

within the modelled system. RothC’s greater input data requirements and dynamic representation of

SOC processes should provide more information with which to accurately predict SOC stocks. However,

these results show that RothC does not capture all relevant interactions affecting SOC under arable

management. Without parameter representation of physical disturbance (i.e. tillage) or for inorganic

fertilisers, RothC predictions are identical for site treatments with the same C input, regardless of

differences in tillage or inorganic fertilisers. Sites S363 and S655 varied tillage in their treatments and

measured differences in observed SOCt and ∆SCyr, which could not be represented in the RothC model.

Perhaps more powerfully than the broad observations of management impacts that are under-represented

in RothC, the site-level patterns shown in these results indicate that RothC’s default parameterisation

is not sufficiently generic to model soil C change across all the sites in this study. Calibration methods

applied through spin-up are not sufficient to enable effective prediction of C stock change across the

sites in this study. A large number of published papers discuss calibrating RothC, including improv-

ing belowground biomass approximation, partition coefficients, decomposition rates and representing

physical disturbance (e.g. Cagnarini et al., 2019; Dechow et al., 2019; Gottschalk et al., 2010; Poeplau,

2016). Organic C inputs from growing plant biomass will always be difficult to estimate, particularly
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when forecasting and when PRI is used as a calibrator during spin up. It is known that decomposition

rates differ between types of organic inputs, see, for example, the RothC decomposition parameters

derived by Peltre et al. (2012). Future work could consider such published RothC modifications and test

them widely, with an aim of proposing a modification to the core RothC methodology. The published

RothC user guide indicates a number of pathways for spin-up in the absence of measured pools of C

analogous to those represented in the model (Coleman & Jenkinson, 1987): proposed calibrations must

consider all of these user pathways.

3.5 Conclusions

Measuring SOC is a challenge for farmers and land managers, particularly due to spatial heterogeneity

over small scales. SOC models can offer an alternative, but practical application of SOC models must

be feasible for the target user and yield valuable information. Reducing the data burden of the RothC

process-based model through secondary data sources for MAT and % clay did not detrimentally affect

model predictions of SOC stocks or rates of change. However, depending on the site, RothC may or

may not be able to accurately predict soil C evolution.

Using reference SOC values for native vegetation tended to lead to overestimation of SOC stocks on

farmed land, but the projected ∆SCyr was equally accurate with both SOCre f and SOCinit . Altering the

quantity of C input had a significant effect on predicted ∆SCyr; an increase in C input often drove rates

that were closer to measured ∆SCyr, partially because the model implementation omitted projections of

crop productivity change over time.

The IPCC T1 methodology will likely only outperform RothC if a primary consideration is conservative

prediction of ∆SCyr or if differences in tillage practice are present.

For modellers, these results challenge a focus on accurate input data and instead indicate that further

calibration steps are needed to ensure that RothC is generic enough for wide application.



Chapter 4

Model-data integration: options for

employing user data to improve SOC

predictions

4.1 Introduction

Whilst there exist various soil C models that can be applied to agricultural contexts at the field level,

such global SOC models can be inaccurate at individual sites (Cagnarini et al., 2019; Chapter 3). For

farmers and land managers, this reduces the value of model outputs and increases the risk associated

with relying on them for decision support. This is particularly true where the model does not provide an

explicit assessment of uncertainty.

Models are a key component in projections for carbon accounting. Increasingly, protocols for carbon

credits require periodic SOC measurements to validate and/or calibrate projections of SOC stock

change (Lavallee et al., 2024; Verra, 2023; Gold Standard, 2020), partially motivated by the afore-

mentioned mixed predictive accuracy of models at site level. However, these protocols often do not

provide methodologies for combining measurements with models (Oldfield, Lavallee, et al., 2022).

Measured data and models can interact in a number of ways. Campbell and Paustian (2015) mention

using data to formulate, calibrate, drive or evaluate a model. Data assimilation is a further form of

interaction, which has recently gained attention in environmental science (Carrassi et al., 2018). Data

assimilation "combines prior information from numerical model simulations with observed data to obtain

the best possible description of a dynamical system and its uncertainty" (Evensen et al., 2022). Because

it seeks effective ways of integrating observed data to improve model predictions and uncertainty

quantification, data assimilation is of increasing interest to those hoping to maximise the effectiveness

of SOC management.

60
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SOC measurements, as described in Chapter 1, are challenging for farmers, as they are costly, time-

consuming and unreliable (Campbell & Paustian, 2015). Whilst some of these challenges are being

reduced by new technologies such as soil probes and end-to-end sampling services, relying on com-

prehensive, regular sampling of soil organic C (SOC) on farms remains impractical in many contexts.

However, it is possible that farmers and land managers may have - or be able to gather - a sparse time

series of SOC data. Considering the strengths and weaknesses of both models and data, this chapter

focuses on options for small datasets of SOC measurements to improve SOC model predictions at

farm-level.

Taking together the diversity of patterns of SOC stock evolution observed during field studies and the

innumerable differences between management across sites, it is a tall order to expect a single set

of global model parameters to yield accurate predictions. Process-based models are based on the

current understanding of soil functioning and typically parameterise fixed relationships between climate,

environment and management. Process-based models such as RothC take a set of initial conditions

and propagate the system state forward in time. Errors in model outputs imply missing processes and/or

lack of process understanding.

Data assimilation into a model requires a decision on how to weight the importance of the site measured

data against the prior knowledge contained within the model, particularly where the goal is prediction

of future SOC stock change. Here, I used a range of approaches to assess how a farmer can best use

time-series SOC data to improve model predictions. I investigated three model structures with varying

levels of mechanistic influence, applied to the same dataset. The models are assessed for the following:

• Predictive capability

• Representation of uncertainty

• Volume of data required for reasonable outputs

The results are discussed in the context of on-farm decision support and implications for SOC modelling

and measurement protocols.

4.2 Methods

I studied the structure and outputs of three models, listed below in order of increasing influence of

measured data and decreasing influence of prior soil process understanding:

• Model I: RothC

Process-based model, using one measured value of initial SOC to initialise the model.
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• Model II: Bayesian Hierarchical Modelling with RothC as the state-space model (BHM)

Bayesian structure containing the RothC model at its centre, using measured data and Markov

Chain Monte Carlo methods to determine posterior distributions for RothC parameters.

• Model III: Bayesian Regression (BRM)

Bayesian linear regression with SOC as the dependent variable, and independent variables

similar to RothC input data.

This analysis is primarily focused on comparison of model prediction skill and representation of un-

certainty. I therefore took care that the main differences between the models were as a result of their

structure, with other aspects kept as consistent as possible across all models. Main examples of this

included employing the same user data types to inform both empirical and mechanistic models, and

consistent metrics for model skill. Models II and III were calibrated at the site level, and utilise the same

split of training and testing data. This methods section first explains the calculation approaches for each

of the three models, then metrics used for testing and comparing models, and finally summarises the

dataset to which these methods were applied.

4.2.1 RothC

The RothC model was introduced in Chapter 3, and its structure is shown in Figure 3.1. In brief, it in-

cludes five conceptual soil C pools: resistant plant material (RPM), decomposable plant material (DPM),

microbial biomass (BIO), humified organic matter (HUM) and inert organic matter (IOM). Decomposition

rates are modified by temperature, moisture and soil cover.

Models I and II both utilised a modified version of the RothC functions found in the SoilR package.

The changes from the published package allow values to be specified for various parameters usually

held constant in RothC (Table 4.1). A further change to the code is to split out the derivation of the

soil cover rate modifier, which is usually held inside the moisture rate modifier in SoilR. In the SoilR

defaults, the soil cover status is only allowed to take a single TRUE or FALSE rather than a monthly

vector (discussed in Chapter 3): the update for this analysis allows a monthly vector for soil cover to

inform the rate modifier values over time.

In Models I and II, the measured data values for clay percentage and soil sampling depth were used

as reported, climate data were gap-filled using CRU TS 4.06 (Climatic Research Unit et al., 2022).

Irrigation in treatments was not included, since reporting of quantities was insufficient.
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In Model I, the RothC default parameter values were used. Soil C pools were initialised in the same

way as in Chapter 3; by optimising plant residue inputs to reach the measured initial SOC value (Jordon

et al., 2022). The reported yield data was used to estimate plant residue inputs in forward runs using

Equation 4.1.

Ccrop, i = Cplant • yieldi • ((
rsi

hii
) + resi • (

1 − hii
hii

)) (4.1)

Where Ccrop,i is the PRI from crop i (Mg C ha−1), Cplant is the proportion of plant dry matter that is

carbon, yieldi is the measured dry matter yield of crop i (Mg DM ha−1), hii is the harvest index of crop

i, rsi is the root:shoot of crop i, and resi is a 0, 1 value for whether residues remained on the field or not.

Where plant material was applied as an amendment, the measured amendment dry matter value was

multiplied by Cplant and added to the carbon inputs.

Where farmyard manure (FYM) was applied as an amendment, the measured FYM carbon was provided

to the model without further modification, and modelled as set out in Coleman and Jenkinson (1987): 2

% to HUM and 49 % each to RPM and DPM.

4.2.2 Model II: Bayesian Hierarchical Model

The core approach for this model system was adapted from Davoudabadi et al. (2021, 2024). The aim

was to improve soil C predictions by better calibrating RothC parameters to each site using measured

data, whilst simultaneously recognising the uncertainty in measured data, in the modelled process

and also in the model parameters. The approach is a multi-level "hierarchical" model using Bayesian

methods. Some key terms and notation used in the following methods are summarised in Box A, below.

In summary, a Bayesian Hierarchical Model (BHM) framework was constructed containing RothC as a

state-space model for predicting soil carbon stocks. A Particle Marginal Metropolis Hastings (PMMH)

method was utilised to estimate parameter values for the state-space model and sources of uncertainty.

This section elaborates on these methods and is organised as follows: the central state-space model

is explained, the BHM structure is introduced and then the Bayesian algorithms used to estimate the

posterior distribution are summarised. The section concludes by summarising the specific application of

these methods in this study. For further detail on the computational benefits of the selected algorithms

compared to other options, the reader is directed to Davoudabadi et al. (2021).



4.2. Methods 64

State-space model

Auger-Méthé et al. (2021) define state-space models as ’a class of hierarchical models for time series

that specifies the dynamic of the hidden states and their link to the observations’. State-space mod-

els are valuable in ecology and environmental sciences as they can model natural processes and

measurement error separately, yielding outputs that can differentiate between natural variation and

imprecision in sampling (Auger-Méthé et al., 2021). Key to state-space models is the concept of hidden,

or ’latent’, variables. These latent variables are the true states of the environmental system, which

are unknown because the (known) measured values contain errors. State-space models combine

measured and latent variables to describe a system that evolves through time, while simultaneously

assessing observation error. These hierarchical models contain multiple levels of stochasticity, i.e.

multiple elements described well by a random probability distribution.

In the case of soil carbon, the aim is to use measured data, which include some error, to understand

the latent state of the soil carbon stock. Given latent states X and measurements Y , Davoudabadi et al.

