Multi-class Extractive Voicemail Summarization
View/ Open
Date
2003Author
Koumpis, Konstantinos
Renals, Steve
Metadata
Abstract
This paper is about a system that extracts principal content words from speech-recognized transcripts of voicemail messages and classifies them into proper names, telephone numbers, dates/times and `other'. The short text summaries generated are suitable for mobile messaging applications. The system uses a set of classifiers to identify the summary words, with each word being identified by a vector of lexical and prosodic features. The features are selected using Parcel, an ROC-based algorithm. We visually compare the role of a large number of individual features and discuss effective ways to combine them. We finally evaluate their performance on manual and automatic transcriptions derived from two different speech recognition systems.