Incidence Calculus
Alan Bundy
DAI Research Paper No.

April 26, 2004

Commissioned by the Encylopedia of Artificial
Intelligence

Department of Artificial Intelligence
University of Edinburgh
80 South Bridge
Edinburgh EH1 1HN
Scotland

(© Alan Bundy



Incidence Calculus *

Alan Bundy

Abstract

We describe incidence calculus, a logic for probabilistic reasoning. In inci-
dence calculus, probabilities are not directly associated with formulae. Rather
sets of possible worlds are directly associated with formulae and probabilities
are calculated from these. This enables incidence calculus to be truth func-
tional, which a logic based on a purely numeric uncertainty measure cannot
be. This, in turn, enables tighter probablity intervals to be calculated for
theorems of an incidence calculus theory than is possible in a purely numeric
uncertainty theory.

1 Introduction

The incidence calculus is a logic for probabilistic reasoning. Given upper and lower
bounds on the probabilities of the axioms of a logical theory it formalises the deriva-
tion of upper and lower bounds on the remaining formulae of the theory. It differs
from other logics for reasoning under uncertainty in two respects:

e Probabilities are not directly associated with any formulae. Rather incidences
are directly associated with some formulae and probabilities are calculated
from these incidences. An incidence is a set of possible worlds, each with an
associated probability. The intended meaning of the incidence of a formula is
the set of possible worlds in which the formula is true.

e This indirect encoding enables the incidence calculus to be truth functional,
that is the incidence of a compound formula can be calculated directly from
its parts. Any logic in which probabilities, or any numeric uncertainty values,
are associated directly with formulae cannot be truth functional, [Bundy 85].
Truth functionality is an important property of any logic since it enables
the calculation of tight upper and lower bounds on the uncertainty values of
formulae.

2 A Simple Example

To see how this works in practice, consider the following simple example.

Let there be two propositions, rainy and windy, and seven possible worlds, sun,
mon, tues, wed, thurs, fri, sat. Let each possible world be equally probable, i.e.
occur % of the time.

Let i(¢) denote the incidence of the formula ¢ and let the incidences of our two

propositions be:

i(rainy) = {fri,sat,sun,mon}

i(windy) = {mon,wed, fri}
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From this we can calculate the incidences of —rainy, rainy A—rainy and rainy A
windy, which are:

i(—rainy) = {mon,tues,wed, thurs, fri, sat, sun} \ {fri, sat, sun, mon}
= {tues,wed,thurs}
i(rainy A —rainy) = {fri,sat, sun, mon} N {tues, wed, thurs}
= {}
i(rainy Awindy) = {fri, sat, sun,mon} N {mon,wed, fri}
= {fri,mon}

Let p(¢) denote the probability of the formula ¢. We can calculate the proba-
bility of each the above formulae by adding up the number of possible worlds in its
incidence.

p(rainy) = % p(rainy A —rainy) = 0
p(wi@dy) = 7 p(rainy A windy) = %
pl-raing) — &

Note that although windy and —rainy have the same probability, %, their conjunc-
tions with rainy have different probabilities, % and 0, respectively. If the probability
of compound formulae were calculated solely from the probabilities of their parts
then the probabilities of these two conjunctions would have to be the same. This
shows that a probabilistic calculus cannot be truth functional. This is because
the correlation between two formulae cannot be encoded in their two probabilities,
whereas it is encoded in their two incidences.

3 Formal Definitions

The incidence calculus is defined formally as follows.
Definition 1 Propositional Language

L(P) is the propositional language formed from P, where P is a finite set of
propositions.

L(P) is the smallest set containing the truth values and the members of P and
closed under the operations of negation, disjunction, conjunction and impli-
cation, t.e.

true, false € L(P),
if p € P then p € L(P), and
if ,p € L(P) then —¢ € L(P), ¢V € L(P), o N € L(P) and
¢ — Y€ L(P).
Definition 2 Possible Worlds

A possible world is a primitive, i.e. undefined, object of incidence calculus, but
can be thought of as a partial interpretation of some logical formulae.

The probability that a possible world, w, is the real world is represented by a
function, p, from possible worlds to real numbers between 0 and 1.

If I is a set of possible worlds then wp(I) is called the weighted probability of I,
and is defined to be:

wp(I) = Y o(w) (1)



Definition 3 Incidence Calculus

An incidence calculus theory is a quintuple < W, o, P, A, i >, where:
W is a finite set of possible worlds.
For all w € W, p(w) is the probability of w and wp(W) = 1.
P is a set of propositions. £(P) is the language of the theory.

A is a distinguished set of formulae in L£(P) called the azioms of the
theory.

i is a function from the axioms, A, to 2"V, the set of subsets of W. i(¢) is
called the incidence of ¢. i(¢) is to be thought of as the set of possible worlds
in W in which ¢ is true, i.e. i(¢) = {w € W|w = ¢}.

i is extended to a function from L£(A) to 2"V by the following defining equations
of incidence.

i(true) w (2)
i(false) = {} (3)
i(mg) = W\i(9) (4)
i(eAY) = i(¢)Ni(y) (5)
i(evy) = i(e)Ui(y) (6)
i(p—v) = W\i(¢) Ui(y) (7)

Note that the equations (2) to (7) define ¢ truth functionally, that is the
incidence of a compound formula can be calculated solely from the incidences
of its constituent sub-formulae.

In particular, it is easy to calculate that the incidence of any propositional
tautology is W and that of any propositional contradiction is {}.

It is not usually possible to infer the incidence of formulae in £(P)\L(A). What we
can do is define upper and lower bounds on the incidence using the functions
i* and 1., respectively. For all ¢ € L(P) these are defined as follows.

(o) = ) {i)i(¢ —v) =W} (8)
YEL(A)

U (@) —¢)=w} (9)

YEL(A)

ix(9)

It is easy to see that i.(¢) = i(¢) = i*(¢) for all ¢ € L(A) and i.(¢p) C
i*(¢) for all ¢ € L(P)

Definition 4 Probability

The probability that a formula, ¢, is true is represented using the partial function
p from formulae to real numbers in the interval 0 to 1. When i(¢) is defined,
p(9) is defined as:

p(¢) = wp(i(¢)) (10)

For all ¢ € L(P) we define upper and lower bounds on the probability of
¢ using the functions p* and p., respectively, as follows.

p(¢) = wp(i*(9))
p«(¢) = wp(in(0))



The conditional probability that a formula, ¢, is true given that another formula
is true is represented using the partial binary function p from pairs of formulae
to real numbers in the interval 0 to 1. For all ¢,¢ € L(P) it is defined as:

_ pl@oAY)

The correlation between two formulae, ¢ and v is represented using the partial
binary function ¢ from pairs of formulae to real numbers in the interval -1 to
1. For all ¢,v € L(P) it is defined as:

(¢ AY) — p(#).p(¥)

(o ¥) = (12)
VP(9).p(=9).p(¥).p(—¢)

The correlation between two formulae is a measure of their degree of

dependence. c¢(¢,1) = 1 means ¢ and v always co-occur, ¢(¢,—¢) = —1

means they never co-occur and ¢(¢, %) = 0 means they are independent, co-
occurring in a random way. Note that p(—¢) and p(—1)) are needed to define
c(¢,v); it cannot be defined in terms of p(¢) and p(¢)) alone.

From the definitions of i, (2) to (7), wp, (1), p, (10), and ¢, (12), we can derive
the following rules of probability.

p(true) 1
p(false) = 0
p(=¢) = 1-p(9)
p(oVy) = p(d)+p) —pld A1)
p(¢ =) = p(=¢)+p(h) —p(=d A9)
p(dAY) = p(¢)p() +c(d,1)./p(#).p(=¢).p(¥).p(—¢) (13)

Note that these equations do not define p truth functionally. In particular, the
probability of ¢ A1 is given not just in terms of the probability of ¢ and ¥ but also
in terms of ¢(¢, ). This deficiency is not just an artifact of these equations, but is
an endemic property of a probabilistic logic, indeed of any purely arithmetic uncer-
tainty calculus. Similar properties hold for conditional probability, correlation and
any combination. That is, it is not possible to calculate the conditional probabil-
ity or correlation of a compound formula solely from the conditional probabilities,
correlations and probabilities of its parts, [Bundy 85].

4 Inferring New Incidences from Old

Given an assignment of incidences to a set of axioms of a theory, A, we want to derive
the incidences of the remaining formulae of the language £(P). Unfortunately, it is
generally only possible to derive upper and lower bounds for the incidences of these
formulae. For instance, consider the modus ponens rule of inference:

¢—¢Y, ¢
(4

It is not possible to calculate i(¢)) from i(¢p — 1) and i(¢) alone. Suppose W =
{a,b}, i(p — ¥) = {a,b} and i(¢) = {a} then all we can say about i(y)) is that it
lies between {a} and {a,b}. In fact, i.(¢)) = {a} and i*(¢p) = {a,b}.

In general, therefore, the best we can hope for is an inference mechanism that,
given the upper and lower bounds on the incidences of the hypotheses of an infer-
ence step, calculates the tightest upper and lower bounds of the incidence of the



conclusion. We have realised this as a process of constraint propagation. Given a
finite set of formulae and some initial assignment of upper and lower bounds, new
assignments are calculated from old assignments and the process iterates until it
terminates. At termination the tightest bound have been calculated.

The set of formulae on which this constraint propagation is performed (the
constraint set) must be defined with some care. For completeness it must be the
language of: the axioms, the formulae whose incidences we are interested in calcu-
lating, and all sub-formulae of all these formulae. Unfortunately, this is an infinite
set, but constraint propagation must be performed on a finite set if it is to ter-
minate. The solution is to let each formula of the language be represented by a
canonical form, where there are only a finite number of these canonical forms.

Definition 5 Canonical Form

A formula in £(P) is in canonical form if it has the form A", (= /\?:1 17) where

I = porl! =—p for some p € P.

Note that for each ¢ € L(P) there is an equivalent formula in canonical form.
We first transform ¢ into conjunctive normal form and then use de Morgan’s

law to turn each conjunct \/;n=1 I/ into — /\;n=1 —\llj and then cancel all double

negations.
Let £'(P) be the subset of formulae in £(P) that are in canonical form.

For readability we will sometimes abbreviate a formula in canonical form by one
of its non-canonical equivalents, e.g. write ¢ — 1 to stand for —(¢ A —1)).

Definition 6 Constraint Set

Let A be the set of axioms of a theory and 7" be the set of formulae whose incidence
we are interested in calculating (the ‘theorems’).
Let sf(F) be the set of subformulae of the formulae F', i.e.
if $ € F then ¢ € sf(F);
if =¢ € sf(F) then ¢ € sf(F);
if A € sf(F) then ¢, ¢ € sf(F);
if Vo € sf(F) then ¢,9 € sf(F);
if = € sf(F) then ¢,¢ € sf(F).
The constraint set is sf (L (AUT)).

The constraint set is organised as a network in which each formula has pointers
to each of its sub-formulae and super-formulae. The initial assignment consists of
upper and lower bounds equal to the incidence for the axioms, and the default
upper and lower bounds W and {}, respectively, for all other formulae. The idea of
the constraint propagation is to improve on these default assignments by replacing
them with the values of ¢* and %, for each formula.

To describe this constraint propagation process we must first be more precise
about the representation of an assignment of upper and lower bounds.

Definition 7 Assignments

Let F be an assignment of upper and lower incidence bounds to a set of formulae.

supp is a function from formulae to sets of possible worlds which defines the current
assignment of upper bounds.



in fr is a function from formulae to sets of possible worlds which defines the current
assignment of lower bounds.

We can now give the rules of inference which propagate the lower and lower
bounds around the network of formulae.

Definition 8 The Rules of Inference

A rule of inference is a mapping from assignments to assignments. Let F' be the
assignment before the rule fires and G be the assignment afterwards. In each case,
G is the same as F except for the changes, on some particular formula, defined
below for each rule.

Not1: supg(¢) = (W \infp(=¢)) N supr(¢)

Not2: infa(¢) = W\ supp(=9)) Uinfr(¢)

Not3: supa(—¢) = W\infr(9)) N supp(—o)

Not4: infa(=¢) = W\ supp(d)) Uinfr(—¢)

Andl: supg(¢) = (supr(d A1) U W \infr(¥))) N supr(9)
And2: infa(¢) = infr(¢Ai)Uinfr(o)

And3: supg(Y) = (supr(p AY)U W\ infr(4))) N supr ()
And4: mfc(#’% = infr(¢ NY)Uinfp(y)

And5:  supg(pAYp) = supp(d) N supp(t) N supp(d A1)

And6:  infe(opAyY) = (infr(o) Ninfr(¥))Uinfr(o A)
Note that it is only necessary to give rules for negation and conjunction because
these rules only operate on formulae in canonical form.

The exhaustive application of these rules of inference will terminate, [Bundy 86].
Suppose the final assignment is F, then supp(¢) = i*(¢) and infr(¢) = i.(d),
[Correa daSilva & Bundy 91].

This inference mechanism can be quite efficiently implemented if sets of possible
worlds are represented by bit vectors, with one bit for each possible world in W. N,
U and \ are then represented by logical and, or and not, respectively.

