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Abstract 

 

I have analyzed the interactions between SR proteins and splicing components that are 

bound at the 5’ or 3’ splice site using fluorescence resonance energy transfer (FRET) 

microscopy.  The SR proteins interact with the U1 snRNP-associated 70 kDa protein 

(U170K) at the 5’splice site and with the small subunit of the U2 snRNP auxiliary 

factor (U2AF35) at the 3’ splice site. These interactions have been extensively 

characterized biochemically in the past, and are proposed to play roles in both intron 

and exon definition. We employed FRET acceptor photobleaching and fluorescence 

lifetime imaging microscopy (FLIM) to identify and spatially localise sites of direct 

interactions of SF2/ASF, and other SR proteins, with U2AF35 and U1-70K in live 

cell nuclei. These interactions were shown to occur more strongly in interchromatin 

granule clusters (IGCs). They also occur in the presence of the RNA polymerase II 

inhibitor, DRB, demonstrating that they are not exclusively co-transcriptional. FLIM 

data have also revealed a novel interaction between HCC1, a factor highly related to 

the large subunit of the U2AF splicing factor, with both subunits of U2AF that occur 

in discrete domains within the nucleoplasm but not within IGCs. These data 

demonstrate that the interactions defining intron and exon definition do occur in living 

cells in a transcription-independent manner.   
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Introduction 

 

1.1 Gene Expression 
 

The expression of eukaryotic protein-encoding genes begins in the nucleus with 

transcription by RNA polymerase II (pol II) to make mRNA precursors (pre-mRNAs). 

Rather than a simple linear pathway of gene expression, numerous studies have 

demonstrated extensive coupling between the stages of gene expression (reviewed by 

(Maniatis and Reed, 2002)). During transcription, the nascent pre-mRNA is capped at 

the 5’ end, noncoding intervening sequences called introns are removed by splicing 

and the 3’ end is cleaved and polyadenylated. The mature mRNA is then released 

from the site of transcription and exported to the cytoplasm for translation. In addition 

to this pathway, an RNA surveillance system eliminates aberrantly processed or 

mutant pre-mRNAs and mRNAs. Distinct multi-component cellular complexes carry 

out each stage of the gene expression pathway. These multi-component cellular 

complexes interact physically and functionally with one another. In the nucleus the 

carboxy-terminal domain (CTD) of pol II coordinates many RNA processing events 

by providing a platform for factors involved in different steps of RNA processing. 

The importance of the CTD is illustrated by the effect of certain CTD deletions that 

do not inactivate transcription but significantly decrease the efficiency of capping, 

splicing and polyadenylation (Cho et al., 1997; McCracken et al., 1997a; McCracken 

et al., 1997b). In addition pol II CTD stimulates splicing in human cells independently 

of its effects on capping or 3’ end formation (Fong and Bentley, 2001).  
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1.2 Pre-mRNA splicing 

 

A ubiquitous feature of eukaryotes is the presence of intervening sequences that 

interrupt coding regions of genes. Nuclear pre-mRNA splicing is the process by 

which these noncoding intervening sequences (introns) in messenger RNAs are 

precisely removed and the functional coding sequences (exons) ligated to generate 

mature, translatable mRNAs. The complexity of the process and the number of 

spliced genes increases with the complexity of the organism. Saccharomyces 

cerevisiae have introns in only about 250 of more than 5000 genes, and they are 

largely devoid of alternative splicing. However, more than 25% of mRNAs are 

spliced because many highly expressed genes, mainly encoding ribosomal proteins, 

contain introns (Ares, Jr. et al., 1999). The regulation of splicing is important to 

several aspects of yeast biology including meiosis, ribosome biogenesis and mRNA 

export (Dabeva et al., 1986; Nandabalan and Roeder, 1995; Rodriguez-Navarro et al., 

2002; Preker and Guthrie, 2006). Components of the yeast spliceosome have also 

been shown to play an important role in regulating cell cycle progression (Ben 

Yehuda et al., 2000; Russell et al., 2000). In humans more than 99% of genes contain 

introns.  

 Splicing proceeds via two transesterification reactions (Figure 1.1). In the first 

reaction, the 2’ hydroxyl group of an intron adenosine residue attacks the 5’ splice site 

phosphodiester bond, producing a branched lariat intermediate structure and a free 5’ 

exon. In the second reaction, the 3’ hydroxyl group of the 5’ exon attacks the 3’ splice 

site phosphodiester bond, producing ligated exons and an excised intron lariat. 
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Figure 1.1: (A) Conserved  sequences in nuclear pre-mRNA introns. The 5’ and 
3’ splice site and the branch-site consensus sequences are shown (R: purines; Y: 
pyrimidines). The extremely conserved terminal nucleotides and the branch 
nucleotide of introns are indicated by enlarged letters. Mammalian introns (m) usually 
contain a stretch of pyrimidine residues, called the polypyrimidine tract, near the 3’ 
splice site, whereas not all yeast (y) introns have such a sequence (Tarn and Steitz, 
1997). (B) Two-step chemical mechanism for pre-mRNA splicing. Splicing takes 
place in two transesterification steps. The first step results in two reaction 
intermediates: the detached 5’ exon and an intron/3’ exon fragment in a lariat 
structure. The second step ligates the two exons and releases the lariat intron (Black, 
2000). 
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5Õ splice site 3Õ splice site



 15 

1.3 Alternative splicing 

 

In violation of the ‘one gene, one polypeptide’ rule, alternative splicing allows 

individual genes to produce multiple protein isoforms – thereby playing a central part 

in generating proteomic diversity (reviewed by (Black, 2000; Matlin et al., 2005)). 

The Drosophila Dscam gene exemplifies the extreme structural diversity that is 

achievable by alternative splicing. Dscam is a cell surface protein that is involved in 

axon guidance in the developing brain, and can potentially generate up to 38,016 

alternatively spliced isoforms (Celotto and Graveley, 2001; Schmucker and Flanagan, 

2004). 

 Alternative splicing has assumed a high profile recently owing to the dual 

realisation that there are fewer human genes than originally anticipated, and that 

alternative splicing is more the rule than the exception. Analyses of expressed 

sequence tag (EST) and cDNA datasets conservatively estimated that about 40–60% 

of human genes are alternatively spliced and this number increased to 73% when 

alternative splicing microarray data was combined with ESTs (Johnson et al., 2003).  

The mechanisms of splice-site selection in alternative and constitutive splicing 

appear to be closely related because components of the splicing apparatus essential for 

the constitutive splicing reaction, also have a role in the regulation of alternative 

splicing (reviewed by (Horowitz and Krainer, 1994)). Alternative exons often have 

suboptimal splice sites and/or a suboptimal length when compared to constitutive 

exons. Splicing of regulated exons is modulated by trans-acting factors that recognise 

an arrangement of positive (splicing enhancers) and/or negative (splicing silencers) 

cis-acting RNA elements, which can be either exonic or intronic. These auxiliary 

elements are involved in defining both constitutive and alternative exons.  
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 The importance of accurate splicing is illustrated by the fact that at least 15% 

(Krawczak et al., 1992), and perhaps as many as 50% (Pagani and Baralle, 2004), of 

human genetic diseases arise from mutations either in consensus splice site sequences 

or in the more variable auxiliary elements known as exon and intron splicing 

enhancers (ESEs and ISEs) and silencers (ESSs and ISSs) (Blencowe, 2000; Philips 

and Cooper, 2000; Caceres and Kornblihtt, 2002).  

 

1.4 Co-transcriptional splicing 

 

Pre-mRNA splicing often occurs co-transcriptionally (reviewed by (Bentley, 2002; 

Neugebauer, 2002; Kornblihtt et al., 2004)) but may be completed post-

transcriptionally, as demonstrated by electron microscopy studies of the Balbiani ring 

genes of Chironomus tentans, in which a high proportion of nascent RNAs lack 

introns at their 5’ ends but still contain terminal introns (Bauren and Wieslander, 

1994; Wetterberg et al., 1996). Co-transcriptional splicing has also been documented 

in Drosophila (Osheim et al., 1985; Beyer and Osheim, 1988; LeMaire and Thummel, 

1990) and humans (Wuarin and Schibler, 1994; Tennyson et al., 1995). In yeast pre-

mRNA splicing is predominantly post-transcriptional (Tardiff et al., 2006). Recent 

evidence demonstrates that transcription promotes splicing and, reciprocally, that 

splicing promotes transcription (Ghosh and Garcia-Blanco, 2000; Fong and Bentley, 

2001; Kwek et al., 2002; Hicks et al., 2006; Das et al., 2006; 2007). Spliceosomal U 

small ribonucleoproteins (U snRNPs) form a complex with the elongation factor 

TAT-SF1 and this complex stimulates both in vitro transcriptional elongation and 

splicing (Fong and Zhou, 2001). Splicing can occur post-transcriptionally in vivo and 
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in vitro, but linking splicing to transcription is thought to maximize its fidelity and 

efficiency (Howe et al., 2003).  

Numerous studies have been carried out to identify splicing factors that 

interact with pol II, the CTD, or other components of the transcription machinery. 

Splicing factors or splicing related proteins reported to interact with pol II include SR-

related-CTD-associated factors (SCAFs), PSF/p54nrb, U2 snRNP auxiliary factor 

(U2AF), members of the serine- arginine-rich proteins (SR proteins), and one or more 

of the five spliceosomal U snRNPs (Mortillaro et al., 1996; Yuryev et al., 1996; 

Corden and Patturajan, 1997; Kim et al., 1997; Patturajan et al., 1998; Morris and 

Greenleaf, 2000; Robert et al., 2002; Emili et al., 2002; Kameoka et al., 2004; Ujvari 

and Luse, 2004). A proteomic analysis of factors associated with immunopurified 

human pol II identified the SR protein family of splicing factors and all of the 

components of U1 snRNP, but no other snRNPs or splicing factors (Das et al., 2007). 

The association of SR proteins with pol II positions these splicing factors close to the 

nascent pre-mRNA. Thus, these factors out-compete inhibitory hnRNP proteins, 

resulting in efficient spliceosome assembly on nascent pol II transcripts. The 

cotranscriptional recruitment of SR proteins and U1 snRNP would be expected to 

increase the fidelity of the earliest recognition of the 5’ splice site in nascent pre-

mRNAs.  
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1.5 Spliceosome assembly 

 

Pre-mRNA splicing occurs in the spliceosome, a large ribonucleoprotein complex 

consisting of five small ribonucleoproteins (U1, U2, U4/U6 and U5 snRNPs) and 

numerous non-snRNP splicing factors (reviewed by (Kramer, 1996)). 

The spliceosome assembles de novo on the pre-mRNA in a coordinated series of 

intricate movements by binding sequences located at the 5’ and 3’ ends of introns 

(Figure 1.1). For most introns the 5’ and 3’ splice sites are defined by the consensus 

AG/GURAGU (R = purine) and Y/AG (where  / denotes the exon/intron boundary, Y 

= pyrimidine) respectively (reviewed by (Horowitz and Krainer, 1994)). The presence 

of a 10- to 20-nucleotide polypyrimidine tract between the branch point (consensus 

sequence YNYURAC) and the AG dinucleotide aids the recognition of the 3’ splice 

site. In contrast to the degenerate nature of mammalian splice site signals yeast have 

highly conserved splice sites and branchpoints. Splice sites are recognised as pairs 

either across exons or introns, depending on which distance is shorter. For example, 

yeast genes have very small introns and recognition of exons seems to occur by 

interactions mediated across the intron itself, in a process known as intron definition 

(Abovich and Rosbash, 1997; Romfo et al., 2000; Lim and Burge, 2001). Intron 

definition is also the predominant mechanism in splicing of small Drosophila introns 

(Talerico and Berget, 1994). In contrast, the correct identification of exons is a 

complex problem in vertebrate genes, which have small exons separated by large 

introns (Black, 1995). In this case, exon definition is facilitated by interactions 

between the upstream 3’ splice site and the downstream 5’ splice site (Robberson et 

al., 1990; Berget, 1995).  
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Pre-spliceosome assembly is initiated by the stable associations of (i) U1 snRNP with 

the 5’ splice site (ii) branchpoint-binding protein SF1 with the branchpoint, and (iii) 

U2 snRNP auxiliary factor (U2AF) with the polypyrimidine tract (E complex) 

(reviewed by (Reed, 2000)) (Figure 1.2). Binding of SF1 to the branchpoint is weak 

but the affinity is increased by a simultaneous interaction with U2AF65 (Berglund et 

al., 1998). These early events are ATP-independent and commit the pre-mRNA to the 

splicing pathway. ATP hydrolysis then leads to the formation of the A complex, 

which is characterised by the stable association of U2 snRNP at the branchpoint. U2-

snRNP binding to the branch point requires auxiliary factors SF1 and U2AF (Guth 

and Valcarcel, 2000). U2AF is a heterodimer of 35 and 65-kDa subunits (Ruskin et 

al., 1988; Zamore and Green, 1989). U2AF65 binds to the polypyrimidine tract 

through its RNA recognition motifs (RRMs) and contacts the branch point via its RS 

domain (Zamore et al., 1992; Gaur et al., 1995; Valcarcel et al., 1996) whereas 

U2AF35 binds to the AG dinucleotide at the 3’ splice site (Zhang et al., 1992; 

Merendino et al., 1999b; Wu et al., 1999; Zorio and Blumenthal, 1999). The 

interaction between U2AF35 and the AG dinucleotide can stabilise the binding of 

U2AF65 to weak polypyrimidine tract characteristic of AG-dependent pre-mRNAs 

(Guth et al., 1999a). U2AF35 also mediates arginine-serine (RS) domain dependent 

bridging interactions with SR proteins (Wu and Maniatis, 1993).  

 The B complex is formed by the incorporation of the U4/U6· U5 tri-snRNP. 

Subsequently, dramatic structural rearrangements within the spliceosome driven by 

several ATP-dependent RNA helicases occur. The duplex between U4 and U6 

snRNAs is unwound, and U1 snRNA base pairing at the 5’ splice site is replaced by 

base pairing of the U6 snRNA. These rearrangements are thought to be critical for 

formation of the catalytically active spliceosomal C complex. These spatial 
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rearrangements are necessary to reposition the splicing intermediates generated in the 

first catalytic step so that the reactive groups involved in the second catalytic step are 

brought closer together (reviewed by (Will and Luhrmann, 2001; Nilsen, 2003). 

Following the second catalytic step ATP-dependent RNA helicases mediate the 

release of the spliced mRNA from the spliceosome resulting in spliceosome 

disassembly (Arenas and Abelson, 1997; Schwer and Gross, 1998). 

Like many mRNA processing factors, the spliceosome is recruited during 

transcription. Chromatin immunopreciptation (ChIP) experiments in both mammalian 

and yeast systems have shown that spliceosome components assemble in vivo on 

intron- containing genes in a stepwise manner consistent with in vitro studies of 

splicing complexes (Kotovic et al., 2003; Gornemann et al., 2005; Lacadie and 

Rosbash, 2005; Lacadie et al., 2006; Listerman et al., 2006; Tardiff and Rosbash, 

2006). The elongation rate of pol II has been shown to influence cotranscriptional 

splicosome assembly (Listerman et al., 2006). In yeast spliceosomal assembly 

completes posttranscriptionally in most cases (Moore et al., 2006).  

This model of spliceosome assembly in which spliceosomal snRNAs associate 

with the pre-mRNA in a stepwise, ordered manner is challenged by the 

holospliceosome model, in which all spliceosomal snRNPs preassemble into a penta-

snRNP complex (Stevens et al., 2002). Evidence for this model comes from 

observations of an early interaction between the U4/U6· U5 tri-snRNP and the 5’ 

splice site that occurs prior to stable binding of the U2-snRNP to the pre-mRNA 

branch point (Konforti et al., 1993; Konforti and Konarska, 1994; 1995; Maroney et 

al., 2000; Johnson and Abelson, 2001). Several observations suggest that the U1 

and/or U2snRNPs interact with the U4/U6· U5 tri-snRNP prior to engaging the pre-

mRNA (Konarska and Sharp, 1988; Hausner et al., 1990; Wassarman and Steitz, 
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1992). More recent studies revealed that a large 200S complex containing the U1, U2, 

U4, U5, and U6 snRNPs can assembly onto a short RNA containing a 5’ splice site in 

HeLa cell nuclear extracts, consistent with the existence of a human penta-snRNP 

(Malca et al., 2003). In Saccharomyces cerevisiae a pre-formed penta-snRNP was 

shown to function as an intact entity in in vitro splicing assays when supplemented 

with micrococcal nuclease-treated extract (Stevens et al., 2002).  Based on this 

evidence it is proposed that the holospliceosome engages the pre-mRNA. In 

subsequent remodelling steps, initial weak contacts between the spliceosome and the 

pre-mRNA are progressively stabilised and a catalytically active spliceosome is 

formed. It is proposed that due to the relatively harsh conditions used to investigate 

spliceosome assembly in vitro the various assembly intermediates that are observed 

simply reflect the stepwise stabilisation of snRNP-premRNA interactions, rather than 

a stepwise recruitment of snRNPs. Thus according to the holospliceosome model, 

spliceosomal complexes such as the A complex arise by disassociaton of the 

holospliceosome. However it has been demonstrated that holosplicesome formation is 

not a prerequisite for generating catalytically active human spliceosomes and that, at 

least in vitro, the U1 and U2 snRNPs can functionally associate with the pre-mRNA, 

prior to and independent of the tri-snRNP (Behzadnia et al., 2006). 
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Figure 1.2: Spliceosome assembly pathway. See text for description (Hertel and 
Graveley, 2005) 
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1.6 Spliceosome composition 

 

Biochemical purifications from yeast and HeLa nuclear extracts have been 

instrumental in defining the protein composition of the spliceosome (reviewed by 

(Jurica and Moore, 2003)). Much has been learned about the protein components of 

the spliceosome from analysis of individual purified small nuclear ribonucleoproteins 

(reviewed by (Will and Luhrmann, 2001)) and salt-stable spliceosome particles 

(Bennett et al., 1992; Neubauer et al., 1998). The advent of pre-mRNAs containing 

aptamer sequences (e.g., tobramycin) or binding sites for an affinity-tagged RNA 

binding protein (e.g., viral MS2-MBP) has made it possible to elute splicing 

complexes under nondenaturing conditions (Wang and Rando, 1995; Das et al., 

2000). This has lead to the purification and mass spec analysis of individual 

subcomplexes (Hartmuth et al., 2002; Jurica et al., 2002; Makarov et al., 2002). A 

proteomic analysis of the human spliceosome identified about 145 distinct 

spliceosomal proteins, making the spliceosome the most complex cellular machine so 

far characterised (Zhou et al., 2002a). While the U snRNPs are at the heart of this 

complex machinery, a myriad of non-snRNP-associated splicing factors, such as SR 

proteins and DexD/H box ATPases interact sequentially with the pre-mRNA. The 

human spliceosome contains at least 30 proteins with putative or known roles in steps 

of gene expression other than splicing (Rappsilber et al., 2002; Zhou et al., 2002a). 

These factors may be required for mediating the extensive coupling between splicing 

and other steps in gene expression.  

The size and three-dimensional structure of the intermediate stages of 

spliceosome assembly and the small nuclear ribonucleoproteins have been visualised 

by cryo-electron microscopy (Reed et al., 1988; Stark et al., 2001; Zhou et al., 2002b; 
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Azubel et al., 2004; Boehringer et al., 2004; Jurica et al., 2004; Deckert et al., 2006; 

Sander et al., 2006; Cohen-Krausz et al., 2007). 

 

1.7 SR proteins 

 

The SR proteins are a highly conserved family of structurally and functionally related 

non-snRNP splicing factors present in all metazoans (reviewed by (Fu, 1995; 

Graveley, 2000; Sanford et al., 2003)). Biochemical experiments have provided strong 

evidence that SR proteins play essential roles in general, or constitutive splicing. But 

they seem to be equally important in splicing regulation, being able to modulate 

selection of alternative splice sites in a concentration-dependent manner and to 

contribute to activation (or repression) of splicing through interactions with exon and 

intron splicing enhancers (ESEs and ISEs) (or silencers (ESSs or ISSs) (Lavigueur et 

al., 1993; Sun et al., 1993; Tian and Maniatis, 1993). Given their crucial role in 

constitutive splicing, it is somewhat surprising that SR proteins appear not to be 

conserved in Saccharomyces cerevisiae although they are present in 

Schizosaccharomyces pombe (reviewed by (Kaufer and Potashkin, 2000)). The fact 

that branchpoints and 5’ splice sites strongly match the consensus in S.cerevisiae 

could alleviate the requirement for SR proteins in this organism. 