(2021) represent a generic state-space model with Gaussian noise as follows:

Xt = f (Xt−1)+But + εt

Yt = g(Xt)+νt

(4.2)

Where εt and νt are vectors for state and measurement noise, respectively. Known (carbon) inputs,

vector ut , are multiplied by control-input matrix B. The first equation is called the state model, and the

second is the measurement (observation) model.

In this analysis, the state model is the process model RothC, introduced in the previous section. The

model considers climate, environmental and management effects on the soil, but is fundamentally based

on representing processes that are not directly observed.

SOC stock can be considered a latent variable that evolves with time as a Markov chain (Davoudabadi

et al., 2021), which means that the next state depends only on the current state, and not the historical

SOC stock. The state-space model can be utilised within a Bayesian Hierarchical Model structure, as

described below.
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Bayesian Hierarchical Model structure

A Bayesian modelling approach combines a priori understanding of the system to be parameterised

(the ’prior’) with observed data to improve knowledge about model parameters, and therefore model

results. The output is improved parameter estimates in the form of a posterior distribution and maximum

likelihood estimation of parameter values.

In this application, the BHM framework allows separation of some complexities of soil carbon modelling.

In process-based modelling of soil carbon, measurements (of soil carbon and other relevant quantities)

are used alongside the current understanding of environmental processes and of parameter values.

These three components each have uncertainties, which can be handled in the BHM structure.

In this study, the total BHM was the joint distribution (i.e. combination) of measured SOC data (Y ), the

process model (X ) and the parameters (θ ), shown in Equation 4.3 (see Box A for notation). These were

three separate levels of the hierarchy. The first level is the observation model (p(Y |X ,θ)), containing

noisy measured data that depend on the state variables, and the middle level (p(X |θ)) models soil

processes. These first two levels of the BHM were the two components of the state-space model in

Equation 4.2. The final layer of the hierarchy (p(θ)) contained the prior knowledge of the parameter

values.

p(Y, X , θ) = p(Y |X ,θ)• p(X |θ)• p(θ) (4.3)

p(X ,θ |Y ) = p(Y, X , θ)

p(Y )
= p(X |θ ,Y )• p(θ |Y ) (4.4)

The aim here was to better understand and estimate the RothC model process and parameters, given

the observed data, therefore the posterior distribution of interest was the conditional probability of the

process and parameters given the observations, shown in Equation 4.4. However, the probability density

of the data (p(Y )) was difficult to calculate and sample directly and so the posterior distribution is

challenging to evaluate. Instead, a Markov Chain Monte Carlo (see Box A) approach to estimating an

expectation for the posterior distribution was used, detailed in the subsection Bayesian methods to

evaluate the posterior distribution.
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Process model structure and equations

The core of the process model used in this BHM was the RothC model, with its parameter values

forming part of the final level of the BHM (see Table 4.1 and section on Priors, below).

Table 4.1: RothC model parameters allowed to vary in the BHM, and their defaults which are
used in Model I (RothC) and as prior means in Model II (BHM). * Default for agricultural crops.

RothC process RothC equation Parameter RothC default

Pool
decomposition
rates

If, at time i the pool p has SOC
SOCp,i = Y , then
SOCp,i+1 = Ye−abckt t C ha−1

with k per pool

kDPM 10
kRPM 0.3
kBIO 0.66
kHUM 0.02
kIOM 0

Temperature
rate modifier

a = a1

1+e(
106.06

T+18.27 ) a1 47.9

Moisture
rate modifier

b = (1−b1)+

b1 ∗ (max.T SMD−acc.T SMD)
(max.T SMD−0.444max.T SMD)

b1 0.8

Soil cover
rate modifier

c =

{
c1 when soil vegetated
1 when soil bare

c1 0.6

Pool split
for plant inputs

PRI = (1− 1
1+DR)DPM

+( 1
1+DR)RPM

DR 1.44 *

Pool split
for FYM inputs

FY MC = (DR.FY M
2 )(DPM+RPM)

+(1−DR.FY M)HUM
DR.FY M 0.98

Pool split from
PM pools to
CO2, BIO + HUM

CO2
BIO+HUM = xme−xe∗clay% + xc

xm 2.672
xe 0.0786
xc 3.0895

Proportion of BIO
in BIO + HUM

πB +πH = 1 πB 0.46

The remainder of this sub-section summarises the additional modelling steps taken to provide RothC

with its required input data from the dataset.

Carbon inputs

Crop yields used in the model were observed yield values with random observation error. To calculate

carbon inputs from crop yields, Equation 4.1 was used. Carbon input parameters included in the BHM

parameter model were Cplant , hi and rsi.

SOC pool values
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In order to run RothC forward, initial carbon stock values must be provided for each of the five pools

(DPM, RPM, BIO, HUM, IOM). Often, the RothC model is run in inverse mode to yield equilibrium pool

values. However, in this case, where the MCMC samples model parameters and state variables a huge

number of times, this is prohibitively expensive to compute. Therefore, initial pool values were generated

from the overall SOC value using simple proportions included in the parameter model of the BHM. The

priors for these parameters were established by considering the pool proportions at the end of the spin-

up when the ’out-of-the-box’ RothC (Model I) was run in inverse mode. The means of these proportions

were stable across sites and treatments in this dataset; their small variation is accounted for in the prior

distribution (see Table 4.2). IOM was calculated using the equation from Falloon et al (1998) and never

varied.

Site data

Soil sampling depth, clay percentage and climate data were not included in the parameter model of the

BHM. Since the PMMH process was run for each site individually, adding these parameters would have

risked overfitting. Uncertainty in these quantities is therefore not represented.

Observation model equations

Observations modelled by states are total organic carbon (TOC), used here to refer specifically to the

sum of all SOC pools, and crop yields. The observation model equations for each state Xi, field j and

time t are as shown in Equation 4.5.

Yi ( j, t)|Xi ( j, t) = xi ( j, t) ∼ log-normal (ln(xi ( j, t)), σ
2
i ) (4.5)

Where xi ( j, t) is the observation for state i in field j at time t and measurement error σ2
i .

Priors for parameter model

Priors for parameters and state variables are shown in Table 4.2. Priors were generally somewhat

informative (see Box A in Section 4.2.2). The priors for RothC parameters were the RothC default

values. Crop parameter priors (hi and rsi) were from Spawn et al. (2020).
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Bayesian methods to evaluate the posterior distribution

Since the posterior distribution is difficult to evaluate, Markov Chain Monte Carlo (MCMC) methods

were employed to sample from the distribution. MCMC algorithms aim to approximate the target distri-

bution by drawing samples from it. Here, they were used to sample the parameter values of interest.

Referring back to the posterior in Equation 4.3, correlated random samples from p(θ |Y ) were drawn

by a variant of the MCMC Metropolis Hastings (MH) algorithm called the Correlated Pseudo-Marginal

method (CPM). The Bootstrap Particle Filter (BPF) was used to draw samples from p(X |θ ,Y ).

At its core, the CPM algorithm (see Algorithm A.4.2) proposes a new sample of θ , tests the likelihood

of the new sample and uses an acceptance condition to either keep the new sample as part of (i.e.

evidence for) the developing distribution or reject it and return to the previous distribution. By repeating

this many times, the large number of accepted samples can be expected to converge on describing

the target posterior distribution. In this case, the CPM used fixed random numbers to produce highly

correlated likelihood estimators (see Algorithm A.4.3, Davoudabadi et al., 2024), which helps reduce

computation times.

Since the aim is prediction of SOC stocks (X ), the number of SOC measurements (Y ) is less than

the number of latent states to estimate (Shumway & Stoffer, 2016). A filtering algorithm was used to

estimate states (X ) based on observed data, often in time-series systems like this one.

The posterior distribution for the SOC state was estimated by the Bootstrap Particle Filter (see Algorithm

A.4.1). Particle filters such as the BPF are based on sequential importance resampling. They update

empirical approximations to represent the new posterior distribution in light of each new observation by

propagating a number of particles (potential SOC states) through the system (here, through time). In

summary, particle values are proposed based on a user-specified proposal distribution. These values

are assigned a weight based on the likelihood of the measured data given the particle estimate of SOC,

and then resampled based on their weight, so that more likely SOC states are selected more often than

less likely SOC states.

The combination of the CPM and BPF methods is called Particle Marginal Metropolis Hastings (PMMH).

PMMH updates the parameters and maintains a set of particles that evolve over time in a structure that

is computationally efficient for complex models such as this one (Davoudabadi et al., 2021).

Proposal distributions are shown in Table 4.2.
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Application of PMMH to the BHM

In this study, the PMMH algorithms were applied to each site separately, using observation data for

multiple treatments. A subset of the observation data was utilised in each case. This was to resemble

the volumes of data available to most farmers, with the helpful side effect of reduced computation time.

Four MCMC chains of 10,000 samples were run for each site, discarding the first 1000 as burn-in and

no thinning was performed (see Box in Methods section).

To assess whether the MCMC process has sampled sufficiently well and reached a stationary distribu-

tion, the Gelman-Rubin convergence diagnostic was used (Gelman & Rubin, 1992).

4.2.3 Model III: Bayesian Regression Model

The brms R package (Bürkner, 2017) was used for Bayesian regression modelling of SOC stocks. A

linear regression based on the same variables as RothC (and therefore the BHM) was applied to each

site, see Equation 4.6. Given that models were generated per site, there is no climate or soil type data

used here, though a multi-site BRM would likely benefit from their inclusion. The same priors were used

for all sites (Equation 4.6), with the mean for the intercept a being the mean of initial SOC stocks across

the dataset, with a large standard deviation.

The BRM was generated using four chains of 10,000 samples, discarding the first 1000 as burn-in; the

same as the BHM. The same subsets of observation data were also used (see Table 4.3) to investigate

the impact of additional observation data on model predictions.

TOC ∼ N(µ,σ)

µ = a+b1XFY M +b2XOrg +b3XYield +b4XYear

a ∼ N(38,10)

bi ∼ N(0,1)

σ ∼U(0,20)

(4.6)

where TOC is soil organic carbon (Mg C ha−1), µ is the mean value for TOC, calculated using the

second line of the equation and σ is variance. XFY M is farmyard manure applied (Mg C ha−1), XOrg

is organic amendment applied (Mg DM ha−1), XYield is crop yield (Mg DM ha−1), XYear is the calendar

year (no adjustment), a is the intercept and bi are coefficients.
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4.2.4 Model testing: prediction

All models were trained on subsets of available observation data. At least one treatment per site was

omitted from the Bayesian models’ training, so that prediction of out of sample management could be

tested. In cases where there were larger numbers of SOC measurements, the Bayesian models were

trained on the initial set of measurements, leaving some amount of later measurements available to test

prediction skill over time.

4.2.5 Field data

The dataset of SOC measurements used in this analysis is from published field experiments. The

dataset was not collated systematically. Reviews repeatedly found a lack of long-term and time-series

SOC stock data with sufficient meta-data (Bradford et al., 2023; McClelland et al., 2021; Poeplau & Don,

2015). Given the need for other RothC input data to also be reported, it was not feasible or sensible to

attempt a new systematic review.

The experiment data used is summarised in Table 4.3. There were three sources of field data. Dimassi

et al. (2014) varied tillage and crop rotations at Boigneville in France. Jha et al. (2021) included three

sites in India, which each had three different amendment practices. Supplementary information was

extracted from Jha et al. (2014). The third source of data was Rothamsted ERA (Rothamsted Research,

2012), from which the Hoosefield Barley long-term experiment is used; this varied the use of FYM.

Aside from different climates and management, the different time horizons of these experiments are of

interest in terms of predicting SOC stock change into the future. The RothC model was calibrated at

the Rothamsted site, but Hoosfield Barley data was not used for this purpose. Data presented in figures

were extracted using WebPlotDigitizer (Rohatgi, 2024).
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Table 4.2: Parameter definitions, prior distributions and proposal distributions used in the
Bayesian Hierarchical Model. N = normal distribution, Tr.N = truncated normal distribution,
U = uniform distribution. For where parameters are used in RothC, see Table 4.1

Param. Definition Prior distribution Proposal distribution
a1 Temperature rate modifier N(47.9, 10) N(a1, 2)
b1 Moisture rate modifier Tr.N(0.8, 0.4, u = 1) N(b1, 0.05)
c1 Soil cover rate modifier U(0, 1) Tr.N(c1, 0.1, l = 0, u = 1)
kDPM

Pool decomposition rates

Tr.N(10, 5, l = 0.5) Tr.N(kDPM, 1, l = 0)
kRPM Tr.N(0.3, 0.2, l = 0.025) Tr.N(kRPM, 0.05, l = 0)
kHUM Tr.N(0.02, 0.01, l = 0) Tr.N(kHUM, 0.001, l = 0)
kBIO Tr.N(0.66, 0.4, l = 0.05) Tr.N(kBIO, 0.05, l = 0)
kIOM Fixed: 0
πB BIO part of BIO:HUM split Tr.N(0.46, 0.2, l = 0.1) Tr.N(πB, 0.02, l = 0)
πH HUM part of BIO:HUM split Fixed: 1−πB

DR DPM:RPM for plant inputs N(1.44, 0.2) Tr.N(DR, 0.05, l = 0)
DRFY M DPM + RPM for FYM inputs U(0.7, 1) Tr.N(DRFY M, 0.02, l = 0.5,

u = 1)
xm CO2 rate slope parameter N(2.672, 0.2) N(xm, 0.1)
xc CO2 rate constant N(3.0895, 0.4) N(xc, 0.1)
xe CO2 rate exponent N(0.0786, 0.05) N(xe, 0.01)
Cplant Plant C content N(0.5, 0.05) Tr.N(0.01, l = 0.2)
rsWh

Crop root-shoot ratios

Tr.N(0.2, 0.05, l = 0.1) Tr.N(rsWh, 0.02, l = 0)
rsMa Tr.N(0.18, 0.05, l = 0.1) Tr.N(rsMa, 0.02, l = 0)
rsSy Tr.N(0.19, 0.05, l = 0.1) Tr.N(rsSy, 0.02, l = 0)
rsBa Tr.N(0.11, 0.025, l = 0.05) Tr.N(rsBa, 0.001, l = 0)
rsPe Tr.N(0.08, 0.025, l = 0.05) Tr.N(rsPe, 0.001, l = 0)
rsSb Tr.N(0.43, 0.1, l = 0.2) Tr.N(rsSb, 0.02, l = 0)
rsSg Tr.N(0.18, 0.05, l = 0.1) Tr.N(rsSg, 0.02, l = 0)
hiWh

Crop harvest index

Tr.N(0.39, 0.1, 0.25) Tr.N(hiWh, 0.01, l = 0.1, u = 1)
hiMa Tr.N(0.53, 0.1, l = 0.25) Tr.N(hiMa, 0.01, l = 0.1, u = 1)
hiSy Tr.N(0.42, 0.1, l = 0.25) Tr.N(hiSy, 0.01, l = 0.1, u = 1)
hiBa Tr.N(0.46, 0.1, l = 0.25) Tr.N(hiBa, 0.01, l = 0.1, u = 1)
hiPe Tr.N(0.3, 0.1, l = 0.1) Tr.N(hiPe, 0.01, l = 0.1, 1)
hiSb Tr.N(0.4, 0.1, l = 0.1) Tr.N(hiSb, 0.01, l = 0.1, u = 1)
hiSg Tr.N(0.44, 0.1, l = 0.25) Tr.N(hiSg, 0.01, l = 0.1, u = 1)
pDPM SOC % DPM Tr.N(0.01, 0.005, l = 0) Tr.N(pDPM, 0.001, l = 0)
pRPM SOC % RPM Tr.N(0.16, 0.02, l = 0) Tr.N(pRPM, 0.001, l = 0)
pHUM SOC % HUM Tr.N(0.81, 0.05, l = 0) Tr.N(pHUM, 0.001, l = 0)
pBIO SOC % BIO Fixed: 1− (pDPM + pRPM + pHUM)

σ2
TOC Variance TOC Tr.N(1, 0.2, l = 0) Tr.N(σ2

TOC, 0.1, l = 0)
σ2

eWh

Crop observation errors

Fixed: 0.25
σ2

eMa Fixed: 0.25
σ2

eSy Fixed: 0.1
σ2

eBa Fixed: 0.25
σ2

ePe Fixed: 0.25
σ2

eSb Fixed: 0.5
σ2

eSg Fixed: 0.25
σ2

eIOM Observation error IOM Fixed: 0.01
σ2

eTOC Observation error TOC Fixed: 0.5
σ2

eFY M Observation error FYM Fixed: 0.5
YTOC Initial SOC Tr.N(sitemean, 1, l = 0) Tr.N(YTOC, 0.5, l = 0)
YIOM Initial IOM Fixed: site mean using YTOC and Falloon et al. (1998)
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Table 4.3: Site and management information for experiments modelled. Refs: 1 Dimassi et al. (2014), 2 Jha et al. (2021), 3 (Rothamsted Research, 2012).
Boigneville varies tillage: NT = no-till, ST = shallow till, FIT = full-inversion till. CC = Cover Crop, FYM = Farmyard Manure

Ref Site location Duration
(years)

Clay
(%)

SOC depth
(cm)

Treatment name
(bold = used to
train models)

SOCinit
(Mg ha−1)

Crops Organic
amendment

Mineral
fertiliser

#
obs.

Min. #
training obs.

(years of experiment)

# training
treatments

1
Boigneville,
France

41 24 28

CM1_NT
41.9 - 42.5 wheat, maize none yes

11

24 (21 yrs) 6

CM1_ST 11
CM1_FIT 11
CM2_NT

42.0 - 42.6 wheat, maize CC (2002 - 2011) yes
10

CM2_ST 10
CM2_FIT 10
CM3_NT

41.9 - 42.6
wheat, maize,
barley, pea,
sugarbeet

none yes
10

CM3_ST 10
CM3_FIT 10
CM4_NT

41.8 - 42.4
wheat, maize,
barley, pea,
sugarbeet

none yes
10

CM4_ST 10
CM4_FIT 10
CM5_NT

41.8 - 42.3 wheat, maize CC (2002 - 2011) yes
10

CM5_ST 10
CM5_FIT 10
CM6_NT

41.9 - 42.5 wheat, maize none yes
11

CM6_ST 11
CM6_FIT 11

2

Jabalpur,
India

38 57 30
Nil_Jab

33.8
wheat,
soybean

none none 20
12 (9) 2NPK_Jab none yes 28

NPK+FYM_Jab FYM yes 26

Ludhiana,
India

35 7.2 30
Nil_Lud

13.7 wheat, maize
none none 33

12 (6) 2NPK_Lud none yes 35
NPK+FYM_Lud FYM yes 21

Palumpur,
India

33 23.7 30
Nil_Pal

40.5 wheat, maize
none none 20

12 (9) 2NPK_Pal none yes 21
NPK+FYM_Pal FYM yes 22

3
Rothamsted,
UK

146 20 23
HB_Nil

30.7 barley
none

none
8

12 (113) 2HB_FYM FYM 8
HB_FYM5271 FYM (1852 - 1971) 8
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4.3 Results

The results of the two Bayesian approaches are presented first, then the three model approaches are

compared within and between sites.

4.3.1 Bayesian Hierarchical Model

Computational resource use of this BHM was far less economical than was achieved by Davoudabadi

et al. (2024). This is partly because the SoilR RothC functions are relatively slow and the RothC

function rejects combinations of parameters that would yield negative respiration coefficients. Whilst

this is correct behaviour, the workaround was to draw a totally new sample of parameters. It is likely

that the computational efficiency of the BHM was also compromised by the inclusion of such a large

number of RothC parameters.

Before using BHM outputs, it is necessary to check that the MCMC sampling has been effective and that

the model is valid for prediction. Applying the convention that values of the Gelman-Rubin convergence

diagnostic less than 1.2 indicate that parameter values from different chains are indistinguishable

from one another (Brooks & Gelman, 1998), Figure 4.1 suggests that most parameters consistently

converged across chains for each site and data subset. However, there are important exceptions in

crop harvest indices and root:shoot values, as well as b1 and πB. With the exception of rsBa (which was

only relevant at Rothamsted), each of these parameters has successfully converged in some cases

but not in others. Interestingly, the RothC parameters that exceeded the threshold overlap across sites,

suggesting that the BHM structure should perhaps be reviewed and weaker priors used. Since values

do not exceed 1.2 by much, it is possible that a greater number of MCMC samples would result in more

complete convergence. The following results utilise the BHM outputs, while acknowledging that some

parameters did not converge as consistently across chains as would be ideal.

Figure 4.2 shows parameter posterior distributions for each site, alongside their prior distribution. The

posterior distributions are from the BHMs using the largest training data subset, with all four chains

combined. In Figure 4.2, the maximum likelihood estimates (MLEs) are the parameter values on the

x axes that are associated with the maximum density value on the y axis. For most parameters, the

MLEs are relatively consistent across sites, and many are similar to their prior MLE. A few parameters,

including b1, c1, kRPM, kHUM and DRFY M have MLEs that are (relatively) more different from their RothC

defaults and show a common direction of change across sites (Figure 4.3), which could indicate a

mechanistic error in RothC parameter values. Parameters c1 and DRFY M were given uniform priors

(Table 4.2). Their RothC defaults are 0.6 and 0.98, respectively, whereas their posterior MLEs are

around 0.43-0.55 and 0.83-0.86, respectively. A decrease in c1 implies that soil cover is more influential
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for decomposition than RothC suggests. A decrease in DRFY M implies that FYM has a greater input

to the HUM soil C pool than RothC suggests: only 2 % of input FYM carbon goes to HUM in RothC,

whereas the BHM result suggests this could be over 10 %. The posterior MLEs also suggest that

temperature influence on decomposition (a1) varies by site and that topsoil moisture deficit (through

b1) is less influential for decomposition, particularly at Boigneville. However, irrigation was present at

the three Indian sites (Jha et al., 2021) and not included in the water provision modelled due to lack

of quantitative data reported: the reduced influence of precipitation-induced topsoil moisture deficit at

these sites is likely related to the provision of additional water through irrigation.

