Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Centre for Speech Technology Research
  • CSTR publications
  • View Item
  •   ERA Home
  • Centre for Speech Technology Research
  • CSTR publications
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The SPRACH/LaSIE system for named entity identification in broadcast news.

View/Open
darpa99-ne.pdf (35.63Kb)
darpa99-ne.ps.gz (22.23Kb)
Date
1999
Author
Renals, Steve
Gotoh, Yoshihiko
Gaizauskas, Robert
Stevenson, Mark
Metadata
Show full item record
Abstract
We have developed two conceptually different systems that are able to identify named entities from spoken audio. One (referred to as SPRACH-S) has a stochastic finite state machine structure for use with an acoustic model that identifies both words and named entities from speech data. The other (referred to as SPRACH-R) is a rule-based system which uses matching against stored name lists, part-of-speech tagging, and light phrasal parsing with specialised named entity grammars. We provide an overview of the two approaches and present results on the Hub-4E IE-NE evaluation task.
URI
http://homepages.inf.ed.ac.uk/srenals/pubs/1999/darpa99-ne.html

http://hdl.handle.net/1842/1175
Collections
  • CSTR publications

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page