  SR proteins were independently discovered by a number of groups taking 

very different approaches. Splicing factor 2/alternative splicing factor (SF2/ASF) was 

the first SR protein to be identified. SF2 and ASF, which are identical, were 

independently isolated. SF2 was isolated from HeLa cell nuclear extract as a factor 

required to reconstitute splicing in an S100 splicing-deficient HeLa cell extract 



 25 

(Krainer and Maniatis, 1985; Krainer et al., 1990a; 1991). ASF was isolated based on 

an activity that switched SV40 T/t 5’ splice site usage in vitro (Fu and Manley, 1987; 

Ge and Manley, 1990; Ge et al., 1991).  In another approach, monoclonal antibodies 

that inhibit the splicing reaction led to the identification of SC35 and 9G8 (Fu and 

Maniatis, 1990) (Cavaloc et al., 1994). The human SR protein family currently 

contains 11 known members. They each share the following characteristics: (1) They 

contain a shared phosphoepitope recognised by the monoclonal antibody mAb104 

(Roth et al., 1991). (2) They copurify in a two-step salt precipitation procedure 

(soluble in 65% ammonium sulfate and precipitated in 20mM MgCl2) (Zahler et al., 

1992). (3) They can complement splicing-deficient cytoplasmic S100 extracts 

indicating a degree of overlapping function in splicing. (4) Their sizes on SDS-PAGE 

are conserved from Drosophila to man. (5) They are characterised by a modular 

domain structure, comprising one or two RNA-recognition motifs (RRMs) at their N-

termini and a variable-length arginine/serine-rich domain at their C-termini (the RS 

domain).  

 

1.8 The structural organisation of SR proteins 

 

The RNA-recognition motifs (RRMs) 

 

The RNA recognition motif (RRM) is a conserved, modular RNA binding domain of 

approximately 80 amino acids in length and contains two small highly conserved 

sequence elements, the RNP-1 octamer and the RNP-2 hexamer (Nagai et al., 1990; 

Hoffman et al., 1991). The RRM motif is present in one or more copies in many 

RNA-binding proteins involved in pre-mRNA and pre-rRNA processing (Kenan et 
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al., 1991; Birney et al., 1993). SR proteins contain one or two RRMs, however, in 

those SR proteins that contain two RRMs, the second RRM is atypical and always 

contains a heptapeptide motif, SWQDLKD, that is a signature of this domain (Birney 

et al., 1993). Mutation of the RNP-2 or RNP-1 motifs of SF2/ASF inhibits binding to 

RNA and results in decreased activity in in vitro splicing assays (Caceres and Krainer, 

1993). The RRMs can bind RNA in a sequence specific manner in the absence of the 

RS domain (Zuo and Manley, 1993; Tacke and Manley, 1995b; 1999; van der Houven 

van Oordt et al., 2000). SR proteins recognise a vast array of RNA sequences. 

Although SR proteins do display specificities, the consensus sequences they recognise 

are degenerate and the binding site of one SR protein may also act as the binding site 

for another (Tacke and Manley, 1995a; 1999; Liu et al., 1998; Cavaloc et al., 1999).  

 

The RS domain 

 

The RS domain consists of simple repeats of arginine and serine, occasionally 

interrupted by other amino acids, and its length and sequence are highly conserved for 

individual SR proteins in different species (Zahler et al., 1992; Birney et al., 1993). 

The RS domain is also present in a family of related splicing factors called SR-like or 

SR-related proteins (reviewed by (Blencowe et al., 1999)). The RS domain can be 

functionally exchanged between SR proteins and can function when fused to a 

heterologous RNA-binding domain (Chandler et al., 1997; Graveley and Maniatis, 

1998; Wang et al., 1998b).  

The RS domains of SR proteins function as a protein-protein interaction 

domain. SR proteins were initially shown to interact with one another, with the 

splicing regulators Tra and Tra2, and with other components of the splicing 
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machinery that contain RS domains such as U1 snRNP-associated 70 kDa protein 

(U170K) and U2AF35 (Amrein et al., 1994; Wu and Maniatis, 1993; Kohtz et al., 

1994). While the RS domains have been shown to be sufficient to mediate certain 

protein interactions, the RS domain of SF2/ASF is not sufficient to interact with 

U170K (Xiao and Manley, 1997). In addition, when artificially tethered to the pre-

mRNA, the RS domains of several human SR proteins are sufficient to activate 

enhancer-dependent splicing, an activity that presumably requires protein interactions 

(Graveley and Maniatis, 1998).   

The RS domain contacts the pre-mRNA at several stages during spliceosome 

assembly suggesting an additional role to mediating protein-protein interactions. 

RNA-protein cross-linking procedures demonstrate two RS domains, one from 

U2AF65 (Valcarcel et al., 1996) and a second from an SR protein, are required for 

prespliceosome assembly (Shen et al., 2004). These two RS domains contact the 

branchpoint sequentially: first the RS domain from the polypyrimidine-tract bound 

U2AF65 contacts the branchpoint in the E complex and subsequently, the RS domain 

from the SR protein contacts the branchpoint in the prespliceosomal A complex. A 

third RS domain, provided by another SR protein, is required for mature spliceosome 

assembly and contacts the 5’ splice site in the B complex (Shen and Green, 2004). 

The RS domain-splicing signal interactions may promote (or stabilise) base-pairing 

between the U snRNA and pre-mRNA substrate, thereby enhancing splicing 

(Valcarcel et al., 1996; Shen et al., 2004; Shen and Green, 2004; Hertel and Graveley, 

2005). 

The RS domain of SF2/ASF is not required for in vitro splicing of all pre-

mRNAs. Specifically the RS domain is dispensable for the processing of several 

constitutively spliced and enhancer dependent pre-mRNAs with strong splice sites 
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(Zhu and Krainer, 2000). In contrast the RS domain is required for splicing of an 

intron with a weakened polypyrimidine tract that also requires U2AF35. This suggests 

the existence of both RS domain-dependent and independent activities of SR proteins. 

  

 1.9 Role of SR proteins in constitutive splicing 

 

In cellular extracts lacking SR proteins, such as S100 cytosolic extracts (Krainer et al., 

1990b) no specific splicing complex could be detected, indicating that SR proteins act 

early in spliceosome assembly. In addition SR proteins can commit pre-mRNA to the 

splicing pathway (Fu, 1993). The binding of SR proteins to pre-mRNA clearly 

provides a kinetic advantage for assembly into these earliest detectable splicing 

complexes. SF2/ASF has been shown to bind RNAs containing wild-type, but not 

mutant 5’ splice sites (Zuo and Manley, 1994). Furthermore, SF2/ASF cooperates 

with U1 snRNP in binding to and defining a functional 5’ splice site by interacting 

with the U1 snRNP-associated 70 kDa protein (U170K) (Eperon et al., 1993; Wu and 

Maniatis, 1993; Kohtz et al., 1994; Jamison et al., 1995). The binding of SF2/ASF to 

the 5’ splice site before U1 snRNP addition is prerequisite for complex formation. 

The observation that SR proteins and U1 snRNP associate with pol II led to the 

proposal that SR proteins promote cotranscriptional spliceosome assembly (Das et al., 

2007). 
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Figure 1.3: The exon-dependent and –independent functions of SR proteins in 
pre-spliceosome assembly. SR proteins can promote both the recognition of 5’ and 
3’ splice sites as well as communication between splice sites by exon definition or 
intron bridging interactions. Arrows indicate RS domain-mediated interactions. 
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Bridging 5’ and 3’ splice sites 

 

SR proteins directly promote E complex formation by stabilising U1 snRNP bound at 

the 5’ splice site (Kohtz et al., 1994) and U2AF bound to the polypyrimidine tract 

(Staknis and Reed, 1994). The SR proteins also bridge the 5’ and 3’ splice sites by 

promoting RS-mediated interactions with U170K at the 5’splice site and with the 

small subunit of the U2 snRNP auxiliary factor (U2AF35) at the 3’ splice site (Wu 

and Maniatis, 1993; Kohtz et al., 1994) (Figure 1.3). Although not all SR proteins 

have been tested for this interaction, at least one  - SRp54 – does not interact with 

U2AF35 but instead U2AF65 (Zhang and Wu, 1996). Thus, a network of protein-

protein interactions builds a bridge between the 5’ and 3’ splice sites, effectively 

looping out the intron during prespliceosomal assembly, this is thought to play a key 

role in intron definition. This network of interactions provides a mechanistic 

explanation for earlier observations that SC35 is required to mediate interactions 

between U1 and U2 snRNP at the 3’ splice site (Fu and Maniatis, 1992). This model 

is also supported by bimolecular splicing experiments demonstrating that 5’ and 3’ 

splice site complexes on separate transcripts can be trans-spliced, and that SR 

proteins appear to play an important role in mediating splice site interactions in trans 

(Bruzik and Maniatis, 1995; Chiara and Reed, 1995).  

 

Network interactions across the exon 

 

SR proteins and SR related proteins assemble on discrete sequences within exons, 

termed exonic splicing enhancers (ESEs), to promote both constitutive and alternative 

splicing by forming networks of interactions with each other, as well as with snRNP-
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associated, SR related proteins (reviewed by (Blencowe, 2000)). The bound SR 

proteins can interact with U2AF35 to stimulate and/or stabilise recruitment of U2AF 

recruitment to the polypyrimidine tract and activate adjacent 3’ splice sites (U2AF 

recruitment model) (Wang et al., 1995; Zuo and Maniatis, 1996; Graveley et al., 

2001). The recruitment model does not seem to be generally applicable to all 

enhancer-dependent splice sites (Kan and Green, 1999; Li and Blencowe, 1999). For 

certain pre-mRNA substrates, the presence of an ESE-bound SR protein does not act 

to promote recruitment of U2AF to the polypyrimidine tract, rather it helps to 

antagonise the negative activity of hnRNP proteins recognising exonic splicing 

silencer (ESS) elements (Eperon et al., 2000). A role for two SR-related nuclear 

matrix proteins (SRm160/300) in promoting enhancer dependent splicing has also 

been proposed (Eldridge et al., 1999). ESE bound SR proteins might interact with the 

splicing coactivator SRm160 and establish a set of interactions with one or more 

snRNP components. 

 Downstream 5’ splice sites are able to stimulate the splicing efficiency of 

upstream introns (Robberson et al., 1990; Kuo et al., 1991) and even promote splicing 

in trans (Chiara and Reed, 1995). It was demonstrated that the effect of the 

downstream 5’ splice site is due to a network of interactions spanning the exon 

involving U1 snRNP binding to the downstream 5’ splice site and U2AF65 binding to 

the polypyrimidine tract in the upstream intron (Hoffman and Grabowski, 1992).  

The exon definition model (Berget, 1995) proposes that interactions between 

components bound to the 5’ and 3’ splice sites flanking an exon serve to distinguish 

exons from introns. SR proteins have been proposed to participate in this process 

where they simultaneously interact with U2AF35 bound to the upstream 3’ splice site 

and U170K bound to the downsteam 5’ splice site (Wu and Maniatis, 1993). It is 
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thought that the majority of constitutively spliced exons are defined by this 

mechanism (Reed, 1996). In support of this model a number of SR protein binding 

sites that function as constitutive splicing enhancers have been identified in 

constitutive exons (Mayeda et al., 1999; Schaal and Maniatis, 1999).  

 In summary, SR proteins are involved in three processes during the early stage 

of spliceosome assembly (Figure 1.3). (1) SR proteins cooperate with U1 snRNP in 

defining a functional 5’ splice site. (2) SR proteins interact with the U2AF hetrodimer 

to promote and/or stabilise complex assembly at the 3’ splice site. (3) SR proteins 

bridge factors assembled on both 5’ and 3’ splice sites to form stable commitment 

complexes. These complexes assemble both across the intron and the exon. 

Additionally, SR proteins function at later stages of the splicing reaction facilitating 

the recruitment of the U4/U6.U5 tri-snRNP complex (Roscigno and Garcia-Blanco, 

1995).  

 

1.10 Actions of SR proteins and hnRNP A/B proteins in splice site 

selection 

 

The first SR proteins to be identified had similar effects on 5’ splice site selection. 

Increased concentrations of the proteins resulted in the selection of intron-proximal 5’ 

splice sites in pre-mRNAs that contain two or more alternative 5’ splice sites (Fu and 

Manley, 1987; Krainer et al., 1990c; Ge and Manley, 1990). An excess of hnRNP A/B 

proteins had the opposite effect, promoting the selection of intron-distal 5’ splice 

sites. These effects have been observed with different pre-mRNA substrates both in 

vitro and in vivo (Mayeda and Krainer, 1992; Mayeda et al., 1993; Caceres et al., 

1994; Yang et al., 1994; Wang and Manley, 1995). Individual SR proteins can 



 33 

sometimes have opposite effects on alternative splice site selection, as in the case of 

the antagonistic effects of SF2/ASF and SC35 in the regulation of b-tropomyosin 

(Gallego et al., 1997) and of SF2/ASF and SRp20 on the regulation of SRp20 pre-

mRNA alternative splicing (Jumaa and Nielsen, 1997). The relative abundance of SR 

and hnRNP A/B proteins could be important in regulating the patterns of alternative 

splicing in a tissue specific or developmentally regulated manner. There are tissue-

specific variations in the total and relative amounts of SR proteins (Zahler et al., 

1993). The molar ratio of SF2/ASF to its antagonist hnRNP A1 varies considerably in 

different rat tissues (Hanamura et al., 1998). All SR genes have alternative spliced 

forms that are expected to be degraded by nonsense mediated mRNA decay due to the 

alternative splicing of highly or ultraconserved elements. Thus SR proteins can auto 

regulate their own expression by coupling alternative splicing with decay (Lareau et 

al., 2007) 

 

1.11 Functional redundancy among SR proteins 

 

SR proteins are functionally redundant in the splicing of some introns. However, 

several differences in the ability of these proteins to regulate alternative splicing, as 

well as the ability of individual SR proteins to commit different pre-mRNAs to the 

splicing pathway suggested that individual SR proteins have unique functions in 

splicing regulation (Fu, 1993; Caceres et al., 1994; Wang and Manley, 1995; Chandler 

et al., 1997). Genetic analyses of SR proteins have demonstrated that not all SR 

proteins are functionally redundant. SF2/ASF is essential for cell viability in the 

DT40 chicken cell line, and its depletion cannot be rescued by over expression of 

other SR proteins (Wang et al., 1998b). Furthermore, SF2/ASF has been shown to 
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play an essential role in regulating an alternative splicing pathway that is crucial for 

postnatal heart remodelling in the mouse (Xu et al., 2005). SRp20 is essential for 

mouse development (Jumaa et al., 1999) and conditional deletions of the SR protein 

SC35 in the thymus causes a defect in T cell maturation (Wang et al., 2001). RNA 

interference (RNAi) experiments with Caenorhabditis elegans SR proteins showed 

that, whereas the ortholog of the mammalian SF2/ASF (CeSF2/ASF) is an essential 

gene, functional knockouts of other SR genes resulted in no obvious phenotype, 

which is indicative of functional redundancy. Instead lethality was only seen when 

combinations of these SR proteins were targeted simultaneously (Kawano et al., 2000; 

Longman et al., 2000). In Drosophila, the B52 gene, a homolog of human SRp55, is 

essential for development, although several genes show proper pre-mRNA splicing in 

the arrested larvae (Ring and Lis, 1994; Peng and Mount, 1995). It was later found 

that other SR proteins complement the loss of B52 in most tissues (Hoffman and Lis, 

2000). However in the brain, where B52 is the predominant SR protein, the levels of 

SR proteins are not sufficient to compensate for loss of B52 in the null mutant. These 

results further indicate that the requirement for a particular SR protein may be due to 

specific functions in the tissue or developmental stage in which a particular SR 

protein is predominant. 

 

1.12 Transcriptional regulation of alternative splicing 

 

The regulation of alternative splicing depends not only on the interaction of splicing 

factors with splicing regulatory elements in the pre-mRNA, but also on promoter type 

and the recruitment of transcription factors and coactivators (Cramer et al., 1997; 
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Cramer et al., 1999; Kadener et al., 2001; Nogues et al., 2002; Auboeuf et al., 2004; 

Kornblihtt, 2005).  The impact of steroid hormone-mediated transcription on RNA 

processing was investigated with reporter genes subject to alternative splicing driven 

by steroid-sensitive promoters (Auboeuf et al., 2002). Activated steroid receptors may 

bind to target DNA response elements and promote the recruitment of coregulators 

that are involved in both transcription and splicing. Depending on the promoter and 

cellular context, the same transcriptional factor could recruit different coregulators, 

thereby mediating different effects on transcription and splicing regulation.   

The rate and pausing of transcription elongation has also been shown to 

regulate alternative splicing (Roberts et al., 1998; de la Mata et al., 2003; Howe et al., 

2003). For instance, a slow pol II, and/or the presence of internal transcription pause 

sites, results in inclusion of the alternative exon harbouring a weak 3’ splice site. By 

contrast, when the same pre-mRNA is transcribed by a highly processive pol II, the 

weak alternative 3’ splice site is unable to compete with the stronger downstream 3’ 

splice site, which results in skipping of the alternative exon.  

Changes in chromatin structure have also been shown to affect splicing. For 

example, trichostatin A, an inhibitor of histone deacetylation, favours exon skipping 

of alternative exons, presumably because hyperacetylation of core histones facilitates 

the passage of the transcribing polymerase (Nogues et al., 2002). SWI/SNF is a 

chromatin-remodelling factor that plays a role in alternative splicing (Batsche et al., 

2006) but, surprisingly, the mechanism of action is independent of its role in 

chromatin remodelling. Instead it forms macromolecular complexes with pol II at 

sites of variable exons resulting in the stalling of pol II that could favour the inclusion 

of variable exons in the mature mRNA.  

 



 36 

1.13 HCC1 

 

U2AF65 contains an N-terminal RS domain and three RRMs, all of which have been 

implicated in high-affinity binding to the polypyrimidine tract (Zamore et al., 1992). 

RRMs 1 and 2 of U2AF65 exhibit a canonical RRM-fold and bind RNA in vitro (Ito 

et al., 1999). The N-terminal amino acids 85-112 of U2AF65 (which does not 

comprise its RS domain) are required for the interaction with U2AF35 (Zhang et al., 

1992). The atypical third RRM mediates the interaction with SF1 and could have a 

dual function in both RNA and protein binding (Berglund et al., 1998; Rain et al., 

1998). This unusual RRM-like domain, called UHM for U2AF homology motif, is 

present in many other splicing proteins (Kielkopf et al., 2004). 

 PUF60 (poly (U)-binding protein factor-60 kDa) was first isolated as a protein 

closely related to U2AF65 that was required for efficient reconstitution of splicing in 

vitro (Page-McCaw et al., 1999). The homology between PUF60 and U2AF65 

extends across their entire length, except for the N-terminus where PUF60 lacks a 

recognisable RS domain. CAPERa (also called HCC1.3) and CAPERb are the most 

recently characterised proteins related to U2AF65 (Dowhan et al., 2005). Both have a 

domain structure similar to U2AF65, except for the C-terminus of CAPERb, which 

lacks the UHM domain (reviewed by (Mollet et al., 2006)) (Figure 1.4). 
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Figure 1.4: (A) Domain organisation of U2AF65 and U2AF65-related proteins. 
The gene names have been included. (B) A schematic alignment of human proteins 
related to U2AF65. The putative functional domains in each protein are aligned with 
U2AF65, and the similarity (% identity) of these domains in relation to U2AF65 is 
indicated (Mollet et al., 2006) 
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Although it remains to be determined whether U2AF65 performs other functions in 

the cell in addition to its fundamental role in pre-mRNA splicing, the U2AF65-related 

proteins are clearly implicated in both splicing and transcription. HCC1 was originally 

identified and cloned as an autoantigen from a patient with hepatocellular carcinoma 

(Imai et al., 1993). It comprises two related proteins, most likely generated by 

alternative splicing termed, HCC1.3 and HCC1.4, which differ by 6 amino acids. 

CAPER (HCC1.3) was independently identified as a protein that interacts with the 

estrogen receptor and stimulates its transcriptional activity, and was also purified as a 

spliceosome component capable of affecting the splicing reaction (Hartmuth et al., 

2002; Jung et al., 2002; Rappsilber et al., 2002; Auboeuf et al., 2004). More recently, 

an additional related protein was identified and termed CAPERb. Both CAPER 

(renamed CAPERa) and CAPERb were shown to regulate transcription and 

alternative splicing in a steroid hormone-dependent manner (Dowhan et al., 2005).  In 

response to steroid hormones CAPER (HCC1) proteins may interact with promoter-

bound transcription factors resulting in the stimulation of transcription and its 

incorporation into the pre-initiation complex. CAPER proteins would then have direct 

access to the nascent RNA transcript allowing for interactions with splicing factors 

required for the early recognition of the 3’ splice site thus influencing commitment to 

splicing (Dowhan et al., 2005). In support of this view HCC1.4 has been shown to 

interact with the SR-related protein, SRrp53, which regulates alternative splicing, 

possibly through activating weak 3’ splice sites (Cazalla et al., 2005). 
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1.14 Nuclear organisation 

 

Biochemical, genetic and molecular experiments have led to an overwhelming 

amount of information about the molecular mechanisms of transcription and pre- 

mRNA splicing. In contrast little is known about how these processes are integrated 

into the structural framework of the cell nucleus and how they are spatially and 

temporally co-ordinated within the three-dimensional confines of the nucleus 

(reviewed by (Lamond and Earnshaw, 1998; Misteli and Spector, 1998; Dundr and 

Misteli, 2001a)). 

