Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Centre for Speech Technology Research
  • CSTR publications
  • View Item
  •   ERA Home
  • Centre for Speech Technology Research
  • CSTR publications
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic Classification of Voice Quality: Comparing Regression Models and Hidden Markov Models

View/Open
wester.1998.1.pdf (75.87Kb)
Date
1998
Author
Wester, Mirjam
Metadata
Show full item record
Abstract
In this paper, two methods for automatically classifying voice quality are compared: regression analysis and hidden Markov models (HMMs). The findings of this research show that HMMs can be used to classify voice quality. The HMMs performed better than the regression models in classifying breathiness and overall degree of deviance, and the two methods showed similar results on the roughness scale. However, the results are not spectacular. This is mainly due to the type of material that was available and the number of listeners who assessed the material. Nonetheless, I argue in this paper that these findings are interesting because they are a promising step towards developing a system for classifying voice quality.
URI
http://hdl.handle.net/1842/1062
Collections
  • CSTR publications

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page