Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Chemistry, School of
  • Chemistry thesis and dissertation collection
  • View Item
  •   ERA Home
  • Chemistry, School of
  • Chemistry thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of novel analogues of the anti-proliferative marine natural product bisebromoamide: synthesis and structure activity relationship studies

View/Open
Johnston2014.pdf (6.705Mb)
Date
27/11/2014
Item status
Restricted Access
Embargo end date
31/12/2100
Author
Johnston, Heather Jennifer
Metadata
Show full item record
Abstract
The linear peptide bisebromoamide was isolated by the Suenaga group in 2009 from the marine cyanobacterium Lyngbya sp. It exhibits antiproliferative activity at nanomolar levels against a wide range of cell lines. Current SAR data indicates that there is some flexibility in the structure with respect to stereochemistry, but the range of modifications that have been biologically tested is limited, as reviewed in Chapter 1. Bisebromoamide contains a number of non-commercial amino acids and an oxopropyl pyrrolidine moiety which had not been found in a natural product previously. Several new synthetic routes towards the non-commercial amino acid fragments have been developed, as described in Chapter 2, including two ring-closure-based approaches to the substituted proline derivative 4-methyl proline (4-MePro). While the presence of six amide bonds makes solid phase peptide synthesis (SPPS) an appealing approach to the synthesis of bisebromoamide, the 4-MePro moiety is attached to a thiazoline and it is well documented that the α-position of an amino acid will racemise, under both acidic and basic conditions, when attached to a thiazoline or oxazoline. Previous reports indicated that the methyl group of the thiazoline was not essential for biological activity and so to increase stability it was replaced with a thiazole. The total synthesis of a series of novel bisebromoamide analogues, via an SPPS approach which enables facile modification of the final structure, is described in Chapter 3. The simple and adaptable SPPS route developed lends itself to SAR studies and allows modifications such as an alanine scan, truncations and incorporation of modified proline derivatives to be achieved rapidly. The promising anticancer activity of bisebromoamide makes the biological activity of these analogues of particular interest and the results of current biological testing are reported in Chapter 4.
URI
http://hdl.handle.net/1842/17617
Collections
  • Chemistry thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page