Genetically encoded fluorescent proteins have transformed studies in cell 

biology. The extensive mutagenesis of green fluorescent protein, from the jellyfish 

Aequorea Victoria (Chalfie et al., 1994), combined with the cloning of new 

fluorescent protein variants from corals, has yielded fluorescent proteins that emit 

light from the blue to the red end of the visible spectrum (Matz et al., 1999; 2002; 

Patterson et al., 2001; Zhang et al., 2002)) The emergence of these genetically 

encoded fluorescent tags allows the visualization and quantitative analysis of 

chromatin, mRNA and proteins in living cells (Misteli, 2001a; 2007; Lanctot et al., 

2007; Rodriguez et al., 2007). These studies have revealed two fundamental aspects 

of nuclear architecture: first, time-resolved experiments revealed that the nucleus is a 

highly dynamic organelle and secondly, many nuclear factors are localised in distinct 

structures, such as speckles, paraspeckles, nucleoli, cajal bodies, gems and 

promyelocytic leukaemia bodies (Lamond and Sleeman, 2003; Handwerger and Gall, 

2006). In this thesis I will focus on the speckles, also referred to as SC35 domain or 

splicing factor compartments (SFCs).  
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Evidence suggests that self-organisation plays a crucial role in generating nuclear 

architecture (Misteli, 2001b; 2007). Photobleaching experiments demonstrated that 

the steady-state accumulation of mobile nuclear components in compartments is 

produced by their transient interaction with locally immobilized binding sites (Misteli, 

2001a). Furthermore the local concentration of factors created in these compartments, 

and the flux of components between compartments play key roles in regulating gene 

expression (Carmo-Fonseca, 2002).    

 

1.15 Cell biology of splicing factors 

 

Virtually all proteins involved in splicing are enriched in nuclear speckles, in addition 

to their diffuse distribution throughout the nucleoplasm (Spector et al., 1983; Lamond 

and Spector, 2003). These domains were described on the basis of their distinct 

morphology long before the discovery of pre-mRNA splicing (Beck, 1961). The 

domains can be resolved by electron microscopy into two distinct structures. One is 

composed of clusters of electron-dense granules of about 20nm in diameter situated 

between chromatin regions and, therefore, termed interchromaatin granule clusters 

(IGCs) (Swift, 1959). The second is composed of perichromatin fibrils (PFs) that 

radiate from the periphery of the clusters of IGCs and are also found distributed 

throughput the nucleoplasmic space (Monneron and Bernhard, 1969). 

 Several lines of evidence point to speckles functioning as 

storage/assembly/modification compartments that can supply splicing factors to active 

transcription sites (Misteli, 2000). Speckles are often observed close to highly active 

transcription sites and specific highly active genes have been shown to localise 

preferentially with the periphery of speckles (Huang and Spector, 1991; Xing et al., 
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1993; Xing et al., 1995; Smith et al., 1999; Johnson et al., 2000; Moen, Jr. et al., 

2004). Nucleotide incorporation experiments demonstrated that active sites of 

transcription are associated with PF rather than within IGCs (Fakan and Bernhard, 

1971; Fakan and Nobis, 1978; Cmarko et al., 1999). Live cell studies show the 

recruitment of splicing factors from speckles to active sites of transcription (Misteli et 

al., 1997) and conversely, speckles become rounded up and enlarged upon disruption 

of transcription or splicing (Spector et al., 1983; O'Keefe et al., 1994). Furthermore, 

upon expression of intron-containing genes or viral genes, splicing factors are 

redistributed from speckles to the new transcription sites (Jimenez-Garcia and 

Spector, 1993; Bridge et al., 1995; Huang and Spector, 1996; Misteli et al., 1997). 

While these observations suggest that splicing factors generally move towards a gene, 

it is likely that pre-mRNA also moves towards speckles (Xing et al., 1993; Melcak et 

al., 2000). 

  The fact that individual splicing factors undergo redistribution upon gene 

activation implies that their subnuclear distribution is regulated. In the Drosophila 

melanogaster Tra protein the RS domain is both necessary and sufficient for 

localisation to nuclear speckles (Li and Bingham, 1991). However the RS domain is 

not necessary in SF2/ASF and U2AF65 for a speckled localisation (Caceres et al., 

1997; Gama-Carvalho et al., 1997). Although the RS domain of SF2/ASF is a nuclear 

localisation signal, subcellular targeting to the speckles requires at least two of the 

three domains of SF2/ASF, which contain additive or redundant signals.  In contrast, 

in two SR proteins that have a single RRM, SRp20 and SC35, the RS domain is 

necessary and sufficient for proper localisation (Caceres et al., 1997). 
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1.16 Composition of speckles 

 

Many pre-mRNA splicing factors – including snRNPs and SR proteins – have been 

localised to nuclear speckles. In addition, several kinases (Colwill et al., 1996; Ko et 

al., 2001; Kojima et al., 2001; Sacco-Bubulya and Spector, 2002; Brede et al., 2002) 

and phosphatases (Trinkle-Mulcahy et al., 1999; 2001) that can 

phosphorylate/dephosphorylate components of the splicing machinery have also been 

localised to nuclear speckles. In an attempt to characterise in detail the protein 

composition of speckles, proteomic analysis of an enriched IGC fraction purified from 

mouse liver nuclei has been carried out – 136 known proteins, as well as numerous 

uncharacterised proteins have been identified (Mintz et al., 1999). In addition to pre-

mRNA splicing factors, several other proteins such as RNA export factors (Zhou et 

al., 2000; Le Hir et al., 2001; Degot et al., 2004) transcription factors (Larsson et al., 

1995; Zeng et al., 1997), subunits of pol II (Mortillaro et al., 1996), 3’-end RNA 

processing factors (Krause et al., 1994; Schul et al., 1998), translation factors (Li et 

al., 1999; Dostie et al., 2000), and structural proteins (Nakayasu and Ueda, 1984; 

Jagatheesan et al., 1999), such as lamin A and snRNP associated actin, have been 

localised to nuclear speckles. In addition to these factors, a population of poly (A) + 

RNA has been found associated with nuclear speckles (Carter et al., 1991; Visa et al., 

1993; Huang et al., 1994). These RNAs may represent species with a specific nuclear 

function. For example they may act as structural RNAs involved in the organisation of 

speckles.  
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1.17 Nuclear speckles and the cell cycle 

 

At the onset of mitosis, mammalian cell nuclei undergo dramatic structural and 

functional alteration such as chromatin condensation, inactivation of the transcription 

machinery, nuclear envelope break down, and disassembly of nuclear compartments. 

Nuclear speckles disassemble during mitosis, and their constituents are diffusely 

distributed throughout the cytoplasm, later organising into cytoplasmic structures 

called mitotic interchromatin granules (MIGs) (Reuter et al., 1985; Spector and Smith, 

1986; Verheijen et al., 1986; Leser et al., 1989; Ferreira et al., 1994; Thiry, 1995). 

Early studies on the behaviour of nuclear speckles through the cell cycle described 

MIGs as the mitotic equivalent of interphase nuclear speckles based on their similar 

granular structure and composition. MIGs disappear concomitant with nuclear entry 

of pre-mRNA processing factors at telophase, showing that these factors are recycled 

from the cytoplasm into daughter nuclei (Prasanth et al., 2003). Splicing factors are 

competent for pre-mRNA processing immediately after their entry into daughter 

nuclei (Prasanth et al., 2003), supporting the possibility that MIGs might be 

responsible for splicing-factor modification, allowing for the immediate targeting of 

pre-mRNA processing factors to transcription sites in telophase nuclei. Telophase 

splicing factors do not immediately localise to nuclear speckles upon nuclear entry. 

SR proteins factors initially localise around nucleolar organising regions before the 

establishment of nuclear speckles, whereas snRNPs localise in polar regions of 

daughter nuclei (Bubulya et al., 2004). The concentration of SR proteins in a region of 

the nucleus away from other splicing factors could increase the probability of RS-

domain mediated interactions, thus facilitating the intermolecular associations 

important for subsequent association with transcription sites and nuclear speckles. 
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1.18 Nucleo-cytoplasmic shuttling of SR proteins 

 

Whereas some human SR proteins are confined to the nucleus, three of them – 

SF2/ASF, SRp20, and 9G8 - shuttle rapidly and continuously between the nucleus and 

the cytoplasm (Caceres et al., 1998) an activity reminiscent of hnRNP family 

members (Pinol-Roma and Dreyfuss, 1992). Chimeric constructs between a shuttling 

protein SF2/ASF, and two non-shuttling proteins, SRp40 and SC35, demonstrated that 

the RS domain of SF2/ASF is required for nucleo-cytoplasmic shuttling. The RS 

domain of SF2/ASF conferred the ability to shuttle to a nonshuttling protein, SC35, 

when substituted for the natural RS domain of this protein. Conversely, replacing the 

RS domain of SF2/ASF with the RS domain of SRp40 converted a shuttling protein 

into one that remained confined to the nucleus (Cazalla et al., 2002). The RS domain 

also plays a role in nuclear localisation and is necessary for their interaction with 

transportin-SR, a nuclear import receptor specific for SR proteins (Caceres et al., 

1997; Kataoka et al., 1999).  

This subset of shuttling SR proteins are involved in several post-splicing 

activities. Two shuttling SR proteins, SRp20 and 9G8, have been shown to promote 

mRNA export of intronless RNAs and to act as adapter proteins for TAP-dependent 

mRNA export (Huang and Steitz, 2001; Huang et al., 2003). SF2/ASF has been 

shown to control the cytoplasmic stability of a specific mRNA (Lemaire et al., 2002). 

Furthermore, shuttling SR proteins associate with translating ribosomes and enhance 

translation of reporter mRNAs both in vivo and in vitro (Sanford et al., 2004). It has 

also been demonstrated that SR proteins are involved in nonsense-mediated mRNA 

decay, although this activity does not correlate with their ability to shuttle (Zhang and 

Krainer, 2004). 
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1.19 Phosphorylation of SR proteins 

 

RS domains are heavily phosphorylated in vitro and in vivo and several kinase 

activities have been reported to phosphorylate SR proteins (Woppmann et al., 1993; 

Gui et al., 1994; Colwill et al., 1996; Nikolakaki et al., 1996; Rossi et al., 1996; Wang 

et al., 1998a). Functionally, phosphorylation of the RS domain contributes to RNA-

binding specificity (Tacke et al., 1997), modifies protein-protein interactions (Xiao 

and Manley, 1997; Wang et al., 1998a) and plays a role in regulating alternative 

splicing, nuclear import and export, and translation (Caceres et al., 1998; Lai et al., 

2001; Blaustein et al., 2005; Sanford et al., 2005). In vitro studies demonstrate that a 

cycle of phosphorylation and dephosphorylation is essential for the splicing reaction 

to take place (Mermoud et al., 1992; 1994; Tazi et al., 1993; Cao et al., 1997). It has 

been observed that certain pre-mRNA splicing factors must be phosphorylated before 

they can be incorporated into functional spliceosomes and that dephosphorlation 

occurs as the splicing reaction takes place.  

The effect of phosphorylation on splicing factor function is mirrored by its 

effects on their localisation. Three splicing factor-specific kinases, SRPK-1, SRPK-2 

and Clk/Sty cause the release of splicing factors from nuclear speckles (Gui et al., 

1994; Colwill et al., 1996; Wang et al., 1998a). Clk/Sty may also be involved in the 

release of SR proteins from nucleolar organising regions in telophase cells (Bubulya 

et al., 2004). On the other hand, a serine/threonine protein phophatase 1 activity has 

been identified which has the opposite effect on splicing factor distribution (Misteli 

and Spector, 1996). 

 These observations have led to the following model for the control of splicing 

factor distribution in the nucleus. Functionally inactive pre-mRNA splicing factors 
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localise in IGCs. Phosphorylation of the factors allows them to be released from IGCs 

and to be recruited, possibly in a complex with other processing components, to 

transcription sites, where the spliceosome forms on nascent RNAs. During splicing or 

after the splicing reaction, the factors are dephosphorylated and the spliceosomes are 

eventually disassembled. The dephosphorylated factors can now reassociate with the 

IGCs or travel to the cytoplasm and enter a new round of phosphorylation and 

dephosphorylaion. 
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Figure 1.5: Role of phosphorylation in regulating the nuclear properties of 
splicing factors. The phosphorylation of SR proteins is a pre-requisite for their 
release from nuclear speckles. Numerous kinases that localize to nuclear speckles and 
potentially mediate release of splicing factors have been identified. Progression 
through the splicing reaction, resoltion of the spliceosome and reassociation of 
splicing factors with nuclear speckles requires multiple dephosphorylation steps 
(Misteli,2000).  
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1.20 Fluorescent Resonance Energy Transfer (FRET) 
 

Light microscopy has initiated our understanding of cellular structure and the 

associated function. Approaches are being used to monitor the co-localisation of 

proteins with different subcellular compartments, providing critical information about 

cell physiology. The problem is that the detection of protein co-localisation alone 

cannot distinguish proteins with overlapping distribution from those proteins that are 

interacting in significant ways. Molecular biology studies over the past few decades 

have shown that cellular events, such as signal transduction and gene expression, 

require the assembly of proteins into specific macromolecular complexes. Traditional 

biochemical methods did not provide information about the interactions of these 

protein partners in their natural environment. Such progress has now been made in 

fluorescence microscopy in both the development of new methods and the 

engineering of fluorescent probes that the biology of the cell can now be investigated 

at macromolecular levels in biological space and time. 

 Fluorescence resonance energy transfer (FRET) is a quantum mechanical 

phenomenon that occurs between a fluorescent donor and a fluorescent acceptor that 

are in molecular proximity of each other if the emission spectrum of the donor 

overlaps the excitation spectrum of the acceptor (reviewed by (Day et al., 2001a; 

Wouters et al., 2001; Chen et al., 2003)). Under these conditions, energy is transferred 

non-radiatively from the donor to the acceptor (Figure 1.5). The efficiency of energy 

transfer is dependent on the distance between the two fluorophores, the relative 

orientation of the donor and acceptor and the fraction of interacting fluorophores 

(Patterson et al., 2000). Thus, FRET can be applied to biological systems to glean 
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information about molecular structure, and the magnitude and dynamics of 

interactions between donor- and acceptor-labelled molecules (Hoppe et al., 2002).  
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Figure 1.6: Principles of fluorescence resonance energy transfer (FRET). (A) An 
intermolecular FRET-based reporter consists of two different proteins (X and Y) that 
are labelled with cyan fluorescent protein (CFP) and yellow fluorescent protein 
(YFP), respectively, which interact and bring the fluorophores into close proximity, 
thereby increasing FRET efficiency (Zhang et al., 2002). (B) Excitation and emission 
of a commonly used FRET pair. The schematic depicts simplified absorbance and 
emission spectrum of CFP (donor; D) and YFP (acceptor; A). Overlap between CFP 
emission and YFP absorbtion (shaded region) is a prerequisite for FRET.  Donor 
absorbance (Dabs), Donor emission (Dem), Acceptor emission (Aem), Acceptor 
absorbance (Aabs) (Bhat et al., 2006). 
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Excitation of a donor fluorophore in a FRET pair leads to quenching of the donor 

emission and to an increased, sensitised, acceptor emission. Intensity-based FRET 

detection methods include monitoring the donor intensity (with or without acceptor 

photobleaching), the sensitised acceptor emission or the ratio between the donor and 

acceptor intensity. Methods that are based on fluorescent-decay kinetics include 

determining the rate of donor photobleaching, the appearance of new components in 

the acceptor decay kinetics or the decrease of donor fluorescent lifetime. When a 

fluorophore absorbs a photon it enters an excited state and returns to the ground state 

by emitting a lower energy photon, with the energy difference between absorbed and 

emitted photon transferred to the environment. The time taken for the energised 

electron to return to the ground state occurs on the nanosecond time scale and is 

referred to as the fluorescent lifetime (Figure 1.6). Fluorescent Lifetime Imaging 

Microscopy (FLIM) allows the population of interacting protein species to be 

determined on a point-by-point basis at each resolved voxel in the cell (Becker et al., 

2001).  

 There are two complementary techniques of lifetime measurement: the time 

domain and the frequency domain. In the time domain, a short pulse of light excites 

the sample, and the subsequent fluorescence emission is recorded as a function of 

time. This usually occurs on the nanosecond timescale. In the frequency domain, the 

sample is excited by a modulated source of light. The fluorescence emited by the 

sample has a similar waveform, but is modulated and phase-shifted from the 

excitation curve. The lifetime can be calculated from the observed modulation and 

phase-shift. 
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Figure 1.7: Principles of fluorescence. Within femtoseconds after light excites the 
fluorophore at an appropriate wavelength, its electron jump from the ground state to a 
higher vibrational state. Within picoseconds these electrons decay back to the lowest 
excited state, and then decay more slowly (nanoseconds) back to the ground state with 
the emission of a photon whose wavelength is longer than the exciting wavelength 
(mekentosj.com/science/fret/fluorescence.html). 
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1.21 Applications of FRET 
 

The earliest FRET reporters utilised in living cells consisted of BFP and GFP fused 

with a protease-sensitive linker. Proteolysis disrupts FRET by separating the donor 

and acceptor units (Mitra et al., 1996). FRET reporters have been applied to a range of 

cell biological phenomena. CAMeleons are FRET reporters used to measure changes 

in intracellular Ca2+ concentration (Miyawaki et al., 1997). The binding of Ca2+ results 

in conformational changes leading to a large increase in FRET. Beyond intracellular 

ion sensing, FRET constructs have been used to visualise the behaviour of many other 

signalling molecules and proteins in cells. For example, indicators for kinase activity 

(Kurokawa et al., 2001; Ting et al., 2001; Zhang et al., 2001; Sato et al., 2002), cGMP 

(Sato et al., 2000; Honda et al., 2001), Ras and Rap1 activity (Mochizuki et al., 2001), 

and Ran activity (Kalab et al., 2002) have been constructed. FRET imaging can also 

be used to observe interactions between GFP fusion proteins and fluorescently 

labelled antibodies. For example, FLIM has been used to show autophophorylation of 

GFP-tagged PKC or ErbB1 by detecting FRET between the GFP-tagged protein and a 

fluorescently labelled phosphorylation-site-specific antibody (Ng et al., 1999; Verveer 

et al., 2000b; Wouters and Bastiaens, 1999). A FRET-based reporter of membrane 

potential has also been developed (Sakai et al., 2001). 

 The attachment of donor and acceptor fluorophores to interacting protein 

partners allows interactions to be monitored in real-time in live cells. This technique 

has been applied to study a wide range of interactions, however, at this point in time 

there are relatively few studies of interactions between RNA processing factors. 

FRET has been utilised to address a proposed role for cajal bodies in snRNP assembly 

(Stanek and Neugebauer, 2004). The distribution of snRNP intermediates required for 
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U4/U6 snRNP assembly demonstrated that U4/U6 snRNP assembly occurs 

preferentially in cajal bodies. FRET has also been applied to study the interactions 

between U2AF35 and U2AF65 and revealed a novel U2AF35 self-interaction 

(Chusainow et al., 2005).  

Protein-protein interactions can also be imaged in live cells by bimolecular 

fluorescence complementation (BiFC) assays, in which the potential partner proteins 

are fused to complementary fragments of fluorogenic reporters. The interaction of the 

protein partners allows the two fragments to reconstitute the fluorescence. The BiFC 

assay was applied to study complex formation between the splicing factor Y14 and 

nuclear export factor 1 (NXF1), which are functionally associated with nuclear 

mRNA (Schmidt et al., 2006) and showed that fluorescence accumulated in and 

around speckles. This led to the conclusion that a fraction of RNA, which remains in 

the nucleus for several hours despite its association with splicing and export factors, 

accumulates in speckles. 
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1.22 Conclusions 

 
In vitro experiments have led to an overwhelming amount of information about the 

molecular mechanisms of transcription and pre- mRNA splicing. In contrast little is 

known about how these processes are integrated into the structural framework of the 

cell nucleus and how they are spatially and temporally co-ordinated within the three-

dimensional confines of the nucleus. Colocalisation experiments have been used to 

determine which factors reside in the different subcompartments of the nucleus 

leading to insights into their function. However, FRET assays can be employed to 

determine whether direct protein-protein interactions occur in subcompartments 

allowing the visualisation of protein complexes in living cells. 

Here I have employed FRET acceptor photobleaching and FLIM to map with 

nanometer resolution interactions between splicing factors within living human cells. 

This approach allows the study of interactions at the single cell level complementing 

previous biochemical data. I have utilised this approach to investigate the interactions 

of SR proteins with U2AF35 and U170K. These interactions have been extensively 

characterised in vitro and are proposed to play a crucial role in intron and exon 

definition. This provides a well defined model to test by FRET acceptor 

photobleaching and FLIM. The aims of this thesis are to determine whether 

interactions previously described in vitro occur within the nucleus of living cells and 

to map the locations of these interactions.  

Splicing frequently occurs cotranscriptionally, therefore by inhibiting 

transcription for 2 hours the number of spliceable transcripts remaining in the cell is 

expected to decrease. Therefore by carrying out FRET experiments in the presence 

and absence of the transcription inhibitor DRB I aimed to determine whether the 
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interactions between splicing factors are dependent on splicing.  The interactions of 

SR proteins with U170K and U2AF35 have been spatially mapped within live cell 

nuclei and occur in the presence of the pol II inhibitor, DRB, demonstrating that they 

are not exclusively cotranscriptional. 

 In addition I have characterized novel interactions of HCC1, a factor related 

to U2AF65, with both U2AF35 and U2AF65 suggesting a role for HCC1 in 3’ splice 

site selection. FLIM microscopy showed the interactions between HCC1 and U2AF65 

occurred more strongly in discrete domains within the nucleoplasm. In conclusion I 

have demonstrated different complexes of splicing factors show different patterns of 

interactions within live cell nuclei.  
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Materials and Methods 

 

2.1 Plasmid Constructs 

 

Human U170K and Luc7A were cloned by reverse transcription (RT-PCR) from total 

RNA from HeLa cells. Total RNA was prepared using TriReagent (Sigma) according 

to the manufacturer’s specifications. 5 mg of total RNA was used for synthesis of first-

strand cDNA with SuperScriptTMII RNase H- reverse transcriptase (Invitrogen), 

following manufacturer’s protocol. Oligo dT primers were used for the RT reaction 

and 10% of the cDNA obtained in each case was used for PCR amplification. 

Fragments corresponding to full length coding sequence of human U170K or Luc7A 

were amplified using specific primers that introduce EcoR1 and BamH1 restriction 

sites, ligated into the corresponding sites of ECFP-C1 or EYFP-C1 (clonetech). 

Alternatively Xba1 and BamH1 restriction sites were introduced for ligation of 

U170K into the mammalian expression vector pCG-T7. Human HCC1.4, SRp20, 

SC35 and SF2/ASFDRS were cloned by using the cDNA cloned into the mammalian 

expression vector pCG-T7 as a template for PCR. Specific primers introduced BglII 

and BamH1 restriction sites for subsequent ligation of HCC1 into ECFP-C1 and 

EYFP-C1 (Clonetech). EcoR1 and BamH1 sites were introduced for the ligation of 

the other constructs. SF2/ASF EGFP-C1 and SF2/ASF AAA EGFP-C1 were a gift 

from Giuseppe Biamonti (Pavia) and were subsequently subcloned into ECFP-C1 and 

EYFP-C1. SRp53 was previously cloned into EGFP-C1 by Demian Cazalla, a former 

PhD student in the lab, and was subsequently subcloned into ECFP-C1 and EYFP-C1.   

U2AF35 and U2AF65 in ECFP-C1 and EYFP-C1 were a gift from Angus Lamond 
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(Dundee). All constructs generated in ECFP-C1 and EYFP-C1 vectors were 

subcloned into EGFP-C1 (Clonetech) and mCherry-C1 (Shaner et al., 2004). 

Primer  Sequence 
SRp20-F(EcoR1) TCGGAATTC TCATCGTGATTCCTGTCCATTGGACT 
SRp20-R(BamH1) TCGGGATCCTTTCCTTTCATTTGACCTAGATCGA  
SC35-F(EcoR1) TCGGAATTC TAGCTACGGCCGCCCCCCTCCCGAT 
SC35-R(BamH1) TCGGGATCCAGAGGACACCGCTCCTTCCTCTTCAGGA  
SF2/ASFDRS-F(EcoR1) TCGGAATTC TTCGGGAGGTGGTGTGATT 
SF2/ASFDRS-R(BamH1) TCGGGATCCGCCATAGCTCGGGCTACG 
Luc7A-F(EcoR1) TCGGAATTC TATTTCGGCCGCGCAGTTGTTGGAT 
Luc7A-R(BamH1) TCGGGATCCATTGGACTGAGTGTCACCTTCAGA 
U1-70K-F(EcoR1) TCGGAATTC TACCCAGTTCCTGCCGCCCA 
U1-70K-R(BamH1) TCGGGATCCCTCCGGCGCAGCCTCCATCAA 
T7-U170K-F(XbaI) TCGTCTAGA ACCCAGTTCCTGCCGCCCA 
T7-U170K-R(BamH1) TCGGGATCCTCACTCCGGCGCAGCCTCCATCAA 
HCC1.4-F(BglII) TCGAGATCT GCAGACGATATTGATATTGAAGCA 
HCC1.4-R(BamH1) TCGGGATCCTCGTCTACTTGGAACCAGTAGCT  
 

Table 2.1: Primers used for cloning the constructs used in this thesis. Restriction sites 
are  shown in bold ,underlined. 
 

2.2 Cell culture and transfections 

 

HeLa and 293T HEK cell lines were grown in Dulbecco’s modified Eagle’s medium 

(Invitrogen) supplemented with 10% fetal calf serum, and incubated at 37°C in the 

presence of 5% CO2. HeLa and 293T HEK cells were transfected with Lipofectamine 

2000 (Invitrogen) according to manufacture’s instructions. 
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2.3 Cell fixation and immunofluorescence microscopy 

 

HeLa cells grown on glass coverslips were fixed for 5 min in freshly prepared 

PBS/3.7% paraformaldehyde at RT. Permeabilisation was performed with PBS /1% 

triton x100 for 10 min at RT. After extensive washing, samples were blocked with 

0.05% Tween20/PBS containing 1% goat serum (Sigma-Aldrich) for at least 30 min at 

RT, and then incubated for 1h with the primary anti-BrdU antibody (B2531; 1:500) or 

monoclonal SC35 (1:500). Secondary antibodies used were AMCA-conjugated goat 

anti–mouse (1:500; Jackson ImmunoResearch Laboratories) or TxRed anti-mouse 

(1:100) for 45 min incubation at RT. Then, coverslips were mounted in Vectashield 

medium (Vector Laboratories). The samples were observed on a Zeiss Axioskop 

microscope and the images were acquired with a Photometics CH250 cooled CCD 

camera using Digital Scientific Smartcapture extensions in software from IP Lab 

spectrum. 

 

2.4 Fluorouracil (5-FU) incorporation assay 

 

24 h after transfection, HeLa cells, either mock-treated or treated with DRB for the 

indicated length of time, were incubated with 2 mM 5-FU (F5130) for 30 min at 37°C. 

Subsequently, cells were fixed, permeabilized, and incubated with primary anti-BrdU 

antibody (B2531; 1:500). Immunofluorescence microscopy was performed as 

indicated (see section 2.3). 
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2.5 Western blot analysis 

 

Samples were separated by SDS-PAGE and electroblotted Protan BA85 

NitroCellulose (Schleicher and Schuell) in 25mM Tris-base, 40mM glycine and 20 % 

methanol in a Genie Blotter unit (Idea Scientific Company), at 12 volts for one hour. 

The membranes were blocked with 1:10 Western Blotting reagent (Roche) in TBST 

(20 mM Tris pH7.5, 137 mM NaCl and 0.1% Tween 20) for one hour at room 

temperature or overnight at 4°C. Incubations with primary and secondary antibodies 

were carried out for one hour at room temperature in TBST containing 1:20 Western 

Blotting reagent (Roche). Four washes with TBST were done after incubations with 

each antibody, and immunoreactive bands were detected with SuperSignal system 

(Pierce) according to the manufacturer’s instructions. The following primary 

antibodies were used: mouse anti-GFP at 1:1000 (Roche) mouse anti-U1-70K at 

1:1000 (Synaptic Sciences), rabbit anti-HCC1 at 1:5000 (Bethyl Laboratories), mouse 

anti-U2AF65 at 1:200 (a gift from Juan Valcarcel), mAb 96 at 1:500 (for detection of 

SF2/ASF), sheep anti-U2AF35 at 1:500. The appropriate secondary antibodies 

(horseradish peroxidase conjugated to IgG) were used at 1:10,000. 

 

2.6 Immunoprecipitation 

 

For Immunoprecipitation (IP) 293T cells that were transfected with a construct 

expressing the protein of interest or mock transfected were resuspended in 400 ml of 

lysis buffer (50 mM Tris [pH 7.5], 250 mM NaCl, 5 mM EDTA, 0.5% Triton X-100, 

0.3% NP40, 1mM  PMSF) and incubated for 10 min at 4°C. The extract was 
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centrifuged at 12,000  x g for 20 min at 4°C, after which the pellet was discarded. The 

extract was incubated with the antibody of choice bound to 20 mL of protein A 

(Amersham) at 4°C for 2 h with continuous rotations. The IP reactions were then 

washed four times with lysis buffer. In some cases beads were treated with 50 mg/ml 

of RNase A/T1 cocktail (Ambion) for 10 min at 4°C. After RNase treatment, beads 

were resuspended in 30 ml of loading buffer (50 mM Tris [pH7.5], 10% glycerol, 

0.05% SDS, 2.5% b-mercaptoethanol) and boiled for 3 min. For Western blot analysis 

of immunoprecipitated proteins, 10 ml of sample was used. 

 

2.7 FRET Acceptor Photobleaching 

 

HeLa cells grown on glass coverslips were cotransfected with an ECFP and EYFP 

construct of choice. Eight to 12 h post-transfection, cells were mounted in HEPES 

buffered Phenol red–free medium (Invitrogen Life Technologies) in a closed, heated 

chamber (Bachofer). Measurements were conducted on a DeltaVision Spectris Image 

Restoration Microscope (Applied Precision) fitted with a Quantifiable Laser Module 

(QLM) including a 20-mW 532-nm CW laser, suitable for photobleaching YFP 

without cobleaching CFP. Images were collected using an Olympus 60× NA 1.4 Plan-

Apochromat lens, a Photometrics CoolSnap HQ cooled CCD camera and SoftWorx 

(Applied Precision) imaging software. The following specific CFP/YFP filter sets 

were used to resolve the ECFP and EYFP signals: excitation 436/10 nm and emission 

480/40 nm for ECFP; excitation 525/20 nm and emission 580/70 nm for EYFP. The 

dichroics used were custom-built by Applied Precision and Chroma Technology. The 

set is modified from the normal CFP/YFP JP4 set such that the dichroic reflects and 
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the emission filter rejects light at 532 nm, allowing this wavelength to be used for 

selectively photobleaching YFP. After obtaining five pre-bleach images, a defined 

region of the cell nucleus was spot photobleached with a single 150-msec stationary 

pulse at 90% laser power. The first image was acquired 2 msec after the bleach event. 

For the first sec, images were acquired approximately every 200 msec; for the 

following 1.7 sec, every 335 msec; and then at 830-msec intervals in the following 5 

sec, after which images were acquired every 1.6 sec for the remainder of the 

experiment. A total of 20 images were acquired after the bleach event. Images of 

donor (ECFP) and acceptor (EYFP) were taken in separate subsequent measurements, 

bleaching exactly the same spot before collecting post-bleach images. Obtained data 

were analyzed using the image analysis tools included in the SoftWorx software and 

the biostatistics program GraphPad Prism. In addition to the bleached region, a similar 

nonbleached nuclear region in the same cell was included in the data analysis as a 

control. A region of background fluorescence was defined outside the cell and 

subtracted from both the bleached and control regions. The data were normalised 

against the mean intensity of the whole image over time to account for any 

fluctuations and normal photobleaching that occur during image acquisition 

throughout the course of the experiment. FRET efficiency was calculated by the 

following formula: 

FRET Efficiency = (ID(post) – ID(Pre) / ID(post)) 

where ID(pre) and ID(post) are donor intensity before and after photobleaching, 

respectively. A FRET efficiency of greater than 5% is considered a significant 

protein-protein interaction based on the negative controls using YFP-NLS. 

For inhibition of transcriptional activity, cells were treated for 2 h with 25 

mg/mL DRB before carrying out FRET analyses by acceptor photobleaching. 
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2.8 Fluorescence lifetime measurements by time-correlated single-

photon counting (TCSPC) for FRET experiments 

 

Cells were prepared as described for acceptor photobleaching assays except EGFP 

and mCherry fluophores were used. Fluorescence lifetime Imaging Microscopy 

(FLIM) was performed using an inverted laser scanning multiphoton microscope 

(Nikon TE2000/Bio-Rad Radiance 2100MP) with a 63x oil immersion (NA 1.4). 

Two-photon excitation was achieved using a ChameleonTM Verdi pumped ultrafast 

tunable (720-930 nm) laser (Coherent Inc.), to pump a mode-locked frequency-

doubled Ti:Sapphire laser (Coherent) that provided sub-200 femtosecond pulses at a 

90 Mhz repetition rate with an output power of approximately 1.4W at the peak of the 

tuning curve (800 nm). Enhanced detection of the scattered component of the emitted 

(fluorescence) photons was afforded by the use of fast single-photon response 

(Hammamatsu 5783P) direct detectors. The fluorescence lifetime imaging capability 

was provided by time-correlated single photon counting electronics (SPC-830; Becker 

& Hickl GmbH). The optimal two-photon excitation wavelength to excite the donor 

(EGFP) was determined to be 890 nm. Fluorescence emission of EGFP- fusion 

proteins was collected using a bandpass filter (525 ± 25 nm) to limit detection to only 

the donor fluorophore (EGFP) and prevent contamination from the acceptor 

(mCherry) emission. Laser power was adjusted to give a mean photon count rate of 

the order 104 to 105 photons/s, and fluorescence lifetime images were acquired over 

120 sec. Fluorescence lifetimes were calculated for all pixels in the field of view (256 

x 256 pixels) using SPCImage software. A bi-exponential fluorescence decay model 

is applied to the data to determine the fluorescence lifetime of non-interacting and 

interacting subpopulations. 
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Measurements of FRET based on analysis of the fluorescence lifetime of the donor 

can distinguish between FRET efficiency (i.e., coupling efficiency) and an increase in 

FRET population (concentration of FRET species). The assumption that non-

interacting and interacting fractions are present allows us to determine both the 

efficiency of interaction and the fraction of interacting proteins. Such a FLIM analysis 

can be enhanced by extending from a pixel to pixel analysis to a global analysis (i.e., 

assumption of globally invariant fluorescence lifetime components and calculation 

over all pixels throughout the measured cell) (Verveer et al., 2000a). By fixing the 

non-interacting species lifetime using data obtained from control experiments (in the 

absence of (FRET)), more accurate estimations of the remaining free parameters may 

be made. Furthermore, by assuming invariance in the efficiency of interaction 

between pixels throughout the measured cell one can determine the % of interacting 

species (a1) by summation of data throughout the cell and thereby fix both lifetime 

parameters. Mean FRET efficiency images were calculated such that the FRET 

efficiency, EFRET = 1 - t DA/t D where t DA is the mean fluorescence lifetime of the donor 

in the presence of the acceptor and t D is the mean fluorescence lifetime of the donor 

in the absence of acceptor for all the cells imaged. In order to calculate the mean 

FRET efficiency the non-interacting species lifetime was fixed using data obtained 

from control experiments. A FRET efficiency of greater than 5% is considered a 

significant protein-protein interaction based on the FRET efficiencies measured using 

mCherry-C1 as a negative control.  
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Results 
 

3.1 Choice of fluorphores for FRET analysis 

 

This thesis characterises interactions between splicing factors in living human cells 

using two techniques: FRET acceptor photobleaching and Fluorescent Lifetime 

Imaging Microscopy (FLIM).  For FRET acceptor photobleaching analyses enhanced 

cyan fluorescent protein (ECFP) and enhanced yellow fluorescent protein (EYFP) 

fusions of the splicing factor of interest were generated. For FLIM analyses, enhanced 

green fluorescent protein (EGFP) and mCherry fusion (Shaner et al., 2004) of splicing 

factors were constructed.  

 GFP is a 27-kDa monomer consisting of 238 amino acids (Prasher et al., 

1992). The peak emission for GFP is 509 nm and the peak excitation is 488 nm. The 

extensive mutagenesis of GFP has yielded fluorescent protein variants with different 

excitation and emission properties, providing several protein tags with suitable 

spectral overlap for FRET studies (Heim and Tsien, 1996; Tsien, 1998; Zhang et al., 

2002). Early FRET studies used blue fluorescent protein (BFP) as a donor fluorophore 

and either YFP or GFP as an acceptor fluorophore (Mitra et al., 1996; Day et al., 

2001b). However, the quantum yield of BFP is very low, and it is very susceptible to 

photobleaching (Rizzuto et al., 1996). Some of the intrinsic problems of using BFP 

were overcome when CFP was identified (Heim and Tsien, 1996). The peak emission 

for CFP is 476 nm and the peak excitation is 434 nm. The YFP variant (Heim et al., 

1995; Tsien, 1998) is the most red shifted of the mutant variants of GFP yet 

generated, with a peak emission at 527 nm and peak excitation at 514 nm. CFP and 

YFP have become a popular FRET pair due to the good spectral overlap, with CFP 
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acting as a donor and YFP an acceptor (Miyawaki et al., 1997). YFP has a high 

quantum yield and its susceptibility to photobleaching is an advantage in FRET 

acceptor photobleaching studies (Tsien, 1998).  

 Red fluorescent protein (RFP) was cloned from the sea anemone Discosoma 

striata (Matz et al., 1999). RFP is a 28-kDa protein that shares about 25% sequence 

identity with GFP. RFP is a very slow maturing protein that has a strong tendency to 

form tetramers in vivo and in vitro (Baird et al., 2000). The first true monomer was 

mRFP1, derived from the Dicosoma sp. fluorescent protein DsRed (Bevis and Glick, 

2002; Campbell et al., 2002). Subsequent mutagenesis has yielded monomers (Shaner 

et al., 2004), such as mCherry (Excitation maximum 587 nm, Emission maximum 610 

nm) that mature more completely, are more tolerant of N-terminal fusions and are 

more photostable than mRFP1. The spectral overlap between GFP and mCherry make 

them suitable for FRET analysis with GFP acting as the donor and mCherry the 

acceptor (Tramier et al., 2006).  

 

3.2 Development of FLIM methods 
 
 
During the early stages of this thesis a number of Time-correlated single-photon 

counting (TCSPC) FLIM experiments were carried out using ECFP and EYFP as the 

donor and acceptor pair. However, there are numerous problems with analysing the 

data from FLIM experiments performed using ECFP and EYFP. Previously it has 

been shown that CFP alone may exhibit bi-exponential decay kinetics when observed 

in a cellular environment (Tramier et al., 2002).  Models predict that there is a short 

lifetime associated with ECFP of 1.18ns and a longer lifetime of 2.58ns. 
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Experimental Fitting Data: Single-exponential decay  model 

Experimental Fitting Data: Double-exponential decay  model 

Intensity k2 spatial distribution k2 distribution (ROI)Pixel Lifetime decay

2.18ns

Experimental Fitting Data: Single-exponential decay  model 

Intensity k2 spatial distribution k2 distribution (ROI)Pixel Lifetime decay

47% 1.96ns
53% 2.3ns

Intensity k2 spatial distribution k2 distributionPixel Lifetime decay

2.2ns

Intensity k2 distribution Pixel Lifetime decay k2 spatial distribution

28% 1.18ns
72% 2.58ns

Figure 3.1: ECFP has two lifetimes and EGFP only one (A) Lifetime decay graphs and 
K2 distributions  are shown for ECFP fitted to a single or a double exponential decay model. 
(B) Lifetime decay graphs and K2 distributions  are shown for EGFP fitted to a single or a 
double exponential decay model. 
 

A 

B 
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Figure 3.1 shows the pixels lifetime decay curves and K2 distribution for ECFP and 

EGFP. The lifetime decays can be fitted to either single or double exponential decay 

models which assume there are either one or two lifetimes present respectively. The 

K2 distributions are a measure of how well the data fit the model. The closer the value 

is to one the better the fit. Importantly it was observed that when a double exponential 

decay model is applied for the fluorescent decay of ECFP the K2 is reduced from 1.09 

in the single exponential decay model to 1.00. However, when a double-exponential 

decay model is applied for the fluorescent decay of EGFP no improvement in the K2 is 

observed. Therefore, while the double-exponential decay model can determine two 

lifetimes for EGFP this is less accurate than assuming that there is one lifetime 

present. In summary, by fitting the data to the model to give the best K2 value, there 

are two fluorescent lifetimes associated with ECFP and only one with EGFP.  

 The double-exponential decay model shows that there is a short lifetime 

associated with ECFP of 1.18ns and a loger lifetime of 2.58ns. This leads to 

complications when analysing the data from FRET experiments. In experimental 

FRET situations free donors co-exists with donors bound to acceptors. This means 

that the fluorescent decay curves for FRET experiments will contain two components.  

Therefore the mean fluorescent lifetime can be represented by the equation:  tm = 

a1FRETt1FRET + a2t2, where t1 is the short lifetime of the binding donor fraction a1, and t2 

is the long lifetime of the free donor fraction a2. However, it has been demonstrated 

that ECFP has a double exponential decay therefore the short fluorescent lifetime 

observed in experimental situation is due to both FRET and the short lifetime of 

ECFP making quantification difficult. 
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Figure 3.2: FRET between ECFP-HCC1 and EYFP-U2AF65 detected by FLIM. 
HeLa cells were transfected with ECFP-HCC1 and cotransfected with EYFP-
U2AF65. Confocal image of transfected cells and FLIM image of same cells, in 
which mean fluorescent lifetime is shown in false colour. The colour scale with the 
respective lifetimes (in picoseconds) is indicated. 
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Figure 3.2 shows that FRET can be detected between ECFP-HCC1 and EYFP-

U2AF65 in FLIM experiments. Interestingly, the same pattern of interactions were 

observed using either ECFP and EYFP FRET pairs or EGFP and mCherry FRET 

pairs (see section 3.16). However, due to the problems described above with the bi-

exponential decay of ECFP, FRET between ECFP and EYFP is considered more 

qualitative than quantitative. Further doubts about the accuracy of FLIM experiments 

using ECFP and EYFP have been cast due to the photosensitivity properties of ECFP 

under the mercury lamp which can influence fluorescent lifetimes in unpredictable 

ways (Tramier et al., 2006). Due to these limitations of using ECFP and EYFP, I 

considered EGFP and mCherry to be a more suitable FRET pair for the FLIM 

experiments described in this thesis.  
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3.3 Fluorescently tagged proteins colocalise with endogenous SC35 in 

speckles 

 

Some concerns have previously been expressed that the fusion of the 27-kDa GFP tag 

to a protein can affect its function within the cell. However, there is mounting 

evidence that fluorescently tagged proteins are functional such as the case of 

fluorescently tagged snRNP proteins that have been shown to assemble into snRNPs 

(Stanek and Neugebauer, 2004). Furthermore, GFP-SF2/ASF has been shown to be 

functional in in vivo splicing assays (Misteli et al., 1997). To determine whether the 

presence of the fluorescent protein tag affected the subcellular distribution of the 

splicing factors cloned for FRET analysis indirect immunofluorescence was carried 

out in HeLa cells. Cells were transiently transfected with the N-terminal GFP tagged 

protein, fixed and stained with an antibody specific for SC35, a marker of speckles. 

The merged images in Figure 3.1 demonstrate that all the EGFP-tagged proteins 

colocalise with SC35 and show a typical speckled pattern. The other fluorescently 

tagged proteins (ECFP, EYFP, mCherry) showed a similar pattern upon transient 

transfection (data not shown). This led to the conclusion that the presence of the 

fluorescent protein tag does not affect the subcellular distribution of any of the 

proteins analysed (Misteli et al., 1997).   
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Figure 3.3: EGFP-tagged proteins colocalise in nuclear speckles with endogenous 
SC35. HeLa cells transiently expressing EGFP tagged splicing factors were fixed 12 
hours post transfection. Endogenous SC35 was detected by indirect 
immunoflouscence with an anti-SC35 monoclonal antibody. 
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A further aim of this thesis was to analyse whether mutations in SF2/ASF affect its 

protein interactions in living cells. In order to determine this, mutant versions of 

SF2/ASF were constructed that either had a point mutation in the second RRM 

(SF2/ASF AAA) or lacked the RS domain (SF2/ASFDRS) (See section 3.14 for 

details).  Previous indirect immunofluorescence with T7 epitope-tagged SF2/ASFDRS 

(T7-SF2/ASFDRS) has demonstrated that deletion of the RS domain of SF2/ASF 

results in a weak cytoplasmic accumulation although it is still recruited to the speckles 

(Caceres et al., 1997). It has also been reported that point mutations in RRM2 of 

SF2/ASF do not affect its subcellular localisation (Chiodi et al., 2004). Figure 3.2 

demonstrates that fluorescently tagged SF2/ASFDRS and SF2/ASFAAA localised as 

would be expected based on previous studies when transiently transfected into HeLa 

cells. EGFP-SF2/ASFDRS showed a weak cytoplasmic staining in addition to 

colocalising with SC35 in speckles whereas the mutation in EGFP-SF2/ASFAAA did 

not affect its localisation. 
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Figure 3.4: EGFP-tagged SF2/ASFDDDDRS and SF2/ASF AAA show the expected 
localisation patterns. HeLa cells transiently expressing EGFP-tagged SF2/ASF 
mutants were fixed 12 hours post transfection. Endogenous SC35 was detected by 
indirect immunoflouscence with an aniti-SC35 monoclonal antibody. 

SC35 EGFP-SF2ÆRS Merge DNA

SC35 EGFP-SF2AAA Merge DNA
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3.4 Expression levels of full-length fluorescent proteins 

 

To determine the expression level of the fluorescently tagged proteins and to confirm 

that they are expressed as full-length proteins western blot analysis was carried out. 

293T cells were transiently transfected with the EGFP-tagged constructs and 12 hours 

post transfection the lysates were analysed by SDS-PAGE. Where available western 

blots were carried out with antibodies raised against the endogenous protein, when 

this was not available anti-GFP was used. Figure 3.3 shows that the antibodies 

recognised the endogenous protein and the GFP-tagged protein shifted by 27 kDa and 

no degradation bands were visible. Therefore, it was concluded that all the 

fluorescently tagged proteins are full length. Each band ran at the expected molecular 

weight but due to different constructs being run on different gels a comparison been 

individual gels cannot be made. Figure 3.3 also shows that the expression levels of the 

tagged proteins are similar to that of the endogenous protein when averaged out over a 

population of 293T cells.  
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Figure 3.5: Characterisation of the expression levels of transiently transfected 
flourescently tagged proteins in 293T cells. 12 hours post transfection total lysates 
were prepared from 293T cells. Extracts were separated on an SDS 12% 
polyacrylamide gel and analysed by Western blotting with the appropriate 
endogenous antibody or with anti-GFP for the detection of EGFP-SC35, EYFP-
SRp20 and EYFP-Luc7.   
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3.5 FRET acceptor photobleaching demonstrates the interaction of 

SF2/ASF with U170K in live cells 

 

U1 snRNP is the earliest snRNP to assemble on pre-mRNAs (Mount et al., 1983; 

Ruby and Abelson, 1988) defining the 5’ splice site via RNA-RNA and RNA-protein 

interactions (Zhuang and Weiner, 1986; Zhuang et al., 1987). It has been 

demonstrated that SR proteins collaborate with U1 snRNP in 5’ splice site 

recognition: purified U1 snRNP and SF2/ASF form a ternary complex with pre-

mRNA, which is dependent on a functional 5’ splice site (Kohtz et al., 1994). 

Additionally, SF2/ASF has been shown to enhance the affinity of U1 snRNP for 

5’splice sites (Eperon et al., 2000). This effect is mediated directly by an interaction 

between SR proteins and U170K (Wu and Maniatis, 1993). Previously it has been 

demonstrated that recombinant SC35 and SF2/ASF can interact with U170K when 

immobilised on a nitrocellulose filter or in solution. This interaction has also been 

demonstrated in yeast two-hybrid assays (Wu and Maniatis, 1993).  

 The FRET acceptor photobleaching assay was utilised to study this interaction 

in living HeLa cells. This allowed the interactions to be studied while preserving the 

natural salt concentrations and dynamic structure of the nucleus. 

 In these experiments ECFP and EYFP serve as the donor and acceptor pair for 

FRET, respectively. If the donor (ECFP) and acceptor (EYFP) are in close proximity 

(<10 nm) and in the appropriate relative orientation to each other, excitation of the 

donor molecule leads to transfer of energy to the acceptor. This energy transfer results 

in a decrease in fluorescence emission from the donor and an increase in emission of 

the acceptor.   To measure FRET by acceptor photobleaching the donor fluorescent 
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emission is measured, comparing the quenched with the unquenched donor emission 

after specific photobleaching of the acceptor fluorophore. In the case of FRET 

occurring, photobleaching of the acceptor results in a transient enhancement in donor 

emission. This dequenching effect indicates an abolishment of FRET due to 

photobleaching of the acceptor fluorophore, and thus confirms that the two proteins 

interact directly in vivo. 

 ECFP-U170K and EYFP-SF2/ASF were transiently transfected into HeLa 

cells. Images were acquired before and after photobleaching the acceptor with a single 

150-msec stationary laser pulse (Figure 3.4(A)). Speckles were chosen as the region 

of interest in all the photobleaching experiments described. The post-bleach images, 

collected 2 msec after the laser pulse, clearly show the dequenching effect of the 

donor as a result of bleaching of the acceptor. Due to the rapid diffusion of 

unbleached acceptor into the bleached area dequenching of the donor was detectable 

only for a short time period. Dequenching was only observed in the area that had been 

photobleached. Figure 3.4(B) shows donor (bleached and unbleached) and acceptor 

mean signal intensities plotted over time. 

In order to calculate a FRET efficiency for this interaction the following 

formula was used: 

FRET Efficiency = (ID(post) – ID(Pre) / ID(post)) 

Where ID(pre) and ID(post) are mean donor intensity before and after photobleaching, 

respectively. In order to account for variations in mean signal intensity 5 pre-bleached 

images were taken and the average donor intensity was calculated. A FRET efficiency 

of greater than 5 % is considered significant. Figure 3.4(C) shows that significant 

FRET is observed between ECFP-U170K and EYFP-SF2/ASF. 
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Figure 3.6: (A) In vivo detection of protein-protein interactions between ECFP-
U170K and EYFP-SF2/ASF by FRET acceptor photobleaching microscopy. Live 
HeLa cells transiently coexpressing ECFP-U170K and EYFP-SF2/ASF were analysed 
on a wide-field fluorescent microscope equipped with a quantifiable laser module as 
described in Materials and Methods. Images were acquired before and after 
phobleaching with a single 150-msec stationary laser pulse. A nonbleached region 
similar to the bleached region (arrow) was included in the data analysis for 
comparison. (B) Donor and acceptor mean signal intensities monitored in the 
bleached and nonbleached regions were plotted over time.  (C) FRET efficiencies 
for the interaction between ECFP-U170K and EYFP-SF2/ASF. Plot of FRET 
efficiencies (average for 8 to 27 cells) between CFP + YFP pairs measured by FRET 
acceptor photobleaching. FRET efficiency was calculated from CFP fluorescence 
before and after bleaching: FRETefficiency [%] = 100((CFPafter – CFPbefore) / CFPafter) A 
FRET efficiency of greater than 5% is taken as significant. Error bars show standard 
deviations.  
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It was important to demonstrate that the fluorescently tagged proteins show specificity 

for their interaction partners. Figure 3.4(C) shows that ECFP-U170K does not interact 

with an EYFP- tagged version of the second step splicing factor SRrp53 as previously 

reported by yeast two-hybrid analysis (Cazalla et al., 2005). In addition significant 

FRET was not observed between ECFP-U170K and an EYFP-tagged nuclear 

localisation signal (EYFP-NLS). Luc7p has previously been shown to be a component 

of the U1 snRNP with a role in 5’ splice site recognition in yeast (Fortes et al., 1999).  

To determine if human Luc7A plays a similar role in mammalian cells I tested 

whether it interacts with U170K. Significant FRET was not observed for this 

interaction however, FRET cannot confirm a negative interaction and it could simply 

be that the fluorescent tags are not in a favorable orientation for energy transfer to 

occur. In conclusion I have employed FRET acceptor photobleaching to demonstrate 

the interaction between U170K and SF2/ASF that had previously been characterized 

by in vitro techniques occurs in living HeLa cells. 
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3.6 The interaction between U170K and SF2/ASF is not exclusively 
co-transcriptional 
 

Splicing frequently occurs co-transcriptionally and it has been demonstrated that 

coupling transcription and splicing increases the fidelity and efficiency of splicing 

(reviewed by(Neugebauer, 2002)). In addition, the rate of pol II elongation has been 

shown to affect spliceosome assembly (Listerman et al., 2006) and alternative splicing 

(de la Mata et al., 2003).  

The adenosine analogue 5,6-dichloro-1-b-d-ribofuranosylbenzimidazole 

(DRB) interrupts the elongation step of pol II transcription by promoting premature 

termination (Tamm et al., 1976; Fraser et al., 1978; Laub et al., 1980; Chodosh et al., 

1989). Phosphorylation of the pol II C-terminal domain (CTD) has been suggested to 

accompany the transition from initiation to elongation steps of transcription. The 

blocking of transcription mediated by DRB may result from its ability to inhibit one 

or more protein kinases that phosphorylate the CTD of pol II (Dubois et al., 1994; 

Yankulov et al., 1995; Zandomeni et al., 1986). The positive transcription-elongation 

factor b (P-TEFb) has been implicated in mediating the inhibitory effects of DRB on 

transcriptional elongation (Marshall and Price, 1992).  

To determine whether the interaction between U170K and SF2/ASF is 

dependent on splicing activity, live HeLa cells co-expressing ECFP-U170K and 

EYFP-SF2/ASF were treated with DRB to inhibit transcription, and hence splicing 

activity, before analysing the protein-protein interactions by acceptor photobleaching. 

DRB treatment resulted in a nuclear localisation pattern typical for splicing factors in 

transcriptional inhibited cells; i.e. the speckles become enlarged and rounded. As in 

transcriptionally active cells, photobleaching the acceptor led to a transient 
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enhancement in donor emission (Figure 3.5(A)). The FRET efficiency for the 

interaction between ECFP-U170K and EYFP-SF2/ASF is not significantly affected 

by treatment with DRB (Figure 3.6) as confirmed by a two-tailed homoscedastic t-

test. To confirm that DRB treatment was having the predicted effects on transcription 

I carried out fluorouracil (5-Fu) labeling to visualise ongoing transcription before and 

after treatment with DRB. Figure 3.7 clearly shows that DRB treatment results in a 

reduction in the levels of nascent transcripts and the speckles become enlarged and 

rounded. Consistent with previous reports the effects of DRB were shown to be 

reversible by 5-Fu labeling in cells that had been incubated in normal media for 1 

hour after DRB treatment. A recovery in the level of transcription can be seen and the 

speckles revert back to their normal morphology. In conclusion this data shows that 

U170K and SF2/ASF interaction still exist when transcription and therefore splicing 

is inhibited.  
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Figure 3.7: In vivo detection of protein-protein interactions between ECFP-
U170K and EYFP-SF2/ASF by FRET acceptor photobleaching microscopy in 
the presence of DRB. Experiments were performed exactly as described for figure 
3.4 except cells were treated with 25 mg/ml of DRB for 2 hours before images were 
taken. (B)  Donor and acceptor mean signal intensities monitored in the bleached 
and nonbleached regions of cells treated with DRB were plotted over time.  
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Figure 3.8: FRET efficiencies for the interaction between ECFP-U170K and 
EYFP-SF2/ASF in the presence and absence of DRB. Plot of FRET efficiencies 
(average for 8 to 27 cells) between CFP + YFP pairs measured by FRET acceptor 
photobleaching before and after treatment with 25 mg/ml of DRB for 2 hours. FRET 
efficiency was calculated from CFP fluorescence before and after bleaching: 
FRETefficiency [%] = 100((CFPafter – CFPbefore) / CFPafter) A FRET efficiency of greater 
than 5% is taken as significant. Error bars show standard deviations.  

0.056 
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Figure 3.9: DRB treatment inhibits transcription. HeLa cells were pulse labeled 
for 30 minutes with 5-FU and immunofluorescence was carried out with anti-BrdU to 
visualise nascent transcripts. DRB treatment was carried out for two hours with 25 
mg/ml of DRB. 

Images were taken by David Lleres (Dundee) 
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3.7 Mapping the interaction between U170K and SF2/ASF using 

FLIM microscopy 

 

FRET acceptor photobleaching only gives a FRET efficiency for the specific area that 

is being photobleached within the cell. In order to precisely map the localisation of 

the U170K-SF2/ASF interaction within the nucleus of live HeLa cells I utilised FLIM 

microscopy. 

  In these experiments EGFP and mCherry serve as the donor and acceptor 

FRET pair. FLIM relies on the fact that in the absence of FRET EGFP has a stable 

fluorescent lifetime of approximately 2.3 ns in the cellular environment providing a 

standard reference point. As demonstrated with the acceptor photobleaching 

technique, FRET is a very powerful fluorescent quencher. Thus, a decrease in the 

fluorescent lifetime of the donor can be used to measure a FRET interaction with the 

acceptor flurophore. 

FLIM was performed by the Time-correlated single-photon counting 

(TCSPC). This technique gives the picosecond time-resolved fluorescent decay 

directly for each pixel within the cell by by statistical analysis of the arrival times of 

photons with respect to the excitation pulse (O’Connor and Phillips, 1984).  

The fluorescent lifetime of EGFP-U170K in transiently transfected live HeLa 

cells was measured either in the presence of mCherry-C1 (negative control) or 

mCherry-SF2/ASF. The donor decay curves were fitted to a double exponential decay 

model, providing information on the donor lifetimes of both the interacting (t1) and 

non-interacting populations (t2) within a cell.   Figure 3.8(A) demonstrates that 

cotransfection of EGFP-U170K and mCherry-SF2/ASF results in a reduction of the 
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mean donor lifetime indicative of FRET. The images have been false coloured to 

show the mean fluorescent lifetime for each pixel within the cell. 

In order to calculate the mean FRET efficiency for the interaction of EGFP-U170K 

with mCherry-SF2/ASF the following equation was used: 

EFRET = 1 - t DA/t D 

Where t DA is the mean fluorescence lifetime of the donor in the presence of the 

acceptor and t D is the mean fluorescence lifetime of the donor in the presence of 

mCherry-C1 for all the cells imaged. A FRET efficiency of greater than 5% is 

considered significant. Figure 3.9 shows that significant FRET is observed between 

EGFP-U170K and mCherry-SF2/ASF. In figure 3.8(A) the images are false coloured 

in either continuous or discrete colour to show FRET efficiency and as expected this 

correlates with the changes in mean donor lifetime. It can clearly be seen that FRET 

between EGFP-U170K and mCherry-SF2/ASF occurs to a greater extent in the 

speckles compared to the nucleoplasm. 

The total decrease in donor fluorescent lifetime depends on both the distance 

between the donor and acceptor and the fraction of the interacting donor molecules 

(Hoppe et al., 2002). The distance between the donor and acceptor (r) can be 

calculated from the equation: 

r = R0 ((1 - EFRET) - 1)1/6 

Where E is the energy transfer efficiency and R0 is the Forster distance – that is, the 

distance between the donor and acceptor at which half the excitation energy of the 

donor is transferred to the acceptor. 

The fraction of interacting donor molecules can be calculated from the 

equation: 

Donor decay: f (t) = a x e-t/t
FRET

 + b x e-t/t 0 
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Where e-t/t FRET and x e-t/t 0 are the interacting and non-interacting donor molecules 

decay and a and b are the intensity factors of the interacting and non-interacting 

components. A more accurate calculation of the interacting and non-interacting 

protein populations can be obtained by assuming the interaction distances to be 

constant throughout the cell (Peter et al., 2005). Figure 3.8(A) shows the variation in 

the interacting donor population throughout the cell (a1%). 