It is particularly notable that central estimates of k decomposition parameters are higher in all posterior

distributions than in RothC. Crop parameters sometimes did not converge across chains (Figure 4.1),

but a common pattern seems to be an increase in both harvest index (hi) and root:shoot (rs) estimates

compared to prior values. Referring back to Equation 4.1, this might suggest that residue inputs have a

smaller contribution to SOC than anticipated.

Figure 4.3 shows the spread of parameter posterior MLEs across sites and training data subsets

(chains combined), compared to prior means. Here, the spread of the boxplots indicates the magnitude

of the impact of more data on the MLE of each parameter at each site. Due to the different uses

and magnitudes of parameters (y-axis scales) it is not appropriate to compare MLE spread across

parameters, only between sites for a particular parameter. Many parameters have greater between-site

differences in value than changes between training datasets; examples include a1, c1, kRPM and kHUM.

The addition of more training data did not affect the parameter MLE and the BHM at the site repeatedly

converged on the same distribution. The difference in MLEs between sites demonstrates the value of

local calibration. For several parameters, Boigneville demonstrates a different pattern from the other

sites, whether in spread, MLE value or change from the prior.

In general, more training data did not have a significant impact on BHM predictions or prediction

intervals (see Figure A.4.1).
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Figure 4.1: Gelman-Rubin convergence diagnostic values across four chains for each site and data subset. NA: parameter not modelled. Black
boxes: values > 1.2. Parameters: a1: temperature rate modifier, b1: moisture rate modifier, c1: soil cover rate modifier, ki: pool i decomposition rate,
πB: BIO part of BIO:HUM split, πH : HUM part of BIO:HUM split, DR: DPM:RPM for plant inputs, DRFY M: DPM + RPM for FYM inputs, xi: CO2 rate
coefficients, Cplant : plant C content, rsi: crop root-shoot ratios, hii: crop harvest indexes, pDPM: SOC % DPM, pRPM: SOC % RPM, pHUM: SOC %
HUM, pBIO: SOC % BIO, σ2

TOC: variance TOC, σ2
eTOC: observation error TOC, YTOC: initial SOC. Crops: Wh: wheat, Ma: maize, Sy : soybean, Ba:

barley
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Figure 4.2: BHM parameter posterior distributions for the largest training data subset. Chains combined. Black lines show prior distributions (see
Table 4.2). Parameters: a1: temperature rate modifier, b1: moisture rate modifier, c1: soil cover rate modifier, ki: pool i decomposition rate, πB: BIO
part of BIO:HUM split, πH : HUM part of BIO:HUM split, DR: DPM:RPM for plant inputs, DRFY M: DPM + RPM for FYM inputs, xi: CO2 rate coefficients,
Cplant : plant C content, rsi: crop root-shoot ratios, hii: crop harvest indexes, pDPM: SOC % DPM, pRPM: SOC % RPM, pHUM: SOC % HUM, pBIO:
SOC % BIO, σ2

TOC: variance TOC, σ2
eTOC: observation error TOC, YTOC: initial SOC. Crops: Wh: wheat, Ma: maize, Sy : soybean, Ba: barley
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Figure 4.3: Site boxplots for BHM posterior maximum likelihood estimates across training data subsets. Parameter values are shown on the y-axis
with black lines indicating prior means (see Table 4.2). Chains combined. Parameters: a1: temperature rate modifier, b1: moisture rate modifier, c1:
soil cover rate modifier, ki: pool i decomposition rate, πB: BIO part of BIO:HUM split, πH : HUM part of BIO:HUM split, DR: DPM:RPM for plant inputs,
DRFY M: DPM + RPM for FYM inputs, xi: CO2 rate coefficients, Cplant : plant C content, rsi: crop root-shoot ratios, hii: crop harvest indexes, pDPM:
SOC % DPM, pRPM: SOC % RPM, pHUM: SOC % HUM, pBIO: SOC % BIO, σ2

TOC: variance TOC, σ2
eTOC: observation error TOC, YTOC: initial SOC.

Crops: Wh: wheat, Ma: maize, Sy : soybean, Ba: barley



4.3. Results 79

4.3.2 Bayesian Regression Model

Figure 4.4 shows the model coefficient values for each site and data subset using Equation 4.6.

Whilst included in the regression model (Equation 4.6), none of the training data included organic

amendments, so these terms are omitted from model outputs. Coefficients have clear between-site

differences, and also vary as more training data are used. More data at Rothamsted increased the

positive impact of C inputs (FY M and Crop yield) on SOC, and decreased the impact of time. At

Boigneville, the impact of Crop yield on SOC has a negative MLE, increasing with additional data,

whilst the Year coefficient gets increasingly positive. Overall, coefficients for Ludhiana and Boigneville

are significantly more constrained than for other sites. This may be because these two sites did not

have FYM in their treatments, reducing the number of modelled parameters.

Figures 4.5-4.9 show BRM predictions for each site through time, with one plot for each treatment/training

data subset combination. The measured data are also plotted, with standard deviation from the mean

(SD) shown where this data was available. In most cases, the trajectory of the BRM predictions is

similar for all training data subsets. Across sites, it seems that more training data are beneficial for short

term future predictions, but not necessarily for long-term predictions or those for unseen treatments.

In some cases, the smaller training data subsets yield prediction intervals that successfully include

future measured data, but additional training data drives a narrowing of the model prediction interval

that leaves some data outside of its range. This is true for NPK_Jab, NPK+FYM_Jab (Figure 4.6) and

NPK_Lud (Figure 4.7).

As might be expected, the BRMs sometimes perform worse on unseen treatments compared to those

they were trained on. The Ludhiana BRMs (Figure 4.7) were not trained on the treatment including

FYM, resulting in no useful coefficient to predict the FYM treatment. Predictions from these linear BRMs

typically diverge from observed SOC data over time: they are more reliable for short term prediction than

long term prediction.

The BRM was trained on the most treatments (and data) at Boigneville, and in most cases the linear

prediction is reasonable. However, one main difference between treatments in Boigneville is tillage, and

this is not reflected in the BRM structure. Given the absence of FYM, this means that, for a given year,

the predictions between treatments at Boigneville can only vary due to crop yield. Nevertheless, the

most constrained prediction intervals are associated with the Boigneville site (Figure 4.5). Conversely,

the long timescales over which the sparse Rothamsted SOC training data was gathered leaves greater

model uncertainty over the trajectory of SOC (wide prediction intervals) and a generally poor prediction.
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Figure 4.4: Coefficient values for each BRM, 95% credible interval. Coefficients are not shown where the training data did not include any values for
that variable- specifically FYM for both Boigneville and Ludhiana (which was trained on Nil and NPK treatments).
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Figure 4.5: Predictions from BRMs given different training data subsets for Boigneville.
Prediction and credible intervals of the model are shown. The standard deviation of measured
data is shown where this was available.
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Figure 4.6: Predictions from BRMs given different training data subsets for Jabalpur. Prediction and credible intervals of the model are shown, ± 1
standard deviation of measured data is shown where this was available.
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Figure 4.7: Predictions from BRMs given different training data subsets for Ludhiana. Prediction and credible intervals of the model are shown. Note:
the standard deviation of measured data was not available for this site.
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Figure 4.8: Predictions from BRMs given different training data subsets for Palampur. Prediction and credible intervals of the model are shown, ± 1
standard deviation of measured data is shown where this was available.
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Figure 4.9: Predictions from BRMs given different training data subsets for Rothamsted. Prediction and credible intervals of the model are shown.
Note: the standard deviation of measured data was not available for this site.
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4.3.3 Model comparison

The three models used here have significantly different approaches, but are all intended to help predict

SOC change over time. The RothC model uses only one SOC value to initialise, whereas the BHM and

BRM are trained on sparse observed datasets. Figures 4.10-4.14 compare all three models for each

site in turn. Note that y-axes are different for each treatment.

As seen in Chapter 3, the ability of the RothC model to predict SOC stock changes over time varies

significantly between sites. For some treatments at Boigneville, RothC’s prediction at the end of a 42

year run is a 75 % increase in SOC stock, where observed values show a roughly 10-20 % increase.

RothC seems to have greatest capability for predicting SOC change when there are fewer sources

of extra C, i.e. the Nil treatments. These results, combined with the higher posterior estimates for

decomposition parameters, suggest that RothC overestimates C retention from inputs.

For Rothamsted, Jabalpur, Ludhiana and Palampur, the BHM prediction does not diverge significantly

from the RothC prediction. At Boigneville, the BHM prediction is much more different from RothC and a

better prediction for the measured data. Further, the BHM prediction interval is narrower. Due to having

more treatments, the Boigneville training datasets were larger than those for other sites. This is likely to

contribute to the stronger predictive capability of the trained models. In addition, the Boigneville site had

measured data at 3-5 year intervals, where Ludhiana and the other Indian sites had some stretches

of annually measured SOC data and Rothamsted measurements were decadal. The modelling outputs

are affected by the frequency of SOC measurements used as training data.

Except for Rothamsted, the 95% prediction intervals for the BHM approach are consistently wider than

those for the BRM and all observed SOC values are within the 95% PI for the BHM predictions. On

the other hand, of the three models, the BRM often provides the closest central prediction to measured

SOC values.

The results for Rothamsted are different from the other sites as the RothC model predicts the change in

soil C most accurately (Figure 4.14). This is likely driven by an accurate description of the added FYM

carbon in RothC in terms of allocating its composition to RothC pools. However, the lack of improvement

by BHM or BRM is worth examination. The relatively poor BRM performance suggests that a linear

model is not useful over the much longer time horizon of the Rothamsted data. The BHM for Rothamsted

shows the greatest lack of convergence (Figure 4.1) and took longest to complete, which indicates that

the RothC prior was difficult to improve upon using this dataset.
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Figure 4.10: Model predictions from RothC, BHM and BRM compared to measured data at Boigneville, split by treatment. The subset of observations
used to train the BHM and BRM are circled in red: this plot shows the models with the largest amount of training data. The standard deviation of
measured data is shown where this was available.
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Figure 4.11: Model predictions from RothC, BHM and BRM compared to measured data at Jabalpur, split by treatment: this plot shows the models
with the largest amount of training data. The subset of observations used to train the BHM and BRM are circled in red. The standard deviation of
measured data is shown where this was available.



4.3.R
esults

89

Figure 4.12: Model predictions from RothC, BHM and BRM compared to measured data at Ludhiana, split by treatment: this plot shows the models
with the largest amount of training data. The subset of observations used to train the BHM and BRM are circled in red. Note: the standard deviation
of measured data was not available for this site.
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Figure 4.13: Model predictions from RothC, BHM and BRM compared to measured data at Palampur, split by treatment: this plot shows the models
with the largest amount of training data. The subset of observations used to train the BHM and BRM are circled in red. The standard deviation of
measured data is shown where this was available.
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Figure 4.14: Model predictions from RothC, BHM and BRM compared to measured data at Rothamsted, split by treatment: this plot shows the models
with the largest amount of training data. The subset of observations used to train the BHM and BRM are circled in red. Note: the standard deviation
of measured data was not available for this site.
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4.4 Discussion

Prediction of soil C change over time in managed landscapes is challenging because drivers span

microscopic to global scales (Wiesmeier et al., 2019). Capturing all these drivers in a single model that

is generic enough to be applied to a broad range of settings is unlikely. Whilst it is also infeasible to rely

solely on direct measurement as a means of understanding soil C (Bradford et al., 2023), small datasets

could be useful to calibrate soil C models to more local conditions. Given the uncertainty in both model

parameters and measured training data, Bayesian methods are a sensible choice for combining soil C

models and data (Davoudabadi et al., 2021).

I used time series soil C data from five sites to train two Bayesian models. The sites varied in environ-

ment, climate and management, as well as the patterns of soil C data collected. Minimal subsets of the

data were used to train the models, with the aim of identifying minimum data requirements to undertake

the model training process. This analysis cannot make global conclusions from the small sample of

site-level results, but can further the discourse on the value of process-based models, model-data

assimilation and soil C measurement protocols.

4.4.1 Model predictions

The RothC process-based model overestimated soil C accumulation across most treatments, with the

majority of exceptions being treatments with no non-crop inputs (mineral or organic). Thiagarajan et al.

(2022) also observed this at Canadian sites. The RothC defaults were the BHM priors, and this remains

evident in the BHM posterior distributions and prediction: the BHM typically shows a similar prediction to

RothC, whilst calibrated to be somewhat closer to the observed soil C levels. The BHM results suggest

that the priors specified were too informative; preventing the data from affecting the parameter values

strongly enough to significantly affect the models’ predictions. In addition, there were a small number of

instances where parameters did not meet the accepted threshold of the Gelman-Rubin diagnostic for

convergence across chains. Given that the diagnostic values are proximal to the threshold, it is likely

that a smaller set of parameters and/or longer chains of MCMC samples would have been beneficial for

clearer convergence.

The posterior BHM distributions suggest that climate-induced topsoil moisture deficit is less influential

than RothC suggests across the modelled sites, though some un-modelled irrigation in modelled treat-

ments may have contributed to that conclusion. Evidence that temperature’s influence on decomposition

rates varies by site might suggest a missing representation of the adaptation of soil microorganisms to

hotter temperatures in warmer climates. A more sophisticated function of the temperature response

could consider difference in temperature from a locally determined optimum.
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Posterior BHM distributions for all sites suggest that RothC underestimates the role of soil cover in

slowing decomposition, and underestimates decomposition rates (k) in general. However, this analysis

allowed Bayesian calibration of both initial SOC pool proportions (p) and the pool decomposition rates

(k). The only methodological step taken to control covariance between these quantities was the use of

fairly informative priors. These relationships between parameters should be considered further in future

work.

The posterior distributions of RothC parameters have each been informed by one site and directly

represent a set of model parameters that best fit the site’s data, given the methods applied; including

the information in the prior and soil process mechanisms in RothC. Conclusions about the generic

RothC parameters and the representation of processes can be tentatively drawn where there are similar

posterior distributions across sites. Where parameters have a similar posterior MLE across sites that is

different from the RothC default, this could indicate a mechanistic difference and re-calibration suitable

for the generic model. Given the variety of climates, soils and management practices covered in this

dataset, cases where there is a pattern in direction of change in the MLE from the prior value across

sites can also be tentatively identified as mechanistic differences. However, care should be taken in

making adjustments to any parameter in isolation. Expanding this analysis to include a wider array of

management, environment (including soil type) and climate combinations would benefit any review of

RothC defaults.

The BRM linear model is data-led and, of the three models, tended to fit the data best over short

predictive periods. This model has no equilibrium or saturation dynamic included and as such would

predict soil C accrual forever given a favourable C input level. As for the linear models from Chapter

2, this makes the BRM suitable for use over management timescales for the majority of arable soils

that are at a soil C deficit (Six et al., 2024), but not suitable for long-term prediction. BRM predictive

capability in untrained treatments was variable and the coefficients in the were somewhat uncertain

(Figure 4.4), with some credible intervals crossing zero. Whilst increasing the amount of training data

was rarely detrimental to the uncertainty of a given coefficient, it is notable that in many cases the

credible interval did not get narrower with additional information. Across all coefficients, the Ludhiana

BRM had the narrowest credible intervals, though this was not reflective of better predictive capability

(Figure 4.7). In particular, the Ludhiana BRM could not model the impact of FYM, an additional organic

C input, since it was not trained on this treatment. For decision support, this is a critical limitation of the

BRM approach: the model has no scope to represent treatments for which it has not been trained.
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Applications of the BRM approach are limited to short and medium term predictions of soil C stocks

for treatment types and sites for which a model has been trained. Through coefficients, BRMs can

give insights on the relative importance of different factors for managing soil C at the site, as well as

the uncertainty associated with that conclusion (Figure 4.4). Therefore, it is best suited to considering

changes associated with new combinations of practices the model has been trained on.

Comparing the models shows that central BHM predictions were often better than RothC but not as

good as the BRM. None of the models were reliable over multi-decadal time horizons. The BHM’s

wide prediction intervals consistently include all the data in a way not matched by other models; better

representation of uncertainty is a strength of this method.

4.4.2 Soil C data collection

Where data was available, SDs of measured SOC data indicate the uncertainty in measured data.

At Boigneville, the uncertainty of some measured data was of a similar magnitude to the prediction

uncertainty of the BRM, and the BRM prediction interval always overlapped with ± 1 SD of measured

data. This observation uncertainty is a key consideration for the measurement and use of SOC data,

as the variation between measured values can be greater than the change in mean SOC stock. For

example, the data at Ludhiana was collected roughly annually in the training data subsets. Despite being

relatively small, some of the implied year-on-year changes in SOC stock would be hard for a model

to explain and predict, showing abrupt, sporadic changes in direction despite no significant changes

in management (see Figures 4.7 and 4.12). On the other hand, the less than decadal measurement

frequency at Rothamsted (see Figures 4.9 and 4.14) is too rare to capture the level of SOC stock

change that is of interest to land managers, though it is well predicted by RothC. The poor predictive

capability of the BRM at this site suggests that other factors are influencing the SOC stock at this

temporal resolution.

Overall, annual measurement of SOC stock change focuses on short term fluctuations which are likely

dominated by drivers such as weather, whilst decadal measurement of SOC stocks highlights the impact

of long term drivers such as the climate. Both of these are hard (or impossible) for a land manager to

affect, and challenging for a SOC model to predict if the modelled scope does not explicitly include

these drivers. Measuring SOC stock every 3-5 years, as was done at Boigneville, is recommended for

capturing the impact of management on soil. The empirical modelling benefit of this is exemplified by

the relatively strong predictive capability of both Bayesian approaches at the Boigneville site.
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Modellers would usually expect that a larger training dataset would improve a model’s predictive cap-

ability (Fer et al., 2018). However, in both BHM and BRM, more data did not always help predictions

and sometimes worsened long-term predictions and prediction intervals (e.g. Jabalpur, Figure 4.6).

The BRM coefficients were rarely better constrained (Figure 4.4) and the BHM convergence actually

sometimes got worse with more data (Figure 4.1). However, both BRM and BHM perform best at

Boigneville, where they were trained on most data because of a greater number of treatments. Relative

to the other sites, the Boigneville dataset has more treatments - therefore more data - and a preferable

frequency of SOC measurement data. It is difficult to identify how each of these dataset characteristics

contribute to the better model predictions. Overall, it is clear that predictions are closer to observed SOC

stocks where the model has been trained on the treatment; particularly the combination of C inputs

present. Taken together, these results suggest that training the model on a variety of treatments is more

beneficial for predictive capability than additional time-series data on a small number of treatments.

4.4.3 Summary of implications for decision support and carbon accounting

• Models

– Across sites, default RothC parameters underestimate overall decomposition rates and the

importance of soil cover for moderating decomposition. The known omission of irrigation

data and the broad approach used to describe FYM is a factor in this conclusion, but

underestimation of decomposition is reflected across sites and treatments, demonstrated

by the BHM posterior distributions.

– There is potential for Bayesian methods to combine existing soil C models and measured

data for field scale predictions, but more attention is needed to develop a globally robust

approach with reasonable computation resource requirements.

– A data-led empirical model can outperform process-based methods. However, the between-

site differences in BRM coefficients show no scope for a global baseline regression model

of this structure. Therefore the BRM cannot exist without training data: it is not suitable for

soil C predictions in the absence of historic site data.

• Measurements

– Whilst there is variation in model predictive ability, no model reliably predicts soil C over

decadal timescales and across sites. However, for these sites, results do align with existing

guidance that annual soil C time-series can be too noisy and that measurements every 3-5

years are best for monitoring and modelling (Farm Net Zero, 2021; Spencer et al., 2011;

Verra, 2023)



4.4. Discussion 96

– 12 soil C measurements is sufficient for training models, and greater benefit is found when

there are more treatments included than longer time series.

4.5 Conclusion

Default SOC models often fail to reproduce observed patterns of SOC stock change over time at

specific sites. This reduces the reliability of model outputs for farmers and land managers, and has

been acknowledged by MRV protocols through new mandates to validate models with measured data.

Assimilating data into model predictions offers an opportunity to calibrate models for a particular site

and can better represent combined measurement and model uncertainty.

Using 12 or more soil C measurements to calibrate RothC for a site using a BHM PMMH approach

improved predictions of soil C change. However, the improvements in this analysis were limited and the

computational efficiency of the implementation was poor. These could potentially be remedied by less

informative priors and longer MCMC chains, and code improvements, respectively.

A BRM based on a minimal amount of existing knowledge and giving more weight to the measured

data typically provided a further prediction improvement on both RothC and the BHM. This model was

rapidly generated in R, but requires training data for a given site and management to generate the

model (unlike the other two methods that included process-based state-space models).

Overall, the results shown here indicate that the use of measured data in SOC modelling improves

predictive capability over the short term, but none of the implemented methods reliably predicted longer

term evolution of SOC stock. To best enable model-data assimilation methods to represent the impact

of management on SOC, measurements should be taken at intervals of several years and include as

many management combinations as possible.

Uncertainties in SOC prediction remain high. Future work should hone model-data assimilation methods

for soil C prediction at field scale and develop practical protocols for both soil C measurement and for

revision of existing predictions given new data.



Chapter 5

Discussion: what next for cropland soil C

management?

Given challenges in measuring soil C including cost, inaccuracy and variability, soil C models offer an

opportunity for quantitative decision support at farm level. They can also help us to test and develop

hypotheses about the processes governing changes in soil C over time (Le Noë et al., 2023).

5.1 Revisiting objectives

The first three objectives of this thesis were met by Chapters 2, 3 and 4, as summarised below.

1. Establish useful empirical models for soil C prediction with cover crops as a focus practice

Chapter 2 showed that parsimonious empirical models can be established for a single practice

choice that both minimise data requirements (including avoiding baseline soil C) and meet key de-

cision support needs such as direction of soil C stock change. The combination of statistical and

practical model selection criteria allowed optimisation for explanatory power and user feasibility.

