dc.contributor.author | Wan, Vincent | en |
dc.contributor.author | Renals, Steve | en |
dc.date.accessioned | 2006-05-18T17:26:24Z | |
dc.date.available | 2006-05-18T17:26:24Z | |
dc.date.issued | 2003 | |
dc.identifier.citation | In Proc. IEEE ICASSP, volume 2, pages 221-224, 2003. | |
dc.identifier.uri | http://hdl.handle.net/1842/1132 | |
dc.description.abstract | Support vector machines with the Fisher and score-space kernels are used for text independent speaker verification to provide direct q discrimination between complete utterances. This is unlike approaches such as discriminatively trained Gaussian mixture models or other discriminative classifiers that discriminate at the frame-level only. Using the sequence-level discrimination approach we are able to achieve error-rates that are significantly better than the current state-of-the-art on the PolyVar database. | en |
dc.format.extent | 170465 bytes | en |
dc.format.extent | 190804 bytes | en |
dc.format.mimetype | application/octet-stream | en |
dc.format.mimetype | application/pdf | en |
dc.language.iso | en | |
dc.publisher | IEEE Signal Processing Society | en |
dc.subject | speech | en |
dc.title | SVMSVM: Support vector machine speaker verification methodology. | en |
dc.type | Conference Paper | en |