Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Engineering, School of
  • Engineering, School of
  • Engineering thesis and dissertation collection
  • View Item
  •   ERA Home
  • Engineering, School of
  • Engineering, School of
  • Engineering thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bispectral analysis of speech signals

View/Open
thesis_jwaf.pdf (3.015Mb)
Date
06/1997
Author
Fackrell, Justin WA
Metadata
Show full item record
Abstract
Techniques which utilise a signal's Higher Order Statistics (HOS) can reveal information about non-Gaussian signals and nonlinearities which cannot be obtained using conventional (second-order) techniques. This information may be useful in speech processing because it may provide clues about how to construct new models of speech production which are better than existing models. There has been a recent surge of interest in the application of HOS techniques to speech processing, but this has been handicapped by a lack of understanding of what the HOS properties of speech signals are. Without this understanding the HOS information which is in speech signals can not be efficiently utilised. This thesis describes an investigation into the use of HOS techniques, in particular the third-order frequency domain measure called the bispectrum, to speech signals. Several issues relating to bispectral speech analysis are addressed, including nonlinearity detection, pitch-synchronous analysis, estimation criteria and stationarity. A flaw is identified in an existing algorithm for detecting quadratic nonlinearities, and a new detector is proposed which has better statistical properties. In addition, a new algorithm is developed for estimating the normalised bispectrum of signals contaminated by transient noise. Finally the tools developed in the study are applied to a specially constructed database of continuant speech sounds. The results are consistent with the hypothesis that speech signals do not exhibit quadratic nonlinearity.
URI
http://hdl.handle.net/1842/1384
Collections
  • Engineering thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page