2. Understand the impact of using public datasets instead of measured data as model inputs

Chapter 3 showed that the use of public datasets for non-carbon model input data did not, on

average, affect model performance at a site level. The rate of change in soil C is more likely to be

adequately predicted than is absolute soil C stock. The ability of RothC to predict soil C over time

varied far more by site than by input data source, which means that the model’s parameterised

processes lack the ability to represent a broad range of agro-environmental conditions.

3. Explore methods to combine models with site data

Chapter 4 indicated that combining data with models is an important priority for research, though

none of the tested approaches successfully predicts soil C over decadal timescales. Data relating

to a variety of treatments is more effective for calibrating models to predict soil C stocks over

management timescales than long time series of data.

97
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This final chapter addresses the final objective to reflect on the implications of the thesis for soil science,

land managers and protocols. It draws the work in earlier chapters together and includes next steps for

the diverse community interested in soil C modelling at field scale. These include immediate and longer

term priorities for farmers, for academics and for policymakers and protocols.

5.2 Improving soil C models

5.2.1 Process-based models need site-level calibration

Process-based soil C models are designed to reflect the latest available understanding of soil function-

ing and interactions with environment, climate and management. One theoretical benefit of constructing

such a model is broad applicability: unlike statistical models, mechanistic models parameterise universal

relationships. Chapters 3 and 4 used (process-based model) RothC and showed that more attention to

local calibration of the core model is needed to improve site-level predictions (see Figures 3.11, 4.2).

Recent research has drawn attention to the challenges of initialising conceptual soil C pools (Herbst

et al., 2018; Klumpp et al., 2017), and in particular the influence of the assumption that the soil

C pool is in equilibrium at the start of an experiment (Herbst et al., 2018; Yeluripati et al., 2009),

discussed further in Section 5.3.2. Work in this thesis certainly suggests that initialising RothC using

an explicit equilibrium assumption (Chapters 3 and 4) does not, on its own, provide reliable calibration

to a particular site, particularly in the absence of precise representation of other factors including the

impact of fertilisers on NPP, the varied composition of manures and the impact of irrigation on soil water

balance and decomposition. The Bayesian Hierarchical Model (BHM) in Chapter 4 used proportions to

split initial measured soil C into the RothC pools. However, the inclusion of both pool proportions (p)

and decomposition rates (k) in model calibration means that it is not possible to draw conclusions about

the validity of this initialisation method. Future work should apply the BHM methods to smaller sets of

RothC parameters to address specific questions like this. For example, fixing decomposition rates and

allowing pool proportions to vary would be a useful investigation of the common assumption that soil C

stock is at equilibrium at the end of spin-up.

The need for extensive site-level calibration suggests that RothC is lacking or misrepresents important

processes affecting soil C dynamics. Given persisting unknowns and debates about soil functioning and

drivers of soil C change (Baveye, 2023; Derrien et al., 2023), it is perhaps unavoidable that process-

based soil C models are limited in reflecting soil C dynamics, and are therefore, regardless of the input

data quality, unable to achieve the desired accuracy for all use cases. Attention has been drawn to the

shortcomings of soil models based only on either soil physics or soil biology (Baveye, 2023; Blagodatsky
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& Smith, 2012), and new evidence supports the importance of microbial dynamics as a driver of soil

C change (Dynarski et al., 2020; Lehmann, Hansel, et al., 2020). To improve soil C predictions from

process-based models, new processes could be included. However, whilst this could improve central

prediction, prediction uncertainty could increase alongside costs of providing the extra data for new

parameters (Derrien et al., 2023; Lehmann, Hansel, et al., 2020).

Any changes to models must balance improved accuracy with increased complexity (Blagodatsky &

Smith, 2012). Developing the next generation of models is worthwhile for science, but perhaps not for

farm decisions. To progress, then, "model[ling] with intent" (Lehmann, Bossio, et al., 2020) has two

priorities: new approaches to modelling on agricultural management timescales, and calibration of new

and existing models to a wider array of agricultural contexts (Baveye, 2023; Garsia et al., 2023; Le Noë

et al., 2023).

5.2.2 Calibration needs better soil data

Progress to calibrate and evaluate models requires good time-series data for a broader array of climate,

environment, soil and management combinations (Chenu et al., 2018; Le Noë et al., 2023). This

means that soil C data collection in managed landscapes is critical, even if it is not sufficient for soil

C management. The work in this thesis encountered various widely identified issues with soil C data,

including a lack of bulk density measurements and difficulty identifying and accessing time-series data

from a diverse range of environments. In Chapter 2, depth of soil C measurement was shown to be

explanatory in initial statistical models, despite the application of a recognised standardisation method.

This would not have been the case had the standardisation been effective in minimising the effect of

soil depth as was intended. As discussed in Section 1.2.2, rigorous sampling of the whole soil profile is

needed to clarify the impacts of soil disturbance on soil C stocks. Standardisation of datasets containing

mixed sampling approaches may be necessary for analysis, but risks obscuring relationships such as

this.

Todd-Brown et al. (2022) highlight the large volume of existing soil data that remains underutilised due

to difficulties with access, interpretation and collation of multi-source data, and propose tools including

community data practices and vocabulary to break down some of these barriers. In order to tackle

prevailing challenges in soil science and modelling, all data producers and managers should recognise

the potential of their soil data as a contribution to larger syntheses, whether they are involved in utilising

existing data or collecting new data. Important efforts are underway to consolidate soil data (Todd-Brown

et al., 2022), but more data from agricultural and managed systems is needed (Malhotra et al., 2019).

To this end, data sharing, which has gained traction in scientific communities in recent years (Lawrence

et al., 2023), is a priority. The FAIR principles (Findable, Accessible, Interoperable and Reusable) for
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data management and stewardship were developed collaboratively to lend clarity to this process and

ultimately benefit progress towards key goals (Wilkinson et al., 2016). Responsible collation, labelling

and sharing of soil C data broadens the range of agro-environmental scenarios available for model

calibration, and simultaneously distributes the costs of this endeavour between different stakeholders

(Lawrence et al., 2023). For broadest impact, farm data should be included, with due consideration for

farmer privacy (Paustian et al., 2019).

5.3 Implications for decision support

5.3.1 More accessible and accurate field scale modelling is possible, for some applic-

ations

Farmers must balance multiple factors in making management decisions, and soil C has to take its place

amongst them. Requirements for carbon crediting schemes must be stringent, but, as Phelan et al.

(2024) highlight, meeting them may not currently be a key motivator for decisions on farms. Therefore,

for many land managers, accurate projections of soil C stocks through time are not necessarily required.

Likely direction of soil C change is critical information for soil C management, more so than accurate

soil C stock values. In Chapter 2, in order to select a model that was able to capture the potential

for negative soil C stock change, we had to combine statistical and practical selection processes. The

selected empirical model, based on cover crop above-ground biomass, reflected known drivers of soil

C change and highlights the importance of successful cover crop establishment as a precursor for

soil C accrual. Combining statistical and practical model selection methods yields methods that are

scientifically credible and useful to data-restricted land managers.

Chapters 2 and 3 demonstrated that prediction of rate of change in soil C stocks is less elusive than

prediction of absolute stocks. Simple empirical models can predict rates of soil C change with sufficient

accuracy, avoid the need for baseline soil C and use estimated input data. While use of reference soil C

stock values in RothC meant that absolute stocks through time did not match measured values, it did not

have a deleterious impact on predicted rates of soil C change, and could be used to compare different

management options. However, use of a rate of change omits equilibrium and saturation dynamics and

can therefore be misleading over longer timescales (Jensen et al., 2022).

Decision support tools based on models and data like this may be sufficient for farmers who do not

need to accurately quantify stocks of soil C for outcome-based schemes. Indeed, work in this thesis

suggests that it is possible to get relevant information to support some decisions using simple methods

with low data cost. Applications for these simpler methods include policy level scenario planning and
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target identification, where measured field-level data is not accessible. However, in cases where the

end goal is to set up outcome-based projects, conclusions from such high level estimation would need

to be confirmed at local level and with well-calibrated models. Choosing soil C prediction methods and

how to apply them to support decisions must include confirming that the outputs can safely be used as

evidence in the given decision context.

5.3.2 Predictions are materially affected by model implementation choices, potentially

more than input data

Prioritisation of accurate input data is understandable in work aiming to improve and validate soil C

models. However, Chapter 3 indicates that focusing on improving the accuracy of input data to the

exclusion of other choices associated with model implementation is misguided for applying existing

models for soil C prediction at field scale.

In every application that stretches the use of data or a model, for example using measured data for

model input values that were defined in the abstract, additional assumptions and approximations are

made. Further, in the case of soils, a heterogeneous landscape is represented as homogeneous. As

in Chapter 2, in Chapter 3 the reported soil C data from Foster et al. (2020) were converted to soil C

stocks and standardised to a specific depth. The plant residue inputs were optimised for the resulting

initial soil C value using RothC, with the assumption that the initial soil C was at some equilibrium.

On the other hand, in Chapter 4, the data were not standardised and the plant residue inputs were

determined using yield data (i.e. changes in NPP were included). The initial RothC pool values were

determined using proportions. Broad conclusions about RothC are that it is not always accurate at a

particular site. However, at first glance, further findings in Chapter 3 and Chapter 4 diverge. Chapter 3

suggests that RothC (given measured initial soil C) tends to underestimate rates of change. Chapter 4,

meanwhile, suggests that RothC tends to overestimate rates of change. These conclusions are linked to

the representation of C inputs in the model implementation. Since Chapter 3 does not include changes

in NPP, whilst Chapter 4 does, the results of Chapters 3 and 4 together suggest that RothC is prone

to overestimating the soil C accrual associated with increased C input. The posteriors of the Bayesian

Hierarchical Model in Chapter 4 reflect this in the striking consensus across sites that default RothC

decomposition parameters are too low.

Every paper that uses an existing model has had to take decisions about model implementation con-

sidering available data. For process-based soil C modelling, decisions on how to model the climate

(e.g. Smith et al., 2005; Tao et al., 2023), input C changes (e.g. Gollany et al., 2021; Gottschalk et al.,

2010) and initial values of soil C pools (e.g. Klumpp et al., 2017; Wiltshire et al., 2023; Xu et al., 2011)
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are all necessary and led by the objectives of the study. Chapter 3 highlights that potential productivity

changes must be estimated for RothC to be able to represent the impact of mineral fertilisers; this is a

particular precursor for studies aiming to compare the relative impact of organic and mineral nitrogen.

The widespread equilibrium assumption that is used in initialisation is more often practically convenient

rather than scientifically supported, as there is consensus that few managed soils are in equilibrium

(Klumpp et al., 2017; Wutzler & Reichstein, 2007).

Given the findings in this thesis that model implementation choices have greater impact than reason-

able input data choices, further work should be done by measuring, reporting and verification (MRV)

protocols, in collaboration with modellers, to provide guidance on best practice for initialisation and

implementation assumptions in soil C modelling for a given objective.

5.3.3 The need to (re)set expectations around uncertainty

The uncertainty in quantifying and modelling soil C stocks is an issue of risk for management de-

cisions and outcome-based incentives such as carbon credits. Better representation of uncertainty

levels is important and has three main components: uncertainty in data, in model structure and in

model parameter values. Rationalising, quantifying and representing the different sources of uncer-

tainty remains a challenge and is insufficiently represented in MRV protocol guidance (Lavallee et al.,

2024). This thesis contributes to these considerations in several indirect ways. Firstly, Chapter 2 is

an example of minimising data uncertainty through parsimony and choosing measurable quantities.

