Learning temporal dependencies in connectionist speech recognition
View/ Open
Date
1994Author
Renals, Steve
Hochberg, Mike
Robinson, Tony
Metadata
Abstract
Hybrid connectionist/HMM systems model time using both a Markov chain and through properties of a connectionist network. In this paper, we discuss the nature of the time dependence currently employed in our systems using recurrent networks (RNs) and feed-forward multi-layer perceptrons (MLPs). In particular, we introduce local recurrences into an MLP to produce an enhanced input representation. This is in the form of an adaptive gamma filter and incorporates an automatic approach for learning temporal dependencies. We have experimented on a speaker-independent phone recognition task using the TIMIT database. Results using the gamma filtered input representation have shown improvement over the baseline MLP system. Improvements have been obtained through merging the baseline and gamma filter models.