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Abst rac t 
The HR program forms concepts and makes 
conjectures in domains of pure mathematics 
and uses theorem prover OTTER and model 
generator MACE to prove or disprove the con­
jectures. HR measures properties of concepts 
and assesses the theorems and proofs involving 
them to estimate the interestingness of each 
concept and employ a best first search. This 
approach has led HR to the discovery of inter­
esting new mathematics and enables it to build 
theories from just the axioms of finite algebras. 

1 In t roduc t ion 
The HR program invents definitions in finite algebras 
such as group and ring theory, and other areas of pure 
mathematics, such as graph and number theory. Using 
a set of production rules to derive a new concept from 
old ones and a set of measures for the interestingness of 
a concept, HR's best first search bases new concepts on 
the most interesting old ones. As it invents new defin­
itions, HR uses empirical evidence to spot conjectures. 
Recently we have interfaced HR with the OTTER the­
orem prover, [McCune, 1990], to prove some of the con­
jectures HR makes. When OTTER fails, HR invokes the 
MACE model finder, [McCune, 1994], to find a counter­
example. The proofs from OTTER help HR to assess 
the concepts involved in the conjectures, and the mod­
els given by MACE provide further empirical evidence 
for future conjectures. This closes a cycle of mathemat­
ical activity similar in nature to Buchberger's spiral of 
creativity, [Buchberger, 1993]. We detail how HR forms 
and assesses concepts and discuss how this has led to the 
introduction of new mathematics. We also show how a 
theory can be constructed from just the axioms of an al­
gebra, and how the heuristic search improves the overall 
quality of the theory with respect to various measures. 

1.1 Background 
Lenat, in [Lenat, 1976] chose pure mathematics as the 
domain for his AM program to demonstrate the use of 
heuristic search in concept formation. AM re-invented 
classically interesting definitions and conjectures, such 

Toby Walsh 
Department of Computer Science, 

University of Strathclyde 
Glasgow G.1 1XH, Scotland. 

twfics.strath-ac.uk 

as highly composite numbers and Goldbach's conjec­
ture. The conjectures were based on empirical evid­
ence, but no attempt was made to prove them automat­
ically. Thus AM performed concept formation, conjec­
ture making and counterexample finding. Attempts to 
build on Lenat's work include the DC program, [Mor­
ales, 1985], the Cyrano programs, [Haase, 1986] and 
Lenat's own Eurisko program, [Lenat, 1983]. The ARE 
system, [Shen, 1987], used functional transformations to 
derive new functions from old ones. Shen eliminated 
many special-purpose operations required by AM and 
the functional transformations found more complex con­
cepts than A M , such as logarithms. 

The IL program, [Sims, 1990], used a generate, prune 
and prove method to invent operators for number types. 
The user specified some criteria for, say, multiplication of 
complex numbers and IL generated plausible operators, 
empirically checked whether they met the criteria, and 
if so, proved i t . Conjectures were always that the oper­
ator met the user's requirements, so IL used a cycle of 
concept formation, counterexample finding and theorem 
proving. The concepts produced by the system described 
in [Bagai et a/., 1993] are situations in plane geometry in­
volving properties of points and lines. Conjectures were 
about the existence of situations and an efficient theorem 
prover showed that certain situations were impossible. 
For example, the theorem prover showed that the situ­
ation of a parallelogram with parallel diagonals could 
not exist. Disproving a conjecture meant finding a situ­
ation in an infinite number of possibilities, so no counter­
example finding was undertaken. The system therefore 
achieved an interplay of concept formation, conjecture 
making and theorem proving. 

The GT program, [Epstein, 1987], generated and 
proved theorems in graph theory about properties of 
graphs. The representation of graphs employed enabled 
model generation, concept formation and some theorem 
proving, and GT demonstrated an efficient model for 
theory formation in graph theory. Another graph theory 
program, Graffiti, [Fajtlowicz, 1988] makes conjectures 
in graph theory that one summation of numerical in­
variants is always less than another. The invariants are 
given by the user and each conjecture is checked against 
a large database of graphs. If the conjecture provides a 
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stronger bound than ail previous ones for at least one 
graph (the dalmation heuristic), and it is not seemingly 
implied by a previous one (the echo heuristic), the con­
jecture is posted to a mailing list for graph theorists. 
Over 60 papers have been written about Graffiti's con­
jectures, and this has led to important developments in 
graph theory. We see that Graffiti automates conjec­
ture formation and counterexample finding aspects, but 
the concepts are provided by the user and the theorem 
proving is done by the graph theory community. 

OTTER, [McCune, 1990], is a state of the art first 
order resolution theorem prbver which uses the nega­
t ion of a conjecture to find a contradiction, thus proving 
the conjecture. The model generator MACE, [McCune, 
1994], uses the Davis-Putnam method to search for small 
finite models of first-order statements, and can be used 
to find example algebras, eg. finite groups or rings. 

2 Concept Format ion 
Working, say, in group theory, HR starts off with a litt le 
init ial information, namely some example groups and 
some core concepts. The init ial information can be given 
by the user or generated using MACE and HR 
In group theory, the core concepts are the group oper­
ation, the identity element and the inverse of elements. 
HR keeps a data-table of the models of each concept -
for example, for the group operation concept, HR stores 
a data-table wi th rows [G,a,b,c] where " " and 
a * b = c. HR also keeps a definition of the concept, ie. 
a predicate which is satisfied by the entries in every row 
of the data-table. We use the notation: 

to indicate that concept 1 has a data-table with four 
columns, the first of which is the name of the group, and 
the last three are triples of elements from that group 
which satisfy predicate P. 

2.1 Produc ing N e w Concepts 
HR invents new concepts by using a production rule to 
manipulate the data from one (or two) old tables into a 
new table. Each of HR's 8 production rules performs a 
simple operation and HR is able to derive a definition 
for the new concept from a definition of the old concept. 
For a particular concept and production rule there are 
many possible manipulations, so a set of parameters give 
exact specifications. Below, we give a description of the 
manipulation each production rule (PR) performs and 
an example from group theory: an input and output 
concept. A more detailed description of the production 
rules is given in [Bundy et al., 1998]. 
The exists PR: removes columns from the input data-
table. The parameters tell the PR which columns to 
keep. Eg. using parameters <1,2,3>, we get: 

The match PR: finds rows where columns prescribed by 
the parameters are equal. Eg. parameters 

The forall PR: finds sets of rows wi th all elements of 
groups present in particular columns (the parameters 
specify which columns). Wi th parameters <4>, we get: 

The negate PR: constructs rows which do not appear in 
a data-table. There are no parameters here. Eg. 

The conjunct PR: given two data-tables, X and Y, and 
parameters < a , b , . . .> , this finds rows in table X for 
which there is a row in table Y with entry a equal to 
entry 1 in X, with entry b equal to entry 2 in X and 
so on. As in the following example (using parameters 
<1,3,2,4>), the two input concepts can be the same: 

The size PR: counts the number of tuples appearing in 
a data-table. The parameters specify which columns to 
look for elements in. Eg. with parameters <3,4> we get: 

The split PR: finds rows where a column contains a par­
ticular number. The parameters specify which column 
to look in and what number to look for respectively. Eg. 
with parameters <3,2>, we get: 

The compose PR: certain predicates can be thought of as 
1:1 functions. Given such a function, this PR replaces 
columns in a data-table by the output of the function on 
the entries in the column. The parameters specify which 
column to replace. Eg. using parameters <2>, with the 
second concept as the function, we get: 

Note that conjunct and compose use 2 old concepts and 
size introduces a numerical value. We don't claim that 
all interesting concepts in a domain are covered by these 
8 production rules, merely that it is possible to construct 
some interesting concepts using them. Figure 1 shows 
how HR constructs the concept of Abelian groups: 

Figure 1: Construction path for Abelian groups. 
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2.2 Heur is t i c Search: Measur ing Concepts 
HR can perform an exhaustive search by using each 
concept wi th every production rule, exhausting all pos-
sible parameterisations and returning to used up con­
cepts when it is possible to use them in a 2-concept pro­
duction rule wi th a new concept. Some concepts wi l l be 
more interesting than others, and we can improve the 
search by constructing new concepts from the best old 
ones. We discuss below five concrete measures HR uses 
to assess the interestingness of a concept. 

Given a data-table, the set of tuples wi th a particular 
group name in the first column can be used to describe 
that group. Smaller descriptions are advantageous, so 
HR measures the pars imony of a concept, which is in­
versely proportional to the size of its data-table. Simil­
arly, smaller, easier to understand definitions are advant­
ageous, so HR measures the comp lex i t y of a concept, as 
inversely proportional to the number of production rule 
steps used in its construction (which gives a rough guide 
to the complexity of the concept's definition). HR's set 
of groups can be categorised by a concept if two groups 
are thought of as equal if they are given the same descrip­
t ion by the concept's data-table. Concepts introducing 
new categorisations are interesting, so HR measures the 
novel ty of a concept, which is inversely proportional to 
the number of other concepts giving the same categor­
isation. Every time a new concept is introduced, the 
novelty of all the old concepts is re-assessed. 

Sometimes, the user may be looking for a concept 
which gives a particular categorisation, for example the 
classification of groups up to isomorphism (where all 
pairs of isomorphic groups are categorised as the same, 
but all pairs of non-isomorphic groups axe categorised as 
different). If the user specifies such a gold standard clas­
sification, we can measure the invar iance of a concept 
by taking all the pairs of groups which should be cat­
egorised as the same and finding the proportion of pairs 
which are categorised correctly by the concept. Simil­
arly, the d i sc r im ina t i on measure finds the proportion 
of pairs of groups which should be categorised as differ­
ent that are categorised correctly by the concept. 

To use the heuristic of basing new concepts on the 
most interesting previous ones, HR measures and orders 
its concepts after a given number of new concepts have 
been introduced, usually 10. To order the concepts, each 
of the above measures is normalised to a value between 0 
and 1 (0 the worst score, 1 the best), and a weighted sum 
is taken. The user sets the weights, wi th the choice de­
pendent on what type of theory they are looking for, eg. 
if they were looking for many different categorisations, 
the novelty measure would be heavily weighted. Often, 
to avoid a conflict, one or more weights are set to zero, eg. 
the novelty measure prefers concepts giving new categor­
isations, but the discrimination and invariance measures 
prefer concepts giving a particular categorisation, caus­
ing a conflict. The production rules can also be ordered 
because each concept is produced by a single rule, hence 
the average score of the concepts output by a production 
rule can be used to assess the rule. 

3 Theory Format ion 
A set of concepts, however interesting, does not comprise 
a theory. A theory should also have, at minimum, a set 
of theorems and proofs. In we discuss how HR spots 
and makes conjectures, and in and we discuss 
how HR uses OTTER and MACE respectively to t ry to 
prove or disprove the conjectures. At present, to form a 
theory, we cut back a l i t t le on HR's concept formation 
abilities, and only use the conjunct, exists, foroll, match 
and negate production rules. This is because OTTER 
does not deal well wi th inductively defined concepts like 
the integers introduced by the size and split production 
rules. Also, the compose production rule usually adds a 
layer of complexity to conjectures which makes it difficult 
for OTTER to prove them in an acceptable time l imit. 

3 .1 S t a r t i n g a T h e o r y 
In algebraic domains such as finite group theory, HR can 
construct a theory from the bare minimum of informa-
tion: the axioms. To do this, HR first passes the axioms 
to MACE, which is asked to construct a single example 
group. MACE must be told the size of the group it is to 
find, so HR first gives MACE 10 seconds to find a group 
with 1 element, then 10 seconds to find a group wi th 2 
elements and so on unti l size 8, after which it is unlikely 
that MACE wil l succeed. In the unlikely event that no 
model of any order is found, HR must admit defeat as its 
concept formation process is model based. To describe a 
model it has found, MACE outputs a set of tables, each 
with a name. HR examines these tables and for each 
one, extracts the name and data contained as an init ial 
(core) concept. In group theory, MACE finds the tr ivial 
group with one element and uses three tables to describe 
i t . HR takes these tables and extracts the group opera­
t ion, identity and inverse concepts - those core concepts 
which were implicit in the axioms. 

3.2 M a k i n g C o n j e c t u r e s 
Whenever HR invents a new concept, it immediately 
checks whether a previous concept has the same data-
table. For example, one of the first concepts HR invents 
in group theory is: After finding the 
models for this concept, HR runs through the previous 
concepts, and finds that the only elements, a, for which 
a*a=a are the identity elements and vice versa. When 
HR finds a match like this, it makes the conjecture that 
the definitions are equivalent, ie. 

