Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Differential Adhesion to Control Self-Assembly and Self-Repair of Collections of Modular Mobile Robots

View/Open
Ottery Thesis.pdf (5.469Mb)
Date
06/2006
Author
Ottery, Peter
Metadata
Show full item record
Abstract
This thesis presents a novel distributed control method which allows a collection of independently mobile robotic units, with two or three dimensional movement, to self-assemble into self-repairing hierarchical structures. The proposed method utilises a simple model of the cellular adhesion mechanisms observed in biological cells, allowing the robotic units to form virtually bonded aggregates which behave as predicted by Steinberg’s differential adhesion hypothesis. Simulated robotic units based on the design of the subaquatic HYDRON module are introduced as a possible platform on which the model can be implemented. The units are used to carry out a detailed investigation of the model behaviour and parameter space focusing on the two main tasks of rounding and sorting in both two and three dimensions. These tasks assess the model’s ability to reach a thermodynamically stable configuration when the aggregates consist of either a single population of units or multiple populations of units with differing adhesive properties. The results are analysed in detail with particular attention given to the role of random movements in determining the overall performance, and demonstrate that this model provides a very robust solution to these complex tasks. Finally, a possible extension of this work is presented in which the original model is combined with a genetic regulatory network controller. The performance of this composite is evaluated, and the benefits of this hybrid approach, in which a powerful control system manipulates a robust self-organising behaviour, are discussed.
URI
http://hdl.handle.net/1842/1396
Collections
  • Informatics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page