Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Biological Sciences, School of
  • Biological Sciences thesis and dissertation collection
  • View Item
  •   ERA Home
  • Biological Sciences, School of
  • Biological Sciences thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Studies on the metabolism of retained and excised introns in human cells

View/Open
Hett2014.pdf (40.22Mb)
Figures.zip (374.7Mb)
Date
27/11/2014
Item status
Restricted Access
Embargo end date
31/12/2100
Author
Hett, Anne
Metadata
Show full item record
Abstract
In eukaryotes the coding regions of most genes are interrupted by introns that must be removed by splicing to form a coding mRNA. However, while the splicing mechanism has received a lot of attention, much less is known about the metabolism of introns. This is partly due to the difficulties in studying introns as both aberrantly spliced transcripts and spliced introns are rapidly degraded. In this study, I have analysed intron metabolism in two respects: first I have investigated how introns are degraded following the completion of splicing. Second, I investigate the fate of transcripts, in which introns are retained due to splicing failure. In order to study the degradation of introns following splicing, I performed siRNA mediated knock down of the debrancing enzyme (Dbr1). Following splicing, introns are present in a circular lariat structure and Dbr1 is the enzyme thought to be responsible for opening this. Indeed, I found that knockdown of Dbr1 increased the amount of stabilised introns. Interestingly, introns were found to be stabilised in the cytoplasm and not in the nucleus as expected, even though immunofluoresence showed that Dbr1 is clearly nuclear. However, western blot analysis localised Dbr1 in the cytoplasm. Further investigation showed widely used methods to separate nuclear and cytoplasmic fractions are prone to generating artefacts which result in nucleoplasmic proteins delocalised to the cytoplasm. This finding may prevent future misinterpretation of data obtained by these methods. To investigate splicing failure, it was necessary to generated a sufficiently large pool of unspliced transcripts. To do this I used antisense morpholinos (AMOs) that bind to specific snRNAs (small nuclear RNAs). They are designed to block interaction surfaces that are important for splicing. Using this approach, I investigated the localisation of RNA transcripts and selected RNA processing and degradation factors in normal conditions and where splicing was inhibited. When splicing is inhibited I found splicing factors and unspliced, polyadenylated RNA localising to nuclear, splicing speckle marker SC35 positive speckles. I further discovered that for RNA to localise to nuclear speckles, polyadenylation and RNA cleavage are essential, indicating that SC-35 speckles might sequester unspliced transcripts preventing translation of potentially harmful transcripts. These transcripts remain functional however, and can be spliced where functional spliceosomes can be assembled.
URI
http://hdl.handle.net/1842/10515
Collections
  • Biological Sciences thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page