It was important to demonstrate that the abundance of splicing factors in the 

speckles did not lead to false positives. Previously there has been no biochemical 

evidence to suggest a direct interaction between U170K and U2AF35, instead it is 

proposed that SR proteins bridge these factors (Wu and Maniatis, 1993). This 

provided a negative control that could be analysed by FLIM. As expected the 

cotransfection of EGFP-U170K and mCherry-U2AF35 did not result in significant 

FRET being observed (Figure 3.8(B)). These data demonstrate that U170K shows 

specificity for the factors that it interacts with in the speckles and that the abundance 

of fluorescently tagged proteins in the speckles is not sufficient to induce FRET. 
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Figure 3.10: (A) FRET between EGFP-U170K and mCherry-SF2/ASF measured 
by FLIM. HeLa cells were transfected with EGFP-U170K and cotransfected with 
either mCherry-C1 or mCherry-SF2/ASF. Confocal image of transfected cells and 
FLIM image of same cells, in which mean fluorescent lifetime is shown in false 
colour. The colour scale with the respective lifetimes (in picoseconds) is indicated. 
The FRET Efficiencies were calculated by fixing the t2 lifetime to the average 
lifetime value for EGFP-U170K cotransfected with mCherry-C1. The FRET 
efficiencies are shown in either continuous or discrete false colour. The colour scale 
with the respective efficiencies (%) is indicated. The % of interacting population (a1) 
was calculated by fixing both the t1 and t2 populations. (B) Non-significant FRET is 
observed between EGFP-U170K and mCherry-U2AF35. HeLa cells were 
transfected with EGFP-U170K and cotransfected with mCherry-U2AF35. Cells were 
analysed exactly as described for panel (A) 
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Images in panel B were taken by David Lleres (Dundee) 
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3.8 Localisation of the U170K-SF2/ASF interaction in 

transcriptionally repressed cells 

 

Several lines of evidence point to speckles functioning as 

storage/assembly/modification compartments that can supply splicing factors to active 

transcription sites (Misteli, 2000). Therefore, I determined whether treatment with 

DRB affected the localisation of the interaction between EGFP-U170K and mCherry-

SF2/ASF. 

 Figure 3.10(A) shows the images captured by FLIM microscopy  following 

treatment with DRB. This treatment was shown not to affect the fluorescent lifetime 

of donor fluorophore. The false colour images show that FRET can be observed upon 

cotransfection of EGFP-U170K and mCherry-SF2/ASF. The strongest FRET 

efficiencies were observed in the enlarged rounded upon speckles and certain regions 

of the nucleoplasm showed non-significant FRET. These variations between the 

speckles and nucleoplasm were analysed for a population of cells and compared to 

untreated cells. Figure 3.10(B) shows that the FRET efficiency between EGFP-

U170K and mCherry-SF2/ASF is not altered by DRB when every pixel in the cell is 

analysed. However, while there is increased FRET in the speckles compared to the 

nucleoplasm in untreated cells this distribution is more pronounced upon treatment 

with DRB. A t-test has been applied to demonstrate that a significant decrease is 

observed in the nucleoplasm, but not the speckles, upon treatment with DRB. 

  
 



 92 

 

 
 
 
Figure 3.11:  FRET between EGFP-U170K and mCherry-SF2/ASF, in the 
presence of DRB, measured by FLIM. . Experiments were performed exactly as 
described for figure 3.8 except cells were treated with 25 mg/ml of DRB for 2 hours 
before images were taken. (B) FRET efficiencies determined by FLIM for 
interaction of SF2/ASF with U170K in the presence and absence of DRB. FRET 
efficiencies between the EGFP and mCherry tagged pairs were determined by fixing 
the t2 to the mean lifetime for the donor cotransfected with mCherry-C1. Plot of mean 
FRET efficiencies +/- SD for 9 to 20 cells.  To measure the FRET efficiency in the 
speckles and nucleoplasm a region characteristic of each was selected for each cell.  
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3.9 U170K and SF2/ASF interact in immunoprecipitation assays 

 

It has previously been shown that recombinant U170K and SF2/ASF expressed in 

baculovirus can interact in GST-pull-down assays (Wu and Maniatis, 1993). To 

confirm that the endogenous proteins can interact I carried out co-

immunoprecipitation (Co-IP) experiments using human 293T cells extracts that were 

immunoprecipitated with a monoclonal antibody against U170K. The 

immunoprecipitated proteins were separated on SDS-PAGE, blotted and detected with 

an anti-SF2/ASF antibody. Figure 3.10(A) shows that U170K was able to pull down 

SF2/ASF and that this interaction is not mediated by RNA.  

 To add further evidence that the interaction between U170K and SF2/ASF is 

not abolished by DRB treatment the Co-IP experiments were repeated but the cells 

were treated with DRB prior to making the lysates. Figure 3.10(B) shows that DRB 

has no effect on the ability of T7-U170K to pull down SF2/ASF. This Co-IP 

experiment was performed using an epitope tagged version of U170K to increase the 

efficiency of the immunoprecipitation. This adds in vitro data to confirm the 

interactions observed by FRET microscopy.  

In conclusion I have shown that U170K and SF2/ASF interact in the speckles 

and the nucleoplasm even in transcriptionally repressed cells. The fact that the 

interaction in speckles becomes more pronounced upon treatment with DRB supports 

the view that speckles act as storage or assembly sites for splicing factors. The data 

also suggest that U170K and SF2/ASF form a complex in the speckles before being 

recruited to the spliceosome.  

 



 94 

 

Figure 3.12: (A) U170K interacts with SF2/ASF in cultured mammalian cells. 
Extracts prepared from 293T were incubated with either anti-U170K antibody bound 
to sepharose beads (lanes 2 and 3) or sepharose beads alone (lanes 4 and 5). The 
bound proteins were analysed by Western blotting with mAb96 for detection of 
SF2/ASF. Alternatively the immunoprecipitate was treated with RNase (lanes 3 and 
5). Lane 1 was loaded with 2% of the amount of extract used for each IP. (B)The 
interaction between T7-U170K and SF2/ASF is not perturbed by DRB in 
cultured mammalian cells. Extracts prepared from 293T cells either transiently 
transfected with pCG-T7-U170K (lanes 4 to 7) or mock transfected (lanes 8 and 9) 
were incubated with anti-T7 antibody bound to sepharose beads. 24 hours post 
transfection cells were treated for 2 hours with DRB (lanes 6 and 7). The bound 
proteins were analysed by Western blotting with anti-SF2/ASF antibody. 
Alternatively immunoprecipitates were treated with RNase (Lanes 5, 7 and 9). Lanes 
1 to 3 were loaded with 2% of the amount of extract used for each IP.  
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3.10 FRET acceptor photobleaching demonstrates the interaction of 

SF2/ASF with U2AF35 in live cells 

 

U2AF35 binds to the AG dinucleotide at the 3’ splice site (Zhang et al., 1992; 

Merendino et al., 1999a; Wu et al., 1999; Zorio and Blumenthal, 1999) and plays a 

role in stabilising the binding of U2AF65 to the polypyrimidine tract (Guth et al., 

1999b).  In addition it has been demonstrated that U2AF35 is capable of interacting 

with SR proteins by the same in vitro approaches used to demonstrate the interaction 

between U170K and SR proteins (Wu and Maniatis, 1993). The interaction between 

U2AF35 and SR proteins is proposed to play two important roles in the cell. Firstly, 

SR proteins bound to exonic splicing enhancers (ESEs) interact with U2AF35 to 

promote complex assembly at the 3’ splice site (Wang et al., 1995; Zuo and Maniatis, 

1996; Graveley et al., 2001). Secondly, it is proposed that SR proteins can interact 

simultaneously with U2AF35 and U170K thereby bridging factors assembled on both 

5’ and 3’ splice sites (Wu and Maniatis, 1993). This bridging can occur either across 

the exon or the intron and is therefore proposed to play a role in exon and intron 

definition. 

 I have already confirmed that U170K and SF2/ASF can interact together in 

live HeLa cells. To determine whether the interactions involved in exon and intron 

definition occur in living HeLa cells, I analysed the interaction between U2AF35 and 

SF2/ASF by FRET acceptor photobleaching. HeLa cells were cotransfected with 

ECFP-U2AF35 and EYFP-SF2/ASF and the donor intensities were monitored before 

and after photobleaching of the acceptor to calculate a FRET efficiency for this 

interaction. Figure 3.11 shows that there is significant FRET between ECFP-U2AF35 

and EYFP-SF2/ASF and this FRET efficiency is very similar to that observed 
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between ECFP-U170K and EYFP-SF2/ASF. Figure 3.11 shows that the FRET 

efficiency between ECFP-U2AF35 and EYFP-SF2/ASF is not significantly affected 

by DRB treatment, as confirmed by a t-test. 

 FLIM microscopy demonstrated that significant FRET is not observed 

between EGFP-U170K and mCherry-U2AF35 (Figure 3.8(B)). This can be confirmed 

by acceptor photobleaching analysis as non-significant FRET is observed between 

ECFP-U170K and EYFP-U2AF35 (Figure 3.11). In addition, neither ECFP-U2AF35 

nor ECFP-SF2/ASF showed significant FRET upon cotransfection with EYFP_NLS 

(Figure 3.11). 
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Figure 3.13: Effect of DRB on interaction between ECFP-U2AF35 and EYFP-
SF2/ASF. Plot of FRET efficiencies (average for 7 to 27 cells) between ECFP + 
EYFP pairs measured by FRET acceptor photobleaching. Mean +/- SD. 

0.47 
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3.11 FLIM demonstrates the interaction between U2AF35 and 

SF2/ASF occurs predominantly in speckles 

 

The precise distribution of the interactions between EGFP-U2AF35 and mCherry-

SF2/ASF were mapped using FLIM microscopy.  Cotransfection of EGFP-U2AF35 

and mCherry-SF2/ASF results in a shortening of the donor fluorescent lifetime. The 

false colour images shown in figure 3.12 depicting the FRET efficiencies in either 

continuous or discrete colour show mCherry-SF2/ASF interacts with EGFP-U2AF35 

in a similar pattern to that observed for its interaction with EGFP-U170K. Significant 

FRET is observed in the nucleoplasm but the strongest regions of FRET are observed 

in the speckles. This is true of both DRB treated and untreated cells (Figure 3.12 

middle and lower panels). 

 These differences in FRET efficiency were quantified for a population of cells. 

As was previously described for the interaction of EGFP-U170K and mCherry-

SF2/ASF, a t-test has been applied to demonstrate that a significant decrease in FRET 

efficiency is observed in the nucleoplasm but not the speckles upon treatment with 

DRB (Figure 3.13).  
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Figure 3.14: FRET between U2AF35 and SF2/ASF measured by FLIM. HeLa 
cells were transfected with EGFP-U2AF35 and cotransfected with either mCherry-C1 
or mCherry-SF2/ASF. Confocal images of transfected cells and FLIM images of the 
same cells, in which FRET Efficiency is shown in false colour. The colour scale with 
the respective efficiency (%) is indicated. The FRET efficiencies were calculated by 
fixing the t2 lifetime to the average lifetime value for EGFP-U2AF35 cotransfected 
with mCherry-C1. The FRET efficiencies are shown in either continuous or discrete 
false colour. (Top) EGFP-U2AF35 + mCherry-C1 (Middle) EGFP-U2AF35 + 
mCherry-SF2/ASF (Bottom) EGFP-U2AF35 + mCherry-SF2/ASF, cells treated with 
25 mg/ml DRB for two hours before imaging.  
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Figure 3.15: FRET efficiencies determined by FLIM for interaction of SF2/ASF 
with U2AF35 in the presence and absence of DRB. FRET efficiencies between the 
EGFP and mCherry tagged pairs were determined by fixing the t2 to the mean 
lifetime for the donor cotransfected with mCherry-C1. Plot of mean FRET 
efficiencies +/- SD for 7 to 12 cells.  To measure the FRET efficiency in the speckles 
and nucleoplasm a region characteristic of each was selected for each cell. 
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3.12 U2AF35 and SF2/ASF interact in immunoprecipitation assays 

 

The interaction between U2AF35 and SF2/ASF was confirmed by Co-IP assays. 293T 

cells were either transfected with EGFP-U2AF35 or mock transfected. Cell lysates 

were immunoprecipitated with an anti-GFP antibody. The immunoprecipitated 

proteins were then separated on SDS-PAGE, blotted and detected with an anti-

SF2/ASF antibody. Figure 3.14 shows that endogenous SF2/ASF interacts with 

EGFP-U2AF35. Treatment with RNaseA demonstrates that RNA does not mediate 

this interaction. 

 In conclusion I have used FRET acceptor photobleaching and FLIM 

microscopy to demonstrate the interactions involved in exon and intron definition 

occur in living HeLa cells. The inhibition of transcription and therefore splicing did 

not affect the observed interactions demonstrating they are not exclusively 

cotranscriptional. 
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Figure 3.16:  EGFP-U2AF35 interacts with SF2/ASF in cultured mammalian 
cells. IP assays with EGFP-U2AF35. Extracts prepared from 293T cells either 
transiently transfected with EGFP-U2AF35 (lanes 3 and 4) or mock-transfected (lanes 
5 and 6) were incubated with anti-GFP antibody bound to sepharose beads. The bound 
proteins were separated on an SDS 12% polyacrylamide gel and analysed by Western 
blotting with mAb96. Lanes 1 and 2 were loaded with 2% of the amount of extract 
used for each IP. Alternatively the immunoprecipitate was treated with RNAase (lanes 
4 and 6). NTC = Non-transfected cells. 
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3.13 Several SR proteins interact with U170K and U2AF35 

 

SR proteins are functionally redundant in the splicing of some introns. However, 

several differences in the ability of these proteins to regulate alternative splicing, as 

well as the ability of individual SR proteins to commit different pre-mRNAs to the 

splicing pathway suggested that individual SR proteins have unique functions in 

splicing regulation (Caceres et al., 1994; Chandler et al., 1997; Fu, 1993; Wang and 

Manley, 1995). 

 In vitro experiments have previously shown both SF2/ASF and SC35 are 

capable of interacting with U170K and U2AF35 (Wu and Maniatis, 1993). Here, I 

have extended this study to show that both SC35 and SRp20 also interact with U170K 

and U2AF35 in live HeLa cells. The FRET efficiencies obtained from the acceptor 

photobleaching analysis of these interactions are shown in figure 3.15(A). The FRET 

efficiencies for the interaction of individual SR proteins with components of the 5’ 

(U170K) or 3’  (U2AF35) splice site were shown to be similar. It was also 

demonstrated that DRB does not affect the FRET efficiencies for the interaction of 

SC35 with U2AF35. Interestingly, a significant increase in FRET efficiency is 

observed for the interaction of U170K with SC35 upon treatment with DRB. The 

FRET efficiencies in FRET acceptor photobleaching experiments were measured in 

the speckles therefore this may reflect the fact that when transcription is blocked 

splicing factors are not recruited to active sites of splicing in the nucleoplasm, 

resulting in a higher FRET efficiency in the speckles. The increased FRET efficiency 

upon treatment with DRB may not have been observed in FLIM experiments due the 

fact that the FRET efficiencies are measured for the whole cell and not just the 
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speckles.  The interaction of SRp20 with U170K and U2AF35 has not been tested in 

the presence of DRB as I have demonstrated that both shuttling (SF2/ASF) and non-

shuttling SR-proteins (SC35) form complexes with U170K and U2AF35 in the 

absence of ongoing transcription.  

FLIM microscopy was employed to map the protein-protein interaction sites 

of mCherry-SC35 with EGFP-U170K and EGFP-U2AF35. Figures 3.16 and 3.17 

show that at least in certain cells the highest FRET efficiencies do not correspond 

with regions of speckles, as was the case with SF2/ASF, but are instead observed in 

areas of the nucleoplasm. A similar pattern was observed upon treatment with DRB 

making it unlikely that these regions of high FRET correspond to regions of active 

transcription and splicing. By measuring the average FRET efficiencies for a number 

of cells it was shown that the FRET efficiencies measured by acceptor photobleaching 

or FLIM are very similar (Figure 3.15). The interaction of SC35 with U170K and 

U2AF35 has also been confirmed by Co-IP experiments (Figure 3.18). 

 In conclusion I have shown that the ability of SR proteins to interact with 

components at the 5’ and 3’ splice site in live HeLa cells is not confined to SF2/ASF. 

The interactions patterns of a shuttling, SF2/ASF and nonshuttling SR protein, SC35 

have been compared. While neither are sensitive to DRB treatment there appears to be 

differences in the localisation of their protein interactions within the nucleus.  
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Figure 3.17: (A) SRp20 and SC35 interact with U170K and U2AF35. Plot of 
FRET efficiencies (average for 7 to 14 cells) between CFP + YFP pairs measured by 
FRET acceptor photobleaching. Mean +/- SD. (B) FRET efficiencies determined by 
FLIM for interaction of SC35 with U170K and U2AF35 in the presence and 
absence of DRB. FRET efficiencies between the EGFP and mCherry tagged pairs 
were determined by fixing the t2 to the mean lifetime for the donor cotransfected with 
mCherry C1. Plot of mean FRET efficiencies +/- SD for 8 to 18 cells.  
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Figure 3.18: FRET between U170K and SC35 measured by FLIM. HeLa cells 
were transfected with EGFP-U170K and cotransfected with either mCherry-C1 or 
mCherry-SC35. Confocal image of transfected cells and FLIM image of same cells, in 
which FRET Efficiency is shown in false colour. The colour scale with the respective 
efficiency (%) is indicated. The FRET efficiencies were calculated by fixing the t2 
lifetime to the average lifetime value for EGFP-U170K cotransfected with mCherry-
C1. The FRET efficiencies are shown in either continuous or discrete false colour. 
(Top) EGFP-U170K + mCherry-C1 (Middle) EGFP-U170K + mCherry-SC35 
(Bottom) EGFP-U170K + mCherry-SC35, cells treated with 25 mg/ml DRB for two 
hours before imaging 
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Figure 3.19: FRET between U2AF35 and SC35 measured by FLIM. HeLa cells 
were transfected with EGFP-U2AF35 and cotransfected with either mCherry-C1 or 
mCherry-SC35. Confocal image of transfected cells and FLIM image of same cells, in 
which FRET Efficiency is shown in false colour. The colour scale with the respective 
efficiency (%) is indicated. The FRET efficiencies were calculated by fixing the t2 
lifetime to the average lifetime value for EGFP-U2AF35 cotransfected with mCherry-
C1. The FRET efficiencies are shown in either continuous or discrete false colour. 
(Top) EGFP-U2AF35 + mCherry-C1 (Middle) EGFP-U2AF35 + mCherry-SC35 
(Bottom) EGFP-U2AF35 + mCherry-SC35, cells treated with 25 mg/ml DRB for two 
hours before imaging 
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Figure 3.20: (A) EGFP-U2AF35 interacts with T7-SC35 in cultured mammalian 
cells. IP assays with EGFP-U2AF35. Extracts prepared from 293T cells either 
transiently transfected with EGFP-U2AF35 and pCG-T7-SC35  (lanes 3 and 4) or 
pCG-T7-SC35 (lanes 5 and 6) were incubated with anti-GFP antibody bound to 
sepharose beads. The bound proteins were analysed by Western blotting with T7 
antibody. Alternatively the immunoprecipitate was treated with RNAase (lanes 4 and 
6). Lanes 1 and 2 were loaded with 2% of the amount of extract used for each IP. (B) 
EGFP-SC35 interacts with T7-U170K in cultured mammalian cells. Extracts 
prepared from 293T cells either transiently transfected with EGFP-SC35 and pCG-
T7-U170K (lanes 3 and 4) or EGFP-SC35 (lanes 5 and 6) were incubated with anti-T7 
antibody bound to sepharose beads. The bound proteins were analysed by Western 
blotting with anti-GFP antibody. Alternatively the immunoprecipitate was treated 
with RNAase (lanes 4 and 6). Lanes 1 and 2 were loaded with 2% of the amount of 
extract used for each IP.   
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3.14 Self-interactions of SR proteins 

 

Previously, in vitro data and yeast two-hybrid analysis have shown that SC35 is 

capable of interacting with itself and with SF2/ASF (Wu and Maniatis, 1993). In 

addition, the Drosophila SR-related proteins Transformer (Tra) and Transformer-2 

(Tra-2) have been shown to interact with each other, with themselves, and with SC35 

and SF2/ASF (Amrein et al., 1994; Wu and Maniatis, 1993). I have studied the 

interactions between SR proteins using acceptor photobleaching and FLIM 

microscopy to confirm SC35 interacts with SF2/ASF and identify a novel self-

interaction of SF2/ASF. 

 Figure 3.19(A) shows cotransfection of ECFP-SF2/ASF with either EYFP-

SF2/ASF or EYFP-SC35 resulted in significant FRET, with similar FRET efficiencies 

being measured by acceptor photobleaching for both interactions. FLIM microscopy 

revealed the distribution of these interactions within the nucleus are similar to those 

observed for the interaction of SF2/ASF with EGFP-U170K and EGFP-U2AF35 with 

the highest FRET efficiencies occurring in the speckles (Figure 3.20). The FRET 

efficiencies measured by FLIM were quantified for a number of cells to confirm 

significant FRET could be measured by both acceptor photobleaching and FLIM 

microscopy for the interaction of SF2/ASF with SC35 and with itself (Figure 3.19).  

 This novel self-interaction of SF2/ASF has been confirmed by Co-IP 

experiments in 293T cells. Figure 3.21 shows that immunoprecipitated EGFP-

SF2/ASF is capable of pulling down endogenous SF2/ASF. 
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Figure 3.21: (A) SF2/ASF interacts with SC35 and is capable of interacting with 
itself. Plot of FRET efficiencies (average for 10-12 cells) between CFP + YFP pairs 
measured by FRET acceptor photobleaching. Mean +/- SD. (B) FRET efficiencies 
determined by FLIM for interaction of SF2/ASF with SC35 itself. FRET 
efficiencies between the EGFP and mCherry tagged pairs were determined by fixing 
the t2 to the mean lifetime for the donor cotransfected with mCherry-C1. Plot of mean 
FRET efficiencies +/- SD for 11-12 cells.  

A 

B 
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Figure 3.22: (A) FRET between SF2/ASF and SF2/ASF measured by FLIM. 
HeLa cells were transfected with EGFP-SF2/ASF or cotransfected mCherry-
SF2/ASF. Confocal image of transfected cells and FLIM image of same cells, in 
which FRET Efficiency is shown in false colour. The colour scale with the respective 
efficiency (%) is indicated. The FRET efficiencies were calculated by fixing the t2 
lifetime to the average lifetime value for EGFP-SF2/ASF cotransfected with 
mCherry-C1. The FRET efficiencies are shown in either continuous or discrete false 
colour. (Top) EGFP-SF2/ASF (Bottom) EGFP-SF2/ASF + mCherry-SF2/ASF (B) 
FRET between SF2/ASF and SC35 measured by FLIM Experiments were 
performed as described in panel (A) except cells were cotransfected with EGFP-
SF2/ASF and mCherry-SC35. 
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Figure 3.23: EGFP-SF2/ASF interacts with endogenous SF2/ASF in cultured 
mammalian cells. IP assays with EGFP-SF2/ASF. Extracts prepared from 293T cells 
either transiently transfected with EGFP-SF2/ASF (lanes 3 and 4) or EGFP-C1 (lanes 
5 and 6) were incubated with EGFP antibody bound to sepharose beads. The bound 
proteins were separated on an SDS 12% polyacrylamide gel and analysed by Western 
blotting with mAb96. Alternatively the immunoprecipitate was treated with RNAase 
(lanes 4 and 6). Lanes 1 and 2 were loaded with 2% of the amount of extract used for 
each IP. 
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In conclusion I have employed FRET microscopy to confirm existing in vitro and 

yeast two-hybrid data on the interaction of SF2/ASF with SC35 and identified a novel 

ability of SF2/ASF to interact with itself. These interactions are important in 

determining how SR proteins can simultaneously interact with U170K and U2AF35 

and contact the pre-mRNA through their RS domains at several stages during 

spliceosome assembly.  

 

3.15 Mutational analysis of domains of SF2/ASF required for the 

interactions with U170K and SF2/ASF 

 

Previous studies have suggested that RS domains participate in protein-protein 

interactions with other RS domain containing proteins. The RS domain of U2AF35 is 

required for interactions with Tra, Tra2 and SR proteins and U2AFDRS is inactive in 

enhancer-dependent splicing (Zuo and Maniatis, 1996). Furthermore, a serine-

arginine rich domain of U170K has been shown to be necessary and sufficient for 

SF2/ASF binding by yeast-two hybrid and far western analysis (Cao and Garcia-

Blanco, 1998). The RS domain of SF2/ASF has been shown to be necessary but not 

sufficient for binding to U170K in vitro (Xiao and Manley, 1997; Jamison et al., 

1995). I have used FRET microscopy to study the protein-protein interactions of a 

mutant of SF2/ASF lacking the C-terminal RS domain (SF2/ASFDRS) in live HeLa 

cells. Significant FRET was observed by acceptor photobleaching and FLIM for the 

interaction of SF2/ASFDRS with U2AF35 and U170K and the FRET efficiencies 

were similar to those measured for the wild type protein (Figure 3.22).  
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Figure 3.24: (A) FRET efficiencies for interaction of SF2/ASFDDDDRS with U170K 
and U2AF35. Plot of FRET efficiencies (average for 8 cells) between CFP + YFP 
pairs measured by FRET acceptor photobleaching. Mean +/- SD. (B) FRET 
efficiencies determined by FLIM for interaction of SF2DDDDRS with U170K and 
U2AF35. FRET efficiencies between the EGFP and mCherry tagged pairs were 
determined by fixing the t2 to the mean lifetime for the donor cotransfected with 
mCherry C1. Plot of mean FRET efficiencies +/- SD for 7 cells. 

A 

B 
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Figure 3.25: (A) FRET measured by FLIM for interaction of SF2/ASFDDDDRS with 
U170K. HeLa cells were transfected with EGFP-SF2/ASFDRS and cotransfected with 
either mCherry-C1 or mCherry-U170K. Confocal image of transfected cells and 
FLIM image of same cells, in which FRET Efficiency is shown in false colour. The 
colour scale with the respective efficiency (%) is indicated. The FRET efficiencies are 
shown in either continuous or discrete false colour. (Top) EGFP- SF2/ASFDRS + 
mCherry-C1 (Bottom) EGFP- SF2/ASFDRS + mCherry-U170K (B) FRET 
measured by FLIM for interaction of U2AF35 with SF2/ASFDDDDRS. Experiments 
were performed as described in panel (A) except cells were cotransfected with EGFP-
SF2/ASF and mCherry-SF2/ASF. 
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Based on in vitro data the ability of SF2/ASFDRS to interact with U170K and 

U2AF35 is unexpected. The presence of RNA and endogenous proteins within the 

cell may stabilise the complexes containing SF2/ASFDRS to such an extent that 

FRET is observed.  

 Following the observation that deletion of the RS domain of SF2/ASF did not 

abolish the interactions with U170K and U2AF35 in live cells, it was investigated 

whether point mutations in the second RRM (RRM2) of SF2/ASF would perturb 

these interactions. The mutant, WQD-AAA (herein referred to as SF2/ASF AAA) was 

generated by Giuseppe Biamonti’s lab (Chiodi et al., 2004) by replacing three surface 

residues in the heptapeptide, SWQDLKD, that composes the first a-helix of RRM2 

and is conserved in all the SR proteins containing an atypical RRM (Birney et al., 

1993). According to the RRM model, this extended a-helix is not involved in RNA 

binding but has a structural function and could be available for protein-protein 

interactions (Dauksaite and Akusjarvi, 2002; Ge et al., 1998; Petersen-Mahrt et al., 

1999). Mutations in this heptapeptide have been shown to affect the function of 

SF2/ASF in translation (Sanford et al., 2005) and alternative splicing (Chiodi et al., 

2004).  

 I have tested the ability of SF2/ASF AAA to interact with U170K and 

U2AF35 by acceptor photobleaching. Figure 3.24(A) shows that point mutations in 

the second RRM are not sufficient to abolish the interaction with U170K or U2AF35 

in live cells. Furthermore, U170K was shown to be capable of interacting with 

SF2/ASF AAA in Co-IP experiments (Figure 3.24(B)). This interaction appears to be 

reduced by treatment with RNase (compare lanes 4 and 5). 
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Figure 3.26: (A) FRET efficiencies for interaction of SF2/ASF AAA with U170K 
and U2AF35. Plot of FRET efficiencies (average for 7 to 9 cells) between CFP + 
YFP pairs measured by FRET acceptor photobleaching. Mean +/- SD. (B) EGFP-
SF2AAA interacts with T7-U170K in cultured mammalian cells. Extracts prepared 
from 293T cells either transiently transfected with EGFP-SF2/ASF AAA and pCG-
T7-U170K (lanes 4 and 5) EGFP-C1 and pCG-T7-U170K (lanes 8 and 9) or EGFP-
SF2/ASF AAA (lanes 6 and 7) were incubated with anti-T7 antibody bound to 
sepharose beads. The bound proteins were analysed by Western blotting with anti-SF2 
antibody. Alternatively the immunoprecipitate was treated with RNAase (lanes 5, 7 
and 9). Lanes 1,2 and 3 were loaded with 2% of the amount of extract used for each 
IP.  
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3.16 HCC1 interacts with both U2AF35 and U2AF65 

 

A gene-trap screen carried out in our laboratory designed to identify novel proteins 

located in nuclear speckels isolated a novel SR-related protein, SRrp53, required for 

the second step of splicing (Cazalla et al., 2005). Yeast two-hybrid and Co-IP 

experiments identified HCC1 as interacting partner of SRp53 (Cazalla et al., 2005). 

HCC1 is  highly related to U2AF65 (Imai et al., 1993), although a role in constitutive 

splicing is unclear (Dowhan et al., 2005). It has been proposed that HCC1 interacts 

with components at the 3’ splice site possibly replacing U2AF65 at the 

polypyrimidine tract and forming a U2AF-like complex with U2AF35. The formation 

of this complex may be facilitated by interactions with SRrp53 (Cazalla et al., 2005). 

Moreover, several factors related to U2AF35 have been characterized in mammalian 

cells suggesting the existence of multiple U2AF-like complexes (Tronchere et al., 

1997; Shepard et al., 2002).  

 I have characterised the protein interaction partners of HCC1 by Co-IP 

experiments and subsequently by FRET microscopy. Figure 3.25(A) shows EGFP-

U2AF35 is capable of pulling down T7-epitope-tagged HCC1.4 in Co-IP assays 

carried out in 293T cells. The hypothesis that HCC1 may form an alternative U2AF-

like complex with U2AF35 was challenged by the observation that endogenous HCC1 

can pull down both U2AF35 and U2AF65 in Co-IP assays (Figure 3.25). This data 

suggests that HCC1 interacts with the U2AF heterodimer in an RNA-independent 

manner, although it is possible that HCC1-U2AF35 and HCC1-U2AF65 complexes 

exist within the cell. 
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Figure 3.27: (A) EGFP-U2AF35 interacts with T7-HCC1.4 in cultured 
mammalian cells. IP assays with T7-HCC1.4. Extracts prepared from 293T cells 
either transiently transfected with EGFP-U2AF35 and pCG-T7-HCC1.4 (lanes 3 and 
4) or EGFP-U2AF35 (lanes 5 and 6) were incubated with anti-T7 antibody bound to 
sepharose beads. The bound proteins analysed by Western blotting with anti-GFP 
antibody. Alternatively the immunoprecipitate was treated with RNAase (lanes 4 and 
6). Lanes 1 and 2 were loaded with 2% of the amount of extract used for each IP. (B) 
U2AF65 interacts with HCC1 in cultured mammalian cells. IP assays with 
endogenous HCC1. Extracts prepared from 293T were incubated with either anti-
HCC1 antibody bound to sepharose beads (lanes 2 and 4) or sepharose beads alone 
(lanes 3 and 5). The bound proteins were analysed by Western blotting with anti-
U2AF65 antibody. Alternatively the immunoprecipitate was treated with RNAase 
(lanes 4 and 5). Lane 1 was loaded with 2% of the amount of extract used for each IP. 
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I have further characterised the protein-protein interactions of HCC1 by acceptor 

photobleaching.  Cotransfection of ECFP-HCC1 and either EYFP-U2AF35 or EYFP-

U2AF65 resulted in significant FRET being observed that was not significantly 

altered upon DRB treatment (Figure 3.26(A)). Importantly as previously 

demonstrated by acceptor photobleaching and in vitro assays I can confirm U2AF65 

does not interact with itself by acceptor photobleaching (Chusainow et al., 2005).  

 The subnuclear localisation of protein-protein interactions between EGFP-

HCC1 and mCherry-U2AF35, and mCherry-U2AF65 has been mapped by FLIM 

microscopy. The highest regions of FRET for the interaction of EGFP-HCC1 with 

mCherry-U2AF35 were not confined to the speckles as was previously observed for 

the interactions involving SF2/ASF, instead there appears to be variations between 

individual speckles within the cell (Figure 3.27). For the interaction of EGFP-HCC1 

with mCherry-U2AF65 it is very clear that the highest regions of FRET occur within 

discrete domains within the nucleoplasm and not within the speckles (Figure 3.28). 

Similar results have been observed with ECFP-HCC1 and EYFP-U2AF65 by FLIM 

microscopy (data not shown). Figure 3.28 (lower panel) shows that these regions of 

high FRET persist in the nucleoplasm upon treatment with DRB. A t-test has been 

applied to demonstrate that a significant increase in FRET efficiency for the 

interaction of HCC1 with U2AF35 or U2AF65 is observed upon treatment with DRB. 

This may reflect the formation of complexes that are not disassembled upon inhibition 

of transcription. Further analysis will be required to check that the level of the 

acceptor fluorophore is equal in treated and untreated samples as the ratio of donor to 

acceptor has been shown to affect FRET efficiencies. Figure 3.26 shows that 

significant FRET is not observed between EGFP-U2AF65 and mCherry-U2AF65. 
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Therefore I have confirmed by both acceptor photobleaching and FLIM that this 

interaction does not result in significant FRET  

 Taken together these results show that HCC1 can interact with both subunits 

of the U2AF heterodimer and demonstrate that different complexes of splicing factors 

are distributed in different regions within the nucleus.  
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Figure 3.28: (A) Effect of DRB on interactions of HCC1 with U2AF35 and 
U2AF65. Plot of FRET efficiencies (average for 8 to 18 cells) between ECFP + EYFP 
pairs measured by FRET acceptor photobleaching. Mean +/- SD. (B) FRET 
efficiencies determined by FLIM for interaction of HCC1 with U2AF35 and 
U2AF65 in the presence and absence of DRB. FRET efficiencies between the 
EGFP and mCherry tagged pairs were determined by fixing the t2 to the mean 
lifetime for the donor cotransfected with mCherry-C1. Plot of mean FRET 
efficiencies +/- SD for 6 to 12 cells.   
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Figure 3.29: FRET between HCC1 and U2AF35 measured by FLIM. HeLa cells 
were transfected with EGFP-HCC1 and cotransfected with either mCherry-C1 or 
mCherry-U2AF35. Confocal image of transfected cells and FLIM image of same 
cells, in which FRET Efficiency is shown in false colour. The colour scale with the 
respective efficiency (%) is indicated. The FRET efficiencies were calculated by 
fixing the t2 lifetime to the average lifetime value for EGFP-HCC1 cotransfected with 
mCherry-C1. The FRET efficiencies are shown in either continuous or discrete false 
colour. (Top) EGFP-HCC1 + mCherry-C1 (Middle) EGFP-HCC1 + U2AF35-
mCherry (Bottom) EGFP-HCC1 + U2AF35-mCherry, cells treated with 25 mg/ml 
DRB for two hours before imaging 
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Figure 3.31: (A) FRET between HCC1 and U2AF65 measured by FLIM. HeLa 
cells were transfected with EGFP-HCC1 and cotransfected with either mCherry-C1 or 
mCherry-U2AF65. Confocal image of transfected cells and FLIM image of same 
cells, in which FRET Efficiency is shown in false colour. The colour scale with the 
respective efficiency (%) is indicated. The FRET efficiencies are shown in either 
continuous or discrete false colour. (Top) EGFP-HCC1 + mCherry-C1 (Middle) 
EGFP-HCC1 + U2AF65-mCherry (Bottom) EGFP-HCC1 + U2AF65-mCherry, cells 
treated with 25 mg/ml DRB for two hours before imaging. (B) Non-significant FRET 
is observed between EGFP-U170K and mCherry-U2AF35. HeLa cells were 
transfected with EGFP-U2AF65 and cotransfected with mCherry-U2AF65. Cells 
were analysed exactly as described for panel (A) 
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Discussion 

 

Protein-protein interactions involved in spliceosome assembly have been studied 

extensively in the past using in vitro techniques and yeast two-hybrid analysis. 

However, the advent of FRET microscopy has made it possible to study the 

interactions between splicing factors in real-time in live cells, without perturbing the 

highly structured dynamic nature of the nucleus or introducing artificial salt 

concentrations. The importance of studying protein-protein interactions in live cells is 

demonstrated by previous work that shows that the association of the RNA-binding 

protein HuR with its target mRNA, c-fos, as detected by co-immunoprecipitatation, 

results largely from the reassociation of molecules subsequent to cell lysis (Mili and 

Steitz, 2004). The existence of such post-lysis rearrangements thus demonstrates that 

co-immunoprecipitation does not always recapitulate the in vivo state of 

ribonucleoprotein complexes.  

 The role of different subnuclear compartments within the nucleus has been 

investigated by studying the colocalisation of factors with a variety of nuclear bodies. 

However, by FRET microscopy it is possible to distinguish between those factors that 

simply reside in the same compartments and those that functionally associate with 

each other. Furthermore, biochemical isolation of nuclear bodies only captures their 

composition at a particular moment in time and does not allow the rapid trafficking of 

molecules to and from nuclear bodies to be studied (reviewed by (Dundr and Misteli, 

2001b)). To further investigate the function of nuclear bodies, assays capable of 

localising specific molecular complexes are needed. To this end, I have used FRET 

microscopy to study a variety of splicing factor complexes. Firstly, FRET acceptor 

photobleaching was used to confirm that the fluorescently tagged proteins can interact 
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within a localised area within the cell and subsequently FLIM microscopy was 

employed to precisely map the distribution of splicing complexes throughout the cell. 

The existence of splicing complexes previously isolated in vitro has been confirmed 

in living cells and the technique has been used to identify novel splicing complexes.  

 

4.1 The protein-protein interactions involved in exon and intron 

definition occur in living HeLa cells 

 

Because the detection of FRET between two fluorescent molecules depends strongly 

on their proximity (Patterson et al., 2000), this technique can provide strong evidence 

that two proteins interact within a cell. However FRET alone cannot confirm a direct 

protein-protein interaction. Additional components, that may be proteins or RNA, 

may be required to stabilise the complexes containing the fluorescently tagged 

proteins. Under these circumstances, FRET would be observed as long as the donor 

and acceptor fluorophores are in an optimal orientation and are brought to within 1 

and 10 nm of each other. Therefore, initially I used FRET microscopy to study the 

interactions between splicing factors that had already been shown to directly interact 

with each other in vitro. 

 The SR proteins, SF2/ASF and SC35, have previously been shown to interact 

with U170K and with U2AF35 by in vitro approaches (Wu and Maniatis, 1993; Kohtz 

et al., 1994). Furthermore, yeast two-hybrid analysis has demonstrated that SR 

proteins can interact simultaneously with U170K and U2AF35 (Wu and Maniatis, 

1993). Therefore it was proposed that SR proteins play a role in exon and intron 

definition by interacting with U170K bound at the 5’ splice site and U2AF35 bound at 
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the 3’ splice site. I have used FRET microscopy to demonstrate that the SR proteins 

SF2/ASF and SC35 interact with both U170K and U2AF35. I have also extended the 

original in vitro studies to show that another SR protein family member, SRp20, 

interacts with U170K and U2AF35.  

  The ability of each individual SR protein to complement an inactive S100 

cytosolic extract suggests SR proteins have redundant function in the constitutive 

splicing of certain introns. However, several differences in the ability of these proteins 

to regulate alternative splicing suggested that individual SR proteins have unique 

functions in splicing regulation (Caceres et al., 1994; Wang and Manley, 1995; 

Chandler et al., 1997). In addition genetic analyses of SR proteins demonstrates that 

particular SR proteins have specific functions in certain tissues or at particular 

developmental stages (Wang et al., 1998b; Jumaa et al., 1999; Wang et al., 2001; Xu 

et al., 2005).    

The mechanism of splice-site selection in alternative and constitutive splicing 

are closely related (Horowitz and Krainer, 1994) therefore the ability of numerous SR 

proteins to interact with U170K and U2AF35 may be important for their role in 

regulating alternative splicing. At this point in time, SRp54 is the only SR protein that 

does not interact with U170K and U2AF35 but instead interacts with U2AF65 (Zhang 

and Wu, 1996). However, a role for SRp54 in the intron bridging of small Drosophila 

introns has been suggested (Kennedy et al., 1998).  

 I have demonstrated that SR proteins interact with U170K and U2AF35 with 

a similar FRET efficiency and that the protein-protein interactions between SR 

proteins and U170K or U2AF35 have a similar distribution within the nucleus. 

However, it has not been demonstrated by FRET microscopy that SR proteins interact 

simultaneously with U170K and U2AF35. This could be resolved by carrying out 
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three-chromophore FRET analysis that allows multiprotein complexes to be studied in 

living cells (Galperin et al., 2004). 

 

4.2 The interactions between splicing factors are not exclusively 

cotranscriptional 

 

The protein-protein interactions between U2AF35 and U2AF65 have previously been 

studied by FRET acceptor photobleaching in the presence and absence of the pol II 

inhibitor, DRB, to analyse the effect upon this interaction of inhibiting transcription 

and therefore splicing (Chusainow et al., 2005). Upon treatment with DRB no 

significant decrease in the FRET efficiency for this interaction was observed. I have 

studied numerous interactions between splicing factors and have shown that none of 

them are abolished by treatment with DRB. This data suggests that certain splicing 

factors form complexes within the cell before being recruited cotranscriptionally to 

the spliceosome.  

Further evidence that SR proteins and U170K associate with each other before 

they are recruited cotranscriptionally to the spliceosome has come from studies of 

factors associated with pol II. A comprehensive proteomic analysis of 

immunopurified human pol II identified over 100 specifically associated proteins (Das 

et al., 2007). Among these are the SR proteins and all the components of the U1 

snRNP, but no other snRNP or splicing factors. This has led to a model being 

proposed whereby the association of U1 snRNP and SR proteins with pol II results in 

their cotranscriptional recruitment to nascent transcripts to promote spliceosome 

assembly. Further evidence for this model is provided by the observation that splicing 
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efficiency is strongly enhanced if SR proteins are available during transcription but 

not if they are added immediately after transcription. FRET microscopy could be 

employed to study the association of splicing factors with pol II. It would be 

particularly interesting to determine whether the association of splicing factors with 

pol II requires ongoing transcription.   

Chromatin immunoprecipitation assays that detect transcription-dependent 

accumulation of splicing factors have demonstrated that splicing factors are poorly 

detected on intronless genes, a result that opposes direct recruitment by Pol II or the 

cap binding complex in vivo  (Gornemann et al., 2005; Listerman et al., 2006). 

Currently only components of the U1 and U2 snRNP (or non-snRNP-

associated splicing factors) have been studied using FRET microscopy. Studying the 

protein-protein interaction of U4, U5 or U6 associated proteins may enable us to 

determine whether the snRNPs engage the pre-mRNA as a penta-snRNP (Stevens et 

al., 2002) or whether they are recruited sequentially. For example if the snRNPs are 

recruited sequentially FRET between U2 and U5 associated proteins would be 

expected to occur only after formation of the spliceosomal B complex and therefore 

should not occur in transcriptionally inactive cells.  

I was able to confirm that SR proteins interact with U170K and U2AF35. 

However, due to the fact that these interactions do not appear to occur exclusively in 

the spliceosome it has not been possible to determine whether these interactions occur 

on the pre-mRNA or whether they play a role in exon and intron definition. To 

address the question of whether FRET can be detected between splicing factors 

interacting on a pre-mRNA the MS2-GFP system, that allows transcription to be 

visualised in live cells, could be employed (Janicki et al., 2004). It has previously 

been demonstrated that induction of a highly expressed gene leads to the recruitment 
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of splicing factors to the site of transcription (Misteli et al., 1997), this would be 

expected to be accompanied by an increased FRET efficiency at the site of 

transcription. Using a variety of reporters with mutated binding sites or variable 

lengths of exons or introns could lead to key insights into whether SR proteins play a 

role in bridging exons and introns in live cells.  

 

 4.3 The role of the RS domain in pre-mRNA splicing 
 

The role of the RS domain in pre-mRNA splicing in living cells was investigated by 

studying the protein-protein interactions of a mutant of SF2/ASF that lacks the C-

terminal RS domain (SF2/ASFDRS) with U170K and U2AF35 using FRET 

microscopy. The traditional view that SR and SR-related proteins contact the pre-

mRNA through their RRMs and that the RS domain acts as a protein-protein 

interaction domain is now being challenged by studies that show that U2AF65 and SR 

proteins contact the pre-mRNA through their RS domains at several stages during 

spliceosome assembly (Valcarcel et al., 1996; Shen et al., 2004; Shen and Green, 

2004; Hertel and Graveley, 2005). While some experiments have shown that SR 

proteins bound to an enhancer promote the binding of U2AF to the 3’ splice site of a 

regulated intron (Wang et al., 1995; Graveley et al., 2001), through the RS domain of 

U2AF35 (Zuo and Maniatis, 1996), other experiments experiments failed to observe 

changes in U2AF recruitment in the presence or absence of an enhancer (Li and 

Blencowe, 1999; Kan and Green, 1999). Genetic experiments in Drosophila have 

demonstrated that flies expressing a version of dU2AF38 (the homolog of U2AF35) 

that lacks its RS domain – which, therefore should not interact with SR proteins – do 

not display any defects in the splicing of doublesex pre-mRNA, one of the model 
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genes for which U2AF recruitment was shown in vitro (Rudner et al., 1998). 

Furthermore, in contrast to the essential role of U2 snRNP recruitment in vitro, the RS 

domain of the Drosophila large subunit homologue (dU2AF50) was dispensable in 

vivo (Rudner et al., 1998). Therefore in contrast to the separate roles assigned to the 

U2AF RS domains in vitro, they may have redundant functions in vivo.  

The RS domain of SF2/ASF is dispensable for the concentration-dependent effects on 

alternative splice-site-selection and for splicing of several substrates, including 

constitutive and enhancer-dependent pre-mRNAs (Caceres and Krainer, 1993; Zhu 

and Krainer, 2000). Furthermore, the RS domain of SF2/ASF was found not to be 

required for enhancing U1 snRNP binding to alternative 5’ splice sites (Eperon et al., 

2000) and it is not sufficient for the interaction with U170K (Xiao and Manley, 1997). 

Therefore SR proteins have an RS domain-independent function in constitutive and 

enhancer-dependent splicing that may include regulating protein-protein interactions 

through their RRMs (Ge et al., 1998) or competing with negative factors, such as 

hnRNPs, for the nascent pre-mRNA. It has previously been shown that SF2/ASF 

lacking an RS domain can displace hnRNP A1 from the pre-mRNA (Eperon et al., 

2000). Furthermore, the identity of the RS domain is not important in in vivo 

alternative splicing assays, as RS domains are functionally interchangeable. In 

contrast RRM2 of SF2/ASF has a dominant role and can confer specificity to a 

heterologous protein (van der Houven van Oordt et al., 2000).  

 I have demonstrated that both U2AF35 and U170K can interact with SF2/ASF 

lacking an RS domain (SF2/ASFDRS) by FRET microscopy. This suggests that other 

domains of SF2/ASF may have roles in mediating protein-protein interactions in vivo. 

The observation that SF2/ASF can interact with other SR proteins (Wu and Maniatis, 

1993) and with itself indicates that SF2/ASFDRS may be incorporated into a complex 
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with the wild type endogenous SR proteins and the fluorescently tagged U170K or 

U2AF35 resulting in significant FRET being observed. The presence of RNA in the 

cell may also be important for stabilising this complex. The fact that SF2/ASFDRS 

can function in the splicing of certain substrates (Zhu and Krainer, 2000) and that 

significant FRET is observed in the nucleoplasm, which could correspond to active 

sites of splicing, suggests that SF2/ASFDRS can be incorporated into the spliceosome. 

 The fact that SR proteins can self-interact provides (Wu and Maniatis, 1993) 

an explanation as to how SR proteins can be involved in contacting the pre-mRNA 

through their RS domain and simultaneously interact with both U170K and U2AF35. 

It could be proposed that for each molecule of U170K and U2AF35 there are multiple 

SR proteins leaving some RS domains free to contact the pre-mRNA (Figure 4.1).  
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Figure 4.1 Proposed model for the interactions of SR proteins with U170K and 
SF2/ASF.  SR proteins have been observed to self-interact leading to the proposal that 
for each molecule of U170K and U2AF35 there are multiple SR proteins. The 
U170K-SR protein-U2AF35 complex is proposed to form independent prior to it’s 
recruitment to the spliceosome.  
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4.4 HCC1 interacts with both subunits of the U2AF heterodimer 

 

The role of HCC1, a factor highly related to U2AF65, in constitutive splicing is 

poorly understood. An alternatively spliced isoform of HCC1, HCC1.3 (also called 

CAPERa), was purified as a spliceosome component capable of affecting the splicing 

reaction (Jung et al., 2002; Hartmuth et al., 2002; Rappsilber et al., 2002; Auboeuf et 

al., 2004) and has been shown to regulate transcription and alternative splicing in a 

steroid hormone-dependent manner (Dowhan et al., 2005). Previously it has been 

shown that an alternative isoform of HCC1 containing an additional 6 amino acids, 

HCC1.4, interacts with an SR-related protein, SRrp53 that can activate weak 3’ splice 

sites (Cazalla et al., 2005). Furthermore, a second U2AF65-like component, PUF60, 

has been identified that binds to the polypyrimidine tract and regulates the alternative 

splicing of a subset of exons (Page-McCaw et al., 1999; Hastings et al., 2007). Mass 

spec analysis of PUF60 protein interaction partners identified U2AF65 and HCC1 as 

well as SR proteins and components of the U1 snRNP (Hastings et al., 2007). Finally, 

U2AF65, PUF60 and HCC1 have all been shown to interact with SRp54 which has 

been implicated in early 3’ splice site recognition (Zhang and Wu, 1996; Page-

McCaw et al., 1999; Dowhan et al., 2005). This has led to the proposal that U2AF65-

like factors can interact with components required for the early recognition of the 3’ 

splice site and influence the commitment to splicing. 

  Due to the high degree of homology between HCC1 and U2AF65 it could be 

proposed that HCC1 can bind to the polypyrimidine tract in place of U2AF65 and 

interact with a U2AF35 to form a U2AF-like complex (Figure 4.2(A)). However, 

FRET microscopy has demonstrated that HCC1 is capable of interacting with both 
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subunits of the U2AF heterodimer this has led to the proposal of two alternative 

models. The ability of U2AF35 but not U2AF65 to self-interact (Chusainow et al., 

2005) may facilitate the formation of a complex containing HCC1 and both subunits 

of the U2AF heterodimer (Figure 4.2 (B)). This model assumes that the self-

interaction of U2AF35 does not prevent the interaction with U2AF65. At this point in 

time the domain responsible for the self-interaction of U2AF35 has not been mapped. 

In the second model HCC1 forms binary complexes with either U2AF35 or U2AF65 

(Figure 4.2(C). However, it remains possible that both situations could exist within 

the cell 

 There are several ways to distinguish between these two models. It would be 

interesting to carry out a FRET analysis with various mutants of HCC1 to determine 

the domains responsible for the interactions with U2AF35 and U2AF65. If the model 

presented in Figure 4.2 (B) is correct it is more likely that different domains of HCC1 

mediate the interactions with U2AF35 and U2AF65. It would also be interesting to 

determine whether mutations affecting the self-interaction of U2AF35 affect the 

interaction of HCC1 with the U2AF heterodimer.  

Several biochemical approaches could be applied to distinguish between these 

two models. Gel filtration assays could be utilised to determine the size of the 

complex in which HCC1 resides. GST-pull down assays using recombinant proteins 

could be applied to determine whether the interaction of HCC1 with the U2AF 

heterodimer requires the presence of both subunits. If HCC1 is able to interact with 

U2AF65 in the absence of U2AF35 it would favour the model presented in Figure 4.2 

(C). 
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Figure 4.2: Proposed models for the role of HCC1 in splicing. (A) Based on the 
homology between HCC1 and U2AF65 it was proposed that HCC1 replaces U2AF65 
at the polypyrimidine tract. (B) FRET analysis shows that U2AF35 can self-interact 
and HCC1 interacts with both subunits of the U2AF hetordimer. This has led to an 
alterntive model whereby the self-interaction of U2AF35 mediates the formation of a 

    Py AGBpGu Gu

SR

SR

U2AF35HCC1U170K U170K

ESE

A 

    Py AGBpGu Gu

SR

U2AF35U2AF65U170K U170K

ESE

U2AF35HCC1

SR

B 

U2AF35HCC1

U2AF65HCC1 U2AF65

C 



 137 

complex containing HCC1 and U2AF65. (C) HCC1 forms binary complexes with 
both U2AF35 and U2AF65. These complexes may or may not exists on the pre-
mRNA. The models presented in (B) and (C) may not be mutally exclusive. 
There are several other approaches that could be taken to gain an insight into a 

potential role for HCC1 in constitutive splicing. While HCC1 has been shown to be 

present in the human spliceosome (Rappsilber et al., 2002) it has not been determined 

at which stage it is recruited or whether it interacts with the polypyrimidine tract. It 

would be interesting to determine the RNA-binding targets of HCC1 to determine 

whether it is recruited to a subset of transcripts. Finally it would be interesting to 

determine whether HCC1 is able to compensate for depletion of U2AF65.  

Previously, a U2AF35-related protein (Urp) has been isolated and despite its 

homology to U2AF35 their functions do not overlap (Tronchere et al., 1997). Urp 

interacts with U2AF65 through a U2AF35 homologous region and with SR proteins 

through its RS domain, however co-immunodepletion showed that Urp is associated 

with the U2AF heterodimer and does not form an alternative U2AF-like complex with 

U2AF65. It has been proposed that Urp and U2AF35 independently position RS-

domain-containing factors within spliceosomes. The observation that HCC1 can 

interact with the U2AF heterodimer and with SR-related proteins suggests a similar 

role for this protein in spliceosome assembly. The interactions of Urp and HCC1 with 

the U2AF heterodimer and the observation that U2AF35 can interact with itself 

(Chusainow et al., 2005) offers an insight into how U2AF35 can mediate interactions 

with other RS-domain-containing factors bound at the 5’ splice site, assembled in 

splicing enhancer complexes, or associated with the U4/U6.U5 snRNP.  

 A second U2AF35-like factor, U2AF26, has been identified (Shepard et al., 

2002). The N-terminal amino-acids of U2AF35 and U2AF26 are almost identical. 

However, the C-terminal domain of U2AF26 lacks many characteristics of the 

U2AF35 RS domain. U2AF26 can associate with U2AF65 and can functionally 
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substitute for U2AF35 in both constitutive and enhancer-dependent splicing, despite 

the absence of an RS domain. Therefore distinct U2AF-like complexes can function 

in pre-mRNA splicing. Further investigation will be required to determine whether 

HCC1 interacts directly with U2AF26 or Urp.  

 

4.4 Subcellular distribution of splicing complexes 

 

The subcellular distribution of protein-protein interactions has been mapped at 

nanometer resolution using FLIM. Previously fluorescent recovery after 

photobleaching (FRAP) analysis has shown that splicing factors are highly dynamic 

and shuttle rapidly between speckles and the nucleoplasm (Phair and Misteli, 2000; 

Kruhlak et al., 2000). Therefore these highly dynamic abundant factors may be 

constantly associating and disassociating with each other within the nucleus. 

Interestingly, we found that these protein-protein interactions have a differential 

distribution within the nucleus; whereas interactions involving SF2/ASF localized 

preferentially to the nuclear speckles, those involving SC35 preferentially localized to 

the nucleoplasm. 

 The protein-protein interactions involving HCC1 also mapped to discrete domains 

within the nucleus. While the highest regions of FRET between HCC1 and U2AF35 

were observed in some speckles but not others the regions of highest FRET between 

HCC1 and U2AF65 were restricted to discrete domains within the nucleoplasm and 

absent from the speckles. As these domains persisted in the presence of DRB they 

probably don’t correspond to active sites of transcription. However it remains to be 

determined whether post-transcriptional splicing occurs in these regions.  
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In summary, FLIM data demonstrate that the formation of splicing factor complexes 

is not exclusively regulated by the abundance of individual components, as the 

highest FRET efficiencies did not always occur in regions where splicing factors 

concentrate.  

 

4.5 Speckles act as storage or assembly sites for splicing factors 

 

In certain cases the highest FRET efficiencies were observed in the speckles. 

Numerous pieces of evidence suggest that speckles are not active sites of splicing but 

act as storage or assembly sites for splicing factors. Therefore, this provides further 

evidence that factors involved in intron and exon definition associate together in a 

complex before being recruited cotranscriptionally to the spliceosome.      

 In this thesis I provide further evidence that speckles act as storage or 

assembly sites for splicing factors. By comparing the FRET efficiencies in the 

nucleoplasm and the speckles in the presence and absence of DRB for the interaction 

of SF2/ASF with U170K or U2AF35 it was observed that DRB treatment causes 

FRET to decrease in the nucleoplasm relative to untreated cells. This is probably due 

to the fact that treatment with DRB causes speckles to become enlarged and rounded 

up as splicing factors are no longer recruited to active sites of transcription and 

therefore are not incorporated into the spliceosome. The changes in FRET efficiency 

observed upon treatment with DRB are consistent with the idea that in 

transcriptionally inhibited cells there are less protein-protein interactions between 

splicing factors in spliceosomes but more in storage or assembly sites. 
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4.6 Phosphorylation regulates spliceosome assembly 
 

 It remains to be determined how the distribution of splicing factor complexes are 

regulated within the cell and how splicing factors locate and interact with their correct 

partners. In vitro experiments have shown that the phosphorylation status of splicing 

factors is important for regulating the assembly and disassembly of the spliceosome 

(Mermoud et al., 1992; 1994; Tazi et al., 1993; Cao et al., 1997). Furthermore, 

phosphorylation of SF2/ASF has been shown to increase its affinity for U170K (Xiao 

and Manley, 1997). In the future it would be interesting to determine whether 

modulating signalling pathways or kinase activity is important for regulating the 

interactions between splicing factors in live cells. Previously it has been shown to be 

possible to detect FRET between an EGFP-tagged protein and fluorescently labelled 

phosphorylation-site-specific antibody (Ng et al., 1999; Verveer et al., 2000b; 

Wouters and Bastiaens, 1999). This could be applied to study the protein-protein 

interactions of phosphorylated and unphosphorylated splicing factors. 

 

4.7 The advantages of FRET microscopy 

 

A key advantage of FLIM microscopy is that it provides quantitative information 

about the distance between fluorophores and the proportion of interacting 

fluorophores. This quantitative analysis can be carried out in single cells and even 

separate subnuclear compartments. Therefore the location and stoichiometry of 

molecular interactions can be compared between different cells and subnuclear 

compartments. Recent advances in single-cell live cell imaging have led to the 

realisation that nuclear constituents are constantly mobile, and that each molecule has 
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unique kinetics. Thus, cells stochastically vary, implying that population analysis may 

be misleading (reviewed by (Shav-Tal et al., 2006)). It is interesting to note that I 

observe considerable variations in the FRET efficiency for each interaction when the 

average FRET efficiency is measured for a population of cells.  To accurately analyse 

the causes of these variations stable cell lines with constant ratios of donor and 

acceptor molecules will be required. Future areas of research could include studying 

how FRET efficiencies vary between different cells types and how they are regulated 

as the cell cycle progresses.  

 A major disadvantage of FRET microscopy is that it cannot be used to confirm 

a negative protein-protein interaction. False negatives may occur when the donor and 

acceptor fluorescent proteins are: (1) perturbing the proteins to which they are fused 

(2) in close proximity but in the wrong orientation for FRET to occur (3) too far away 

from each other even when their fusion partners are interacting. Therefore it may be 

useful to combine FRET microscopy with complimentary techniques for imaging the 

dynamics of protein interactions in living cells (reviewed by (Day and Schaufele, 

2005)). Fluorescent recovery after photobleaching (FRAP) and fluorescent correlation 

spectroscopy (FCS) allow the dynamics of fluorescent-labelled molecules to be 

measured in living cells. Importantly, the interaction of proteins changes their kinetic 

properties therefore providing information about the presence of immobile 

populations that are stably bound to structures within the photobleached region, in the 

case of FRAP (Kruhlak et al., 2000), or allowing the assembly and disassembly of 

protein complexes to be studied.  

 Protein-protein interactions can also be imaged in living cells by bimolecular 

fluorescence complementation assays (Kerppola, 2006). However, FRET has several 

key advantages over protein complementation assays. FRET is instantaneous, fully 
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reversible (that is, it monitors disassociation as well as association) and has a well 

characterised dependence on distance and orientation. In contrast, protein 

complementation takes from minutes to hours for the fragments to fold, reversibility 

is absent or uncertain and the requirements on the conformation and affinity of the 

partner proteins are quantitatively ill-defined except that they must bring the two 

reporter fragments into the correct juxtaposition.  

  The well defined relationship between FRET efficiency and distance could 

lead to key insights into the structure of splicing complexes within living cells. 

Furthermore, intramolecular FRET, in which the donor and acceptor fluorophores are 

located in the same molecule, could be used to monitor conformational changes in 

splicing factors.  It would be interesting to compare the structures analysed by FRET 

microscopy to those visualised by cryo-electron microscopy (Reed et al., 1988).  

 In summary, a platform is in place to study the components of the gene 

expression machinery in single live cells. FRET microscopy will allow the structure 

of gene expression factories to be determined and the location and stoichiometry of 

molecular interactions to be studied within the dynamic subcompartments of the 

nucleus. The system can easily be adapted to determine the effects of signalling 

pathways, the cell cycle, or the knockout of individual components on these molecular 

interactions.  
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