Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Roslin Institute
  • Roslin Institute thesis and dissertation collection
  • View Item
  •   ERA Home
  • Roslin Institute
  • Roslin Institute thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Defining mechanisms of neurodegeneration associated with protein misfolding diseases

View/Open
Lane2015.docx (15.11Mb)
Lane2015.pdf (5.885Mb)
Date
27/11/2015
Author
Lane, Fiona Mary
Metadata
Show full item record
Abstract
Protein misfolding diseases (PMDs) are a broad group of disorders including Alzheimer’s, Parkinson’s and prion diseases. They are characterised by the presence of aggregated, misfolded host proteins which are thought to cause cell death. Prion diseases are associated with misfolded prion protein (PrPSc), which has a tendency to form fibrillar aggregates. By contrast, Alzheimer’s disease (AD) is associated with misfolded amