On the energy efficiency of spatial modulation concepts
View/ Open
Date
26/11/2015Author
Stavridis, Athanasios
Metadata
Abstract
Spatial Modulation (SM) is a Multiple-Input Multiple-Output (MIMO) transmission technique
which realizes low complexity implementations in wireless communication systems. Due the
transmission principle of SM, only one Radio Frequency (RF) chain is required in the transmitter.
Therefore, the complexity of the transmitter is lower compared to the complexity of
traditional MIMO schemes, such as Spatial MultipleXing (SMX). In addition, because of the
single RF chain configuration of SM, only one Power Amplifier (PA) is required in the transmitter.
Hence, SM has the potential to exhibit significant Energy Efficiency (EE) benefits. At
the receiver side, due to the SM transmission mechanism, detection is conducted using a low
complexity (single stream) Maximum Likelihood (ML) detector. However, despite the use of a
single stream detector, SM achieves a multiplexing gain.
A point-to-point closed-loop variant of SM is receive space modulation. In receive space modulation,
the concept of SMis extended at the receiver side, using linear precoding with Channel
State Information at the Transmitter (CSIT). Even though receive space modulation does not
preserve the single RF chain configuration of SM, due to the deployed linear precoding, it
can be efficiently incorporated in a Space Division Multiple Access (SDMA) or in a Virtual
Multiple-Input Multiple-Output (VMIMO) architecture.
Inspired by the potentials of SM, the objectives of this thesis are the evaluation of the EE of
SM and its extension in different forms of MIMO communication. In particular, a realistic
power model for the power consumption of a Base Station (BS) is deployed in order to assess
the EE of SM in terms of Mbps/J. By taking into account the whole power supply of a BS and
considering a Time Division Multiple Access (TDMA) multiple access scheme, it is shown that
SM is significantly more energy efficient compared to the traditional MIMO techniques. In
the considered system setup, it is shown that SM is up to 67% more energy efficient compared
to the benchmark systems. In addition, the concept of space modulation is researched at the
receiver side. Specifically, based on the union bound technique, a framework for the evaluation
of the Average Bit Error Probability (ABEP), diversity order, and coding gain of receive space
modulation is developed. Because receive space modulation deploys linear precoding with
CSIT, two new precoding methods which utilize imperfect CSIT are proposed. Furthermore, in
this thesis, receive space modulation is incorporated in the broadcast channel. The derivation of
the theoretical ABEP, diversity order, and coding gain of the new broadcast scheme is provided.
It is concluded that receive space modulation is able to outperform the corresponding traditional
MIMO scheme. Finally, SM, receive space modulation, and relaying are combined in order
to form a novel virtual MIMO architecture. It is shown that the new architecture practically
eliminates or reduces the problem of the inefficient relaying of the uncoordinated virtual MIMO
space modulation architectures. This is undertaken by using precoding in a novel fashion. The
evaluation of the new architecture is conducted using simulation and theoretical results.