Secondly, Chapters 2 and 3 suggest that field level predictions of rates of soil C change can be better

constrained than predictions of soil C stock over management timelines, and may not need baseline soil

C data. Third, Chapter 3 shows secondary data can be reasonable substitutes for primary input data.

These secondary datasets have some advantages compared to sparse field data, as overall biases and

errors can be identified and quantified. Finally, results in Chapter 4 highlight that annual measurement

of soil C is counterproductive for model calibration, since the pertinent drivers of change at this scale

are not generally management related and measurement uncertainty is larger than the implied stock

change.

The Bayesian methods in Chapter 4 address uncertainty more directly. Approaches such as the Bayesian

Hierarchical Model (BHM) in Chapter 4 can estimate all three sources of uncertainty and should,

therefore, be investigated further. The BHM outputs in Section 4.3 show widening uncertainty over

time (heteroskedasticity), with very large prediction intervals after 10-20 years. Many readers would

be dissatisfied with such wide prediction intervals. However, whilst reducing uncertainty in field-scale

soil C prediction is important, fair representation of and guidance on uncertainty is more so. Wide

prediction intervals do not directly imply lack of understanding; the functional complexity of soils is
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not fully represented in simpler process-based models (Lehmann, Hansel, et al., 2020) and quantified

uncertainty helps to capture this as part of any assessment. Meanwhile, continuing discussion to

unpick drivers of wide prediction intervals helps to highlight priorities for data collection and model

improvement.

5.4 Data vs theory

As discussed in Chapter 1, the impacts of cropland management on soil C stocks are driven by complex

interactions of soil, environment, climate and land use. Whilst soil science has been able to clarify

many of the relevant processes and interactions, others remain unclear. Indeed, the recent focus on

soil biology as an influence on soil C change patterns could perhaps lend weight to the view that

the complexity of soil C change cannot be accurately described by mechanics alone, much like the

prevailing view of ecology (Lehmann, Hansel, et al., 2020).

However, the need to improve soil health and particularly soil C stocks is great and so understanding

and estimating potential impacts remains an important endeavour.

Prediction of future soil C change requires some modelling, but should the models be based on soil

science concepts, or rather give weight to available measured data? Chapter 4 begins to ask this

question, finding that data-led models perform best for management combinations they have been

trained on. By including predictor variables, most models include some assumed knowledge about soil

dynamics, but this can be minimised using weak Bayesian priors. The disadvantage of data-led models

remains the inability to predict the impact of new management action (without further invoking soil

science).

From another angle, since existing process-based models are not sufficiently generic to be widely

applicable at site level and have not been validated across the diversity of farming contexts (Garsia

et al., 2023), the power of a small amount of high-quality soil C data to locally calibrate a model and

improve predictions could be significant, given the right statistical methods. Davoudabadi et al. (2021)

outlined Bayesian methods to combine models and data and explained how features of these methods

tackled challenges in field-scale soil C modelling. Recently, applying Bayesian methods to combine

models and data has gained significant interest in environmental sciences (Carrassi et al., 2018), though

many efforts have been at broader spatial scales (e.g. Bloom et al., 2016; Luo et al., 2016; Xiao et al.,

2014). The family of approaches are variously referred to as model-data synthesis, fusion, integration

or assimilation; here, the latter is used, as defined in Chapter 4.
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Chapter 4 applied model-data assimilation methods similar to Davoudabadi et al. (2024) to the RothC

model. Bayesian calibration resulted in some improvement in prediction, with indications that a weaker

set of parameter priors and longer MCMC chains could lead to further improvement. Model-data assim-

ilation does not improve the conceptual representation of the underlying model, but hopefully improves

predictions by providing a model calibrated on site-specific information and clearer representation of

uncertainty, given appropriate error data (Malhotra et al., 2019). As tentatively indicated by some

results in Chapter 4, with enough site-level implementations, model-data assimilation could contribute

evidence for altering parameters in default models. Future work should explore the merits of model-

data assimilation to unlock the combined potential of data and science for accurate site-level soil C

predictions.

5.5 The role of policies and protocols to enable soil C management

Field experiments have shown that additional C input and reduced soil disturbance are generally bene-

ficial for soil C stocks, and rarely detrimental. There is consensus that both soil C and net environmental

benefits are not uniform across agro-environmental gradients: soil C storage has limits, it is infeasible to

provide exogenous organic C for all agricultural land and some soil C benefits are offset by detrimental

environmental impacts such as increased N2O emissions (Rubin et al., 2023). How can soil C models

be utilised to support decisions and action towards a more resilient global agricultural system that works

for all life on Earth?

Soil C modelling is relevant in a number of applications, each with their own tolerances and foci. Soil

scientists seek to understand more about functioning and dynamics from micro- to macro-scale. Soil

carbon credits need to carefully consider additionality, uncertainty and permanence in their quanti-

fication. On farm, however, the decision context that models may be part of is broader. The first

consideration for any management must be cost: cost to implement, potential changes in yield, changing

risk and any financial incentive for which conditions can be met.

Chapter 3 suggested that RothC and the IPCC Tier 1 method were not consistently sensitive to practice

change. They both reflected the prevailing broad understanding of soil C change, rather than helping the

user to discern between practices in their context. If soil C models draw the same broad conclusions

about suggested practices as are already accepted by the community at large and cannot discern

untested scenarios then soil C models can add value for those devising practice-based policy recom-

mendations, but do not help at a farm level. At farm level, then, the lower risk is to focus on meeting

financial incentive requirements linked with choice of practices (which can be controlled) rather than

achievement of outcomes (which can not).
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In theory, carbon credits offer an incentive for farmers to choose practices that are expected to accrue

soil C by rewarding that outcome. In practice, the complexity around quantification (i.e. cost and risk)

and the varied requirements of the programmes are limiting their uptake and efficacy (Black et al., 2022;

Davidson, 2022; Phelan et al., 2024). If carbon credits for soil C are to be an effective tool for enabling

carbon sequestration, the route to accurate soil C predictions needs to be clear and widely applicable.

The signals from farmers are that complexity and uncertainty need to be minimised, and standardised

methods established.

In addition, Phelan et al. (2024) found that important considerations about additionality and permanence

in carbon credit programmes do not align with farmer expectations in the UK. In particular, they found

that almost all farmers who responded to their survey were already undertaking practices that might

be expected to sequester soil C, which rules them out of many carbon credit programmes on the

basis of additionality. To encourage and enable participation, Phelan et al. (2024) propose a transition

period during which farmers already undertaking desired practices are able to engage in carbon credit

schemes. Whilst this would challenge the use of equilibrium assumptions in model intitialisation, there

are other initialisation approaches which could be used, as discussed previously.

Complexity and uncertainty in soil C modelling have so far hampered use in MRV protocols and

outcome-based sustainable agriculture policy (Garsia et al., 2023; Smith, Soussana, et al., 2020). Soil

science continues to develop new understanding of soil functioning and C dynamics, and has made

important breakthroughs in recent times. This has led to discussion of a "new generation" of soil C

models (e.g. Abramoff et al., 2018; Baveye, 2023; Berthelin et al., 2022; Caruso et al., 2018; Wieder

et al., 2013) to try and better capture the diverse multi-scale drivers of soil C change. However, whilst

beneficial for broader goals in environmental science and society, developing a new generation of more

complex soil C models does not tackle the urgent barriers to accessibility of useful soil C information for

land managers (Kanari et al., 2022). The higher costs of greater data collection are combined with the

increased uncertainty associated with more complex models in un-calibrated contexts (Shi et al., 2018).

Indeed, with the latter, the task of representing agro-environmental diversity intensifies, adding further

pressure to data collection. As Baveye (2023) put it, "after significant effort and a tremendous amount

of luck, modellers could stumble on a model whose mathematical structure enables them to fit any set

of experimental data on soil carbon dynamics anywhere in the world, but the odds of that happening in

time to contribute to the solution of some of the environmental threats facing us at the moment do not

seem great".
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To enable broader access, a better priority is to explore methods to combine existing soil C models with

evidence through model-data assimilation, as in Chapter 4. This is a pragmatic route as these methods

are an urgent gap in MRV protocols and carbon credit programmes. MDA methods do not themselves

expand the data required for carbon credit verification processes, as soil C measurement is already a

stated requirement (Lavallee et al., 2024). Bayesian methods that account for the different sources of

uncertainty could be used. Development of these methods now, combined with new focus on collating

and sharing new and existing soil data, could result in a step change in the availability of calibrated

models for accurate soil C prediction at field level. Once established, model-data assimilation methods

could also be utilised on the next generation of carbon models.

To achieve the maximum impact of these activities, work needs to be undertaken collaboratively to gen-

erate methods that are mathematically valid, usable and useful (Bradford et al., 2023). Data should be

shared utilising FAIR principles (Todd-Brown et al., 2022; Wilkinson et al., 2016). Researcher priorities

should be led by needs of land managers and policymakers and overall requirements for openness,

clarity, consistency, credibility and value for users should be maintained.

5.6 Conclusions

Soil carbon plays an important role in functioning ecosystems and so supports biodiversity and food

security on Earth. For resilience against a changing climate, agricultural land managers should seek to

protect and increase their soil C stocks. Some of these actions sequester carbon in soils and so can

also be said to mitigate climate change.

How farmers and land managers can best manage their soil C remains context specific, meanwhile

rigorous measurement of stocks remains prohibitively costly. Models that can predict change in soil C

have an important role to play. Whether to give simple indications of direction of change or precise

predictions of soil C stock evolution, accuracy of and quantified uncertainty in predictions is a key

consideration.

This thesis examined how models can be used to support decisions about soil C at field scale. Simple

empirical methods can be effective for indicating drivers of soil C storage and direction of change, but

are not suitable for predicting absolute soil C stocks. Existing process-based models do not provide

accurate predictions of soil C stocks unless calibrated to the context.
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Soil scientists are discussing a new generation of models that will further improve understanding of soil

dynamics and hopefully improve accuracy, but these will not tackle access issues for land managers. A

worthwhile focus is statistical methods that combine theory with data to improve model usefulness at

temporal and spatial scales relevant to management.
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Figure A.1.1: Global Carbon budget (2010–2019), from Canadell et al. (2021)
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Table A.3.1: Copy of Table 5.5 from Ogle, Kurz, et al. (2019): Relative Carbon Stock Change
Factors (over 20 years) for Management Activities on Cropland. These factors were used for
IPCC T1 estimates of SOC stock in Chapter 3.

Type Level Temperature
Regime

Moisture
Regime

IPCC
Defaults

Error Description

La
nd

U
se

Lo
ng

te
r m

cu
lti

va
te

d

Boreal Dry 0.77 0.14

Represents area that has been converted from native
conditions and continuously managed for predominantly
annual crops over 50 yrs. Land-use factor has been
estimated under a baseline condition of full tillage and
nominal (‘medium”) carbon input levels. Input and tillage
factors are also applied to estimate carbon stock
changes, which includes changes from full tillage and
medium input.

