Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Centre for Speech Technology Research
  • CSTR publications
  • View Item
  •   ERA Home
  • Centre for Speech Technology Research
  • CSTR publications
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic Prosodic Segmentation by F0 Clustering Using Superpositional Modeling.

View/Open
Nakai1995ICASSP.pdf (174.3Kb)
Date
1995
Author
Nakai, Mitsuru
Harald, Singer
Sagisaka, Yoshinori
Shimodaira, Hiroshi
Metadata
Show full item record
Abstract
In this paper, we propose an automatic method for detecting accent phrase boundaries in Japanese continuous speech by using F0 information. In the training phase, hand labeled accent patterns are parameterized according to a superpositional model proposed by Fujisaki, and assigned to some clusters by a clustering method, in which accent templates are calculated as centroid of each cluster. In the segmentation phase, automatic N-best extraction of boundaries is performed by One-Stage DP matching between the reference templates and the target F0 contour. About 90% of accent phrase boundaries were correctly detected in speaker independent experiments with the ATR Japanese continuous speech database.
URI
http://hdl.handle.net/1842/1264
Collections
  • CSTR publications

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page