Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Edinburgh Medical School
  • Edinburgh Medical School thesis and dissertation collection
  • View Item
  •   ERA Home
  • Edinburgh Medical School
  • Edinburgh Medical School thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

TWIST1: a subtle modulator of neural differentiation and neural tube formation

View/Open
Nistor2013.pdf (46.66Mb)
word thesis.zip (37.10Mb)
Date
06/07/2013
Author
Nistor, Paul Andrei
Metadata
Show full item record
Abstract
The central nervous system is formed from epiblast precursor cells through Neurulation. Neural induction can be studied in its main aspects in vitro. However, the process is poorly understood, especially in regard to when and how a cell becomes specified, and then committed, to be a neural cell. It is, on the other hand, well established that neural formation requires absence or, inhibition of the BMP signalling both in vivo and in vitro. ID1 is a direct target of BMP signalling with major influence on in vitro neural differentiation. A cDNA library screen, looking for transcription factors negatively regulated by ID1, reported TWIST1, along with only two other proteins. Twist1 expression is upregulated during in vitro neural differentiation. Furthermore, targeted deletion of Twist1 has dramatic consequences on anterior neural development. Twist1 knock-out mice fail to form the closed neural tube in the prospective brain, followed by exencephaly and, early embryonic death. In this thesis I investigate the influence on in vitro neural differentiation of a TWIST1 constitutively active form, insensitive to ID1 inhibition. I report that this transcriptionally active TWIST1 accelerates neural differentiation, in vitro and, biases it, towards dorsal phenotypes. I provide, for the first time, evidence for Twist1 expression in the neural tissue, observed weakly in a restricted domain, temporally and spatially, in the dorsal part of the neural tube. I propose a new model for TWIST1 influence at this level. I also investigate how TWIST1 actions depend on levels of expression and dimer choice. I found that, TWIST1 can exert its neural modulating actions only at low levels, as high levels divert a cell fate towards non-neural lineages.
URI
http://hdl.handle.net/1842/11823
Collections
  • Edinburgh Medical School thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page