Boreal Moist 0.7 0.12
Boreal Wet 0.7 0.12
Cool Temperate Dry 0.77 0.14
Cool Temperate Moist 0.7 0.12
Cool Temperate Wet 0.7 0.12
Tropical Dry 0.92 0.13
Tropical Moist 0.83 0.11
Tropical Wet 0.83 0.11
Tropical Montane NA NA NA
Warm Temperate Dry 0.76 0.12
Warm Temperate Moist 0.69 0.16
Warm Temperate Wet 0.69 0.16

P
ad

dy
ric

e

Boreal Dry 1.35 0.04

Long-term (> 20 year) annual cropping of wetlands
(paddy rice). Can include double-cropping with
non-flooded crops. For paddy rice, tillage and input
factors are not used.

Boreal Moist 1.35 0.04
Boreal Wet 1.35 0.04
Cool Temperate Dry 1.35 0.04
Cool Temperate Moist 1.35 0.04
Cool Temperate Wet 1.35 0.04
Tropical Dry 1.35 0.04
Tropical Moist 1.35 0.04
Tropical Wet 1.35 0.04
Tropical Montane NA 1.35 0.04
Warm Temperate Dry 1.35 0.04
Warm Temperate Moist 1.35 0.04
Warm Temperate Wet 1.35 0.04

Pe
re

nn
ia

l/
tre

e
cr

op

Boreal Dry 0.72 0.22

Long-term perennial tree crops such as fruit and nut
trees, coffee and cacao.

Boreal Moist 0.72 0.22
Boreal Wet 0.72 0.22
Cool Temperate Dry 0.72 0.22
Cool Temperate Moist 0.72 0.22
Cool Temperate Wet 0.72 0.22
Tropical Dry 1.01 0.25
Tropical Moist 1.01 0.25
Tropical Wet 1.01 0.25
Tropical Montane NA 1.01 0.25
Warm Temperate Dry 0.72 0.22
Warm Temperate Moist 0.72 0.22
Warm Temperate Wet 0.72 0.22

S
et

as
id

e

Boreal Dry 0.93 0.11

Represents temporary set aside of annually cropland
(e.g., conservation reserves) or other idle cropland that
has been revegetated with perennial grasses.

Boreal Moist 0.82 0.17
Boreal Wet 0.82 0.17
Cool Temperate Dry 0.93 0.11
Cool Temperate Moist 0.82 0.17
Cool Temperate Wet 0.82 0.17
Tropical Dry 0.93 0.11
Tropical Moist 0.82 0.17
Tropical Wet 0.82 0.17
Tropical Montane NA 0.88 0.5
Warm Temperate Dry 0.93 0.11
Warm Temperate Moist 0.82 0.17
Warm Temperate Wet 0.82 0.17
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Table A.3.1 continued:

Type Level Temperature
Regime

Moisture
Regime

IPCC
Defaults

Error Description

M
an

ag
em

en
t

Fu
ll

til
l

Boreal Dry 1 NA

Substantial soil disturbance with full inversion and/or
frequent (within year) tillage operations. At planting time,
little (e.g., <30%) of the surface is covered by residues.

Boreal Moist 1 NA
Boreal Wet 1 NA
Cool Temperate Dry 1 NA
Cool Temperate Moist 1 NA
Cool Temperate Wet 1 NA
Tropical Dry 1 NA
Tropical Moist 1 NA
Tropical Wet 1 NA
Tropical Montane NA 1 NA
Warm Temperate Dry 1 NA
Warm Temperate Moist 1 NA
Warm Temperate Wet 1 NA

R
ed

uc
ed

til
l

Boreal Dry 0.98 0.05

Primary and/or secondary tillage but with reduced soil
disturbance (usually shallow and without full soil
inversion). Normally leaves surface with >30% coverage
by residues at planting.

Boreal Moist 1.04 0.04
Boreal Wet 1.04 0.04
Cool Temperate Dry 0.98 0.05
Cool Temperate Moist 1.04 0.04
Cool Temperate Wet 1.04 0.04
Tropical Dry 0.99 0.07
Tropical Moist 1.04 0.07
Tropical Wet 1.04 0.07
Tropical Montane NA NA NA
Warm Temperate Dry 0.99 0.03
Warm Temperate Moist 1.05 0.04
Warm Temperate Wet 1.05 0.04

N
o

til
l

Boreal Dry 1.03 0.04

Direct seeding without primary tillage, with only minimal
soil disturbance in the seeding zone. Herbicides are
typically used for weed control.

Boreal Moist 1.09 0.04
Boreal Wet 1.09 0.04
Cool Temperate Dry 1.03 0.04
Cool Temperate Moist 1.09 0.04
Cool Temperate Wet 1.09 0.04
Tropical Dry 1.04 0.07
Tropical Moist 1.1 0.05
Tropical Wet 1.1 0.05
Tropical Montane NA NA NA
Warm Temperate Dry 1.04 0.03
Warm Temperate Moist 1.1 0.04
Warm Temperate Wet 1.1 0.04
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Table A.3.1 continued:

Type Level Temperature
Regime

Moisture
Regime

IPCC
Defaults

Error Description

In
pu

t

Lo
w

Boreal Dry 0.95 0.13

Low residue return occurs when there is removal of
residues (via collection or burning), frequent
bare-fallowing, production of crops yielding low residues
(e.g., vegetables, tobacco, cotton), no mineral
fertilization or N-fixing crops.

Boreal Moist 0.92 0.14
Boreal Wet 0.92 0.14
Cool Temperate Dry 0.95 0.13
Cool Temperate Moist 0.92 0.14
Cool Temperate Wet 0.92 0.14
Tropical Dry 0.95 0.13
Tropical Moist 0.92 0.14
Tropical Wet 0.92 0.14
Tropical Montane NA 0.94 0.5
Warm Temperate Dry 0.95 0.13
Warm Temperate Moist 0.92 0.14
Warm Temperate Wet 0.92 0.14

M
ed

iu
m

Boreal Dry 1 NA

Representative for annual cropping with cereals where
all crop residues are returned to the field. If residues are
removed then supplemental organic matter (e.g.,
manure) is added. Also requires mineral fertilization or
N-fixing crop in rotation.

Boreal Moist 1 NA
Boreal Wet 1 NA
Cool Temperate Dry 1 NA
Cool Temperate Moist 1 NA
Cool Temperate Wet 1 NA
Tropical Dry 1 NA
Tropical Moist 1 NA
Tropical Wet 1 NA
Tropical Montane NA 1 NA
Warm Temperate Dry 1 NA
Warm Temperate Moist 1 NA
Warm Temperate Wet 1 NA

H
ig

h
no

m
an

ur
e

Boreal Dry 1.04 0.13

Represents significantly greater crop residue inputs
over medium C input cropping systems due to
additional practices, such as production of high residue
yielding crops, use of green manures, cover crops,
improved vegetated fallows, irrigation, frequent use of
perennial grasses in annual crop rotations, but without
manure applied (see row below).

Boreal Moist 1.11 0.1
Boreal Wet 1.11 0.1
Cool Temperate Dry 1.04 0.13
Cool Temperate Moist 1.11 0.1
Cool Temperate Wet 1.11 0.1
Tropical Dry 1.04 0.13
Tropical Moist 1.11 0.1
Tropical Wet 1.11 0.1
Tropical Montane NA 1.08 0.5
Warm Temperate Dry 1.04 0.13
Warm Temperate Moist 1.11 0.1
Warm Temperate Wet 1.11 0.1

H
ig

h
w

ith
m

an
ur

e

Boreal Dry 1.37 0.12

Represents significantly higher C input over medium C
input cropping systems due to an additional practice of
regular addition of animal manure.

Boreal Moist 1.44 0.13
Boreal Wet 1.44 0.13
Cool Temperate Dry 1.37 0.12
Cool Temperate Moist 1.44 0.13
Cool Temperate Wet 1.44 0.13
Tropical Dry 1.37 0.12
Tropical Moist 1.44 0.13
Tropical Wet 1.44 0.13
Tropical Montane NA 1.41 0.5
Warm Temperate Dry 1.37 0.12
Warm Temperate Moist 1.44 0.13
Warm Temperate Wet 1.44 0.13
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Figure A.3.1: Difference between measured and modelled SOC at the end of experiments:
colours denote different treatments, one point for each model. Split by management type.
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Algorithm A.4.1 Algorithm: Bootstrap Particle Filter, from Davoudabadi et al. (2024)

1: for k = 1, ...,N do
2: t = 1, draw sample Xk

(1) ∼ p(X(1))

3: for t = 2, ...,T do
4: for k = 1, ...,N do
5: Draw sample Xk

(t) ∼ p(X(t)|X∗k
(t−1))

6: Calculate weights wk
(t) = p(Y(t)|Xk

(t))

7: Estimate the log-likelihood component for the tth observation, l̂(t) = log
(

∑ j w j
(t)

N

)
8: Normalise weights W k

(t) =
wk
(t)

Σ jw
j
(t)

for k ∈ {1,2, ...,N}

9: Resample with replacement N particles Xk
(t) based on the normalised importance weights

10: Estimate the overall log-likelihood L∗ = Σt l̂(t)

Algorithm A.4.2 Algorithm: Correlated pseudo-marginal algorithm, from Davoudabadi et al. (2024)

1: Initialise θ0
2: for m = 1, ...,M∗ do
3: Sample θ ∗ ∼ Q(.|θm−1)
4: Sample ξ ∼ N(0, I) and set U∗ = τUm−1 +

√
1− τ2ξ

5: Compute the estimator p̂(Y |θ ∗,U∗) using Algorithm A.4.3
6: Compute the acceptance ratio:

r =
p̂(Y |θ ∗,U∗)p(θ ∗)Q(θm−1|θ ∗)

p̂(Y |θm−1,Um−1)p(θm−1)Q(θ ∗|θm−1)

7: Accept (θ ∗,U∗) with probability min(r,1) otherwise, output (θm−1,Um−1)
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Algorithm A.4.3 Algorithm: Particle filter with fixed random numbers, from Davoudabadi et al. (2024)

1: Sample U( j∗) ∼ N(0,1) and V(i∗) ∼ N(0,1) for all j ∈ {1, ...,T N} and i∗ ∈ {1, ...,T}
2: Sample Xk

(1) ∼ p(.|U1:N ,θ) for all k ∈ 1, ...,N
3: for t = 1, ...,T −1 do
4: Sort the collection X1

(t), ...,X
N
(t)

5: Compute importance weights wk
(t) and log-likelihoods l̂(t) = log

(
∑k wk

(t)
N

)
for k ∈ {1, ...,N}

6: Sample Xk
(t) based on systematic resampling using random values V1:T and normalised weights

W k
(t) for k ∈ {1, ...,N}

7: Set Xk
(t+1) as a sample from p(.|Xk

(t),UNt+1:N(t+1),θ) for k ∈ {1, ...,N}

8: Estimate the overall log-likelihood L∗ = Σt l̂(t)
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Figure A.4.1: BHM predictions using the low and high training data subsets.
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