There are other types of conjecture that HR can make. 
For example, if HR finds that the models of a newly 
formed concept are a subset of the models of a previ­
ous concept (or vice versa), HR can make the conjecture 
that one definition is a specialisation of the other. For 
example, HR makes the conjecture that the identity ele­
ment is always a member of the centre of a group: 

For simplicity, conjectures hereafter are assumed to be 
of the first type: definit ion! <-> definition2. 
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3.3 P rov ing Conjectures 
Theorem proving is, in general, a difficult activity, so HR 
must give OTTER the best chance of proving the con­
jectures. Using the 5 production rules mentioned, each 
conjecture can be written in a succinct way acceptable 
to OTTER, and wi l l be of the form: 

Of course, if the predicate on the right hand side coin­
cides with a predicate on the left hand side, the subgoal 
is trivially true, so it is not passed to OTTER. Also, it 
is possible that the subgoal has been looked at in order 
to settle a previous conjecture, so HR stores all previ­
ous results, and uses them where possible. It also checks 
whether a subgoal which has the same right hand side, 
but a subset of the conditions on the left hand side has 
been proved - if so, the present subgoal follows as a co­
rollary. Entirely novel subgoals are passed to OTTER 
with the axioms of the algebra. OTTER is then given a 
fixed time l imit to prove the subgoal, usually 10 seconds. 
If all the subgoals are proved, the conjecture becomes a 
theorem and is added to HR's collection. 

Regardless of the difficulty to prove a conjecture, if the 
concepts in it are too complex, OTTER has litt le chance 
of proving it in a short space of time. For this reason, 
when theory forming, we usually impose the condition 
that no concepts with a complexity greater than a given 
threshold are used to base new concepts on. If OTTER 
is only given 10 seconds to find proofe, it is a good idea 
to impose a complexity threshold of 5. 

3.4 D i s p r o v i n g C o n j e c t u r e s 
When HR has few example groups to provide empirical 
evidence, it often makes false conjectures such as: 

which states that all groups are Abelian. When false 
conjectures are passed to OTTER, it either fails outright, 
or runs out of time. The unproved subgoals from the 
conjecture are then passed to MACE. HR gives MACE 
10 seconds to find a counterexample of size 1, then 10 
seconds to find one of size 2, and so on. For the untrue 
conjecture above, MACE finds the smallest non-Abelian 
group, D ( 3 ) - with six elements. When a new group is 
found, HR reads MACE's output once again and adds 
to the data-tables of the core concepts. Then HR uses 
the new data to recalculate the data-tables for all its old 
concepts. By introducing new models only when needed 
to disprove a conjecture, HR guarantees that the models 
are also interesting - each model has a property which is 
true of no previous one. 

3*5 Closing the M a t h s Cycle 
Each new group found by MACE is different to the ones 
it already has, because it disproves a conjecture which 
was true of all the others. Once introduced, all further 
calculations wil l involve the new group, which wi l l add 
more empirical plausibility to the conjecture making. 
Also, with the notion that concepts are more interesting 
if you can prove some interesting facts about them, we 
can use the conjectures, theorems and proofe to derive 
more measures for the interestingness of a concept. 

HR has two ways to assess conjectures. Firstly note 
that each conjecture states that one definition is equi­
valent to another. Figure 2 shows a typical conjecture 
- two concepts have been constructed, wi th the dotted 
line indicating that those definitions are equivalent. The 
shaded nodes belong to the construction paths of both 
equivalent concepts and all nodes except X are concepts 
already found in the theory. 

Figure 2: Construction path for a typical conjecture. 
The more divergent the construction paths for the two 
definitions, the less obvious the fact that they are equi­
valent. Therefore, HR measures the surprisingness of 
a conjecture as the number of distinct concepts which 
appear in one, but not both, construction paths. In fig­
ure 2, noting that X is the same as a previous concept, 
the conjecture scores 3 for surprisingness. 