5 An Example of Inference

We can illustrate the constraint propagation process with the modus ponens example
with which we started §4. That is: A = {¢ — ¢¥,¢}, T = {Y}, W = {a,b},
(¢ — ) = {a,b} and i(¢) = {a}. We want to calculate upper and lower bounds
on ().

We must first translate ¢ — 1 into its logically equivalent, canonical form:
—(¢A—1). The initial assignment of upper and lower bounds is given and explained
in table 1. We have omitted from the table irrelevant members of sf (L' (AU T)).

Ignoring rule applications which have no effect on the assignment, the inference
process proceeds as follows.

supa(9 A ) = W\ infi(=(6 A=) Nsupi (6 A~w) by rule Notl
- ga b3\ {a,b}) N {a,b}
sups(—) = (supa(@ A ) U W\ infa(¢))) N supa(—) by rule And3
- % U ({a, b} \ {a})) N {a, b}
infa() = W\ sups(=)) Uinfs() by rule Not2
= g{i, b\ {b}) U {}

After this none of the rules can change the assignment of these formulae and the
process terminates. The final assignment is given in table 2. As required, this gives

ix(¢) = {a} and i*(¢) = {a, b}.



Formula
¢ {a}

0 {}

- {}
O N {} {aa b}
_‘(¢ A _'7#) {av b} {CL, b}

We will number the consecutive assignments 1, 2, etc. The two az-
ioms ¢ and —(d N —)) are assigned upper and lower bounds equal to
their incidences. The other formulae are all the proper sub-formulae of

—(¢ A —). All non-azioms are assigned the default upper and lower
bounds of {a,b} and {}, respectively.

supy
{a}
{a,b}
{a,b}

Table 1: Initial Assignment of Upper and Lower Bounds

Formula | infy supy
¢ {a} {a}
(0 {a} (Not2) | {a,b}
- {} {v} (And3)
oA | {} {} (Notl)
(¢ A ) | {a,b} {a, b}

Those assignments that have been changed from table 1 have been
labelled with the rule of inference that made the change.

Table 2: Final Assignment of Upper and Lower Bounds



6 Assigning Incidences to Formulae

The incidence calculus inference mechanism assumes that incidences have been as-
signed to the axioms. Unfortunately, an uncertainty inference problem may not
always be presented in this form. Often the uncertainty of formulae will be pre-
sented initially as an assignment of probabilities to the axioms, with or without some
record of the correlations between them. It is then necessary to assign incidences
to the axioms which respect the assignment of probabilities and correlations.

In making this assignment there are several variables: the size of W, the defini-
tion of p and the definition of i. We will consider only one simple scheme. We will
take W to be fixed, e.g. 100 possible worlds. The greater this size the greater the
sensitivity of the calculations, but the greater their computational expense. Low
sensitivity is often enough in artificial intelligence applications. We will also take g
to give the same value for each possible world, e.g. ﬁ. The probability assignment
must now be realised solely by the assignment of equi-probable possible worlds to
axioms using the function 1.

As one example of how this can be done we describe the Monte Carlo method
due to [Corlett & Todd 85], interleaved with the inference mechanism in order to
take account of the logical structure of the axioms. In this method formulae are
assumed to be assigned probabilities and incidences are assigned which respect these
probabilities. Correlations are assumed not to be available. Some correlations are
forced by the logical structure, but otherwise axioms are assumed to be pairwise
independent.

Definition 9 Monte Carlo Incidence Assignment Method
We assume that p(¢) is known for all ¢ € A.
Recall that p*(¢) = wp(i*(6)) and p.(#) = wp(ia(@)).

) __ p(¢)—p« () _ 1 _ _p(¢)—p(s)
Define p' as: p'(¢9) = Gy (51— m@n. (o))

Initialise i.(¢) = {} and i*(¢) = W for all ¢ € sf(L'(A)).
For each ¢ € A.

1. If p(¢) < p«(@) or p(¢p) > p*(¢) then stop with failure.

2. Else randomly assign each of the possible worlds in i*(¢) \ i.(¢) to i(¢)
with a probability of p’(¢).
Let i*(¢) = i.(0) = ().

3. Run the inference mechanism on the formulae in sf(L£'(.A)) with initial

assignment inf1(¢) = i.(¥) and sup; () = i*(¢) for all ¥ € sf(L'(A)).

Suppose F' is the assignment on termination.

Let i, (¢)) = infr(¢) and i*(¢) = supp(¢) for all ¢ € sf(L'(A)).

For instance, let there be two propositions, sunny and dry, and ten, equi-
probable, possible worlds named 1 to 10, i.e. W = {1,...,10}, o(w) = 0 -1
for all w € W. Let the given assignment of probabilities be p(sunny) = 0 - 4,
p(sunny — dry) =0-8.

Suppose we choose to assign an incidence to sunny first. i, (sunny) = {} and
i*(sunny) = {1,...,10}, so p/(sunny) = 0 - 4. Suppose the random assignment of
possible worlds to i(sunny) yields {1,2,4, 7}. When the inference mechanism is run
it will reassign {3,5,6,8,9,10} to i,(sunny — dry).

Now we must assign an incidence to sunny — dry. i.(sunny — dry) =
{3,5,6,8,9,10} and i*(sunny — dry) = {1,...,10}, so p'(sunny — dry) = 0- 5.



The random assignment of possible worlds to i(sunny — dry) might then yield
{1,2,3,5,6,8,9,10}.

As a side effect this process gives the following bounds on the probability of dry:
0-2 < p(dry) < 1.

Note that the correlation between the two axioms is c(sunny, sunny — dry) ~
0- 61, so they are not independent.

With such a small W this assignment is necessarily crude, but greater sensitivity
can be gained by using larger W.

7 Comparisons with Other Logics

Incidence calculus is similar to Nilsson’s probabilistic logic, [Nilsson 84]. The main
difference is that instead of taking the concept of possible world as a primitive,
probabilistic logic uses Herbrand models of £(P). A Herbrand model is a model of
a logical theory, in the sense of Tarski, which is formed using the symbols of the
logic. In this way it is possible to form an exhaustive and disjoint set of models.
The number of Herbrand models and which formulae are true in each one is fixed
by this process. Thus the incidence of each formula is also known, in contrast with
incidence calculus in which only upper and lower incidence bounds may be known
for some formulae.

Given some desired assignment of probabilities to the formulae of A, probabilistic
logic calculates an assignment of probabilities to the Herbrand models which will
yield the desired assignment to the formulae. In general, this is a prohibitively
expensive process. Nilsson suggests various ways to circumvent it in special cases.
Incidence calculus avoids this problem by using uninterpreted possible worlds rather
than Herbrand models. This permits the cruder, but much less expensive probability
assignment mechanism described in §6.

Incidence calculus is also similar to Dempster-Shafer theory, [Shafer 76], es-
pecially as formalised in [Fagin & Halpern 89]. Both systems permit only partial
definition of the probabilities of some formulae. Dempster-Shafer theory achieves
this by defining the incidence of all formulae, but not defining the probabilities of
all the possible worlds, i.e. i is a total function, but g is a partial function. Since
p, the probability of a formula, is defined using both ¢ and ¢ (see equations (1) and
(10) above), it too is only partially defined. Incidence calculus achieves a similar
effect the other way round, i.e. ¢ is total but ¢ is partial. In most cases these two
alternative solutions are equivalent, [Correa daSilva & Bundy 90].

However, most implementations of Dempster-Shafer theory work directly with
the upper and lower probability bounds on formulae, and not via incidences. This
means that their inference mechanism inevitably calculates looser bounds than the
incidence calculus mechanism described in §4 above. This is because a probability
calculus is not truth functional, whereas an incidence calculus is. The following
example illustrates this.

Let p(rainy) = 3 and p(windy) = 2. If we try to calculate p(rainy A windy)
solely from the probabilities of its sub-formulae, then the best we can do is place it in
a rather wide interval. If it is never both windy and rainy then p(rainy Awindy) = 0
and if it is always windy when it is rainy then p(rainy A windy) = % Every
probability between these extremes is possible, thus:

3
0 < p(rainy A windy) < =
Note that using equation (13) gives an even wider interval with upper bound %!
On the other hand, we saw in §2 that if the incidences of rainy and windy are
known then we can calculate an exact value for the incidence of rainy A windy and



hence of p(rainy A windy). This is because incidence calculus is truth functional,
which no purely probabilistic calculus could be.

8 Conclusion

The incidence calculus is a logic for uncertain reasoning in which the uncertainty
value is represented by the set of possible worlds in which it is true rather than by
a numeric value. A numeric value, namely the probability, is readily recovered from
this set. The advantage of this arrangement is that the incidence calculus is truth
functional — leading to the calculation of tighter bounds on the probability of a
formula than is possible with a calculus working with probabilities alone.

Incidence bounds on new formulae can be inferred from bounds on old formulae
by a process of constraint propagation using rules of inference.
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