When OTTER proves a subgoal, it outputs a proof 
length score, and an average of this over all the subgoals 
wil l roughly indicate the d i f f i cu l t y of the overall conjec­
ture. Proof length is a measure-of the interestingness of 
the proof (and hence the conjecture), but others, such as 
the number and length of clauses produced, have been 
suggested by OTTER's author, Wil l iam McCune, as bet­
ter alternatives, which we are currently implementing. A 
weighted sum of surprisingness and difficulty is used to 
assign a value between 0 and 1 to each theorem. Then, 
the average score for the conjectures a concept appears 
in can be used to order the concepts themselves. Note 
that, the conjecture in figure 2 is most concerned with 
two old concepts - those appearing with an extra border, 
and the interestingness of the conjecture is used to assess 
the interestingness of both these concepts. 

HR has only limited ways to investigate and attempt 
to settle open conjectures (those which cannot be proved 
or disproved by OTTER or MACE in the given time). 
Thus we are presently more eager for HR to make prov-
able conjectures. So, even though these are probably the 
most difficult and interesting, HR gives open conjectures 
a score of 0 for difficulty and the difficult concepts in­
volved in the conjectures are discriminated against. We 
discuss how HR can deal wi th open conjectures in 
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4 Results 
4.1 Concept Formation 
HR works in number theory by first generating a table of 
factorisations for integers 1 to 100. It can turn concepts 
into integer sequences fay (i) listing integers of a par-
ticular type in numerical order, eg. prime numbers (ii) 
applying a function to the integers 1, 2, 3, etc. eg. the 
r function (number of divisors) (iii) identifying integers 
setting a record for the highest value output by a func­
t ion, eg. highly composite numbers (wi th more divisors 
than any previous integer), which was AM's major re­
invention. HR finds all the number types found by AM 
and re-invents over 50 well known integer sequences. HR 
also outputs many integer sequences not found in the re­
cognised repository, the online encyclopedia of integer 
sequences, [Sloane, 1999], which contains over 47,000 se­
quences. 8 sequences found by HR have been accep­
ted into the encyclopedia, for example, this interesting 
sequence: 1,2,7,38,122,2766,64686,... (those integers 
setting a record for 

Presently, we believe that 7 of these 8 sequences 
are genuinely new inventions. Perhaps the most in­
teresting sequence found by HR is the tau numbers 
(where the number of divisors is itself a divisor): 
1,2,8,9,12,18,24,36,... This was missing from the en­
cyclopedia, and a search of the relevant literature pro-
duced no reference, so we believed this to be a new inven­
t ion, and we called these numbers 'refactorable\ How­
ever, we recently discovered that they were first defined 
in 1990, [Kennedy and Cooper, 1990], HR made some 
interesting conjectures about tau numbers, eg. that they 
are congruent to 0,1,2 or 4 mod 8. Proving this and oth­
ers from HR led us to some interesting results, [Colton, 
1999], eg. odd tau numbers are squares. There are also 
some open conjectures, such as whether there are any 
triples of tau numbers (there are none 

Asked to find concepts classifying groups up to order 
6, (ie. the concept can be used to decide whether any 
two groups up to order 6 are isomorphic), HR finds many 
calculations unknown to the authors. The function: 

> 

classifies groups up to order 6 and was genuinely surpris­
ing as we hadn't thought such a simple function could 
perform the task. When given an hour to find as many 
categorisations as possible, HR finds around 200 categor­
isations of the groups up to order 6. Also, we chose 20 
definitions from a group theory text, to see how many 
HR re-invented. We noted that HR found these 9: 
• Abelian, cyclic and exponent 2 groups, elements, identities, 
inverses and orders of elements, orders and centres of groups, 
but 7 required better handling of subgroups: 
• Normal subgroups, quotient groups, cosets, index of sub-
groups, simple groups, central series, derived subgroups 
and 4 involve concepts from other domains: 
• Elementary Abelian, dihedral, quarternion and p-groups. 
A hit rate of nearly 50% is encouraging, and in future, 
more production rules and working in 2 domains at once 
wil l increase the yield of classically interesting concepts. 

4.2 Theo ry Fo rma t ion 
When forming theories, the complexity of concepts is 
capped and some production rules are removed, so the 
theories formed are more superficial. HR finds some con* 
jectures of note, eg. groups of exponent 2 are Abelian: 

In 9 experiments, we gave HR 2 hours to construct 
a theory. We used a complexity threshold of 5 and a 
weighting of 25% for the novelty of a concept, so that HR 
didn't specialise too much, and 75% for the interesting-
ness of the theorems each concept was involved in. The 
interestingness of conjectures was measured wi th equal 
weights for surprisingness and difficulty. In (G)roup and 
(Q)uasigroup theory and (R)obbins algebra, we com­
pared the (B)est first search choosing which concept and 
production rule to use next, against a (R)andom choice, 
and the (E)xhaustive search described in §2.2. In table 
1, we recorded the content erf the theories produced, ie. 
the number of concepts, theorems, open conjectures and 
models produced and two measures of the quality of the 
theories, namely the average proof length (difficulty) and 
surprisingness of all the proved theorems. 

'Table 1: Summaries of 9 theory formation sessions. 

We draw two conclusions from these results: 

• The nature of the theories produced is more depend­
ent on the axioms than the choice of search method. 

• The best first search improves the overall quality of 
the theory, wi th respect to the difficulty of theorems. 

Conclusion 1 is clear because the rows in table 1 vary 
much more between algebras than between different 
searches with the-same algebra. As expected, in quasig-
roup theory, wi th the least restrictive axioms, MACE 
finds most models and, as shown by the average proof 
length column, quasigroup conjectures are more easily 
proved by OTTER than those about the more complex 
algebras. From the significant increase in average proof 
length gained by using the best first search over the other 
searches, it is clear that the heuristic improves the qual-
i ty erf the theory wi th respect to the difficulty of the 
theorems produced. A similar increase is observed when 
HR uses the best first search to find concepts wi th clas­
sifying abilities. The best first search concentrates on 
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particular concepts, so the random search covers a lar­
ger space, and therefore spots more varied conjectures, 
which explains the increase in average surprisingness in 
the random searches over the best first searches. 

5 Future W o r k and Conclusions 
Presently, HR can make conjectures which OTTER has 
litt le chance of proving. To address this imbalance, we 
intend to interface HR wi th inductive theorem provers 
which can better handle conjectures wi th numerical con­
tent. Also, we wish to improve HR's treatment of open 
conjectures. We noted in §3.5 that HR gives open conjec­
tures a score of 0 for difficulty, which is counter-intuitive, 
but sensible while HR has limited possibilities for settling 
such conjectures. Once HR has better tools to settle 
open conjectures, we wi l l increase the interestingness of, 
and thus time spent investigating, open conjectures. 

The obvious way to address open conjectures is to give 
OTTER and MACE more time to settle them. However, 
we find that the number of settled conjectures does not 
increase in line with the time given to the task, and 
more sophisticated techniques are required. HR already 
has one method to disprove previous open conjectures -
when MACE finds a new model, HR checks whether this 
is a counterexample to any previous open conjecture. 
This approach can be effective - we have documented 
an example semigroup which disproved 14 of HR's open 
conjectures. HR can also use previously proved theorems 
as lemmas in open conjectures. However, lemma choice 
is a difficult problem and we hope to use techniques such 
as gazing, [Barker-Plummer, 1992], to improve matters. 
Our first attempt at lemma use - using the previous the­
orem with the most similar construction tree - was en­
couraging, as we found a conjecture where the lemma 
reduced OTTER's proving time from 75 to 8 seconds. 

Concept formation in HR is (i) novel, because it is 
the first to work in domains as diverse as group theory, 
number theory and graph theory and (ii) important, as 
it has led to the introduction of new mathematics, most 
notably the integer sequences. Theory formation in HR 
is (i) novel, as it is the first to integrate with third party 
software to perform concept formation, conjecture mak­
ing, theorem proving and counterexample finding and 
(ii) a bootstrapping system - a theory including mod­
els, definitions, theorems, proofs and open conjectures 
can be created from just the axioms of an algebra. HR 
improves on AM and Graffiti by using theorem prov­
ing when constructing theories, and improves on IL , GT 
and the Bagai et al system, by covering a wider range of 
concept types over more domains. Introducing models 
only when needed to disprove conjectures and driving 
a heuristic search wi th concrete measures of interesting­
ness increases the quality of the theory produced and has 
brought HR success in automated mathematical concept 
formation. We hope to continue increasing the interest­
ingness of the concepts and theories produced, build­
ing a system sophisticated enough for working mathem­
aticians to explore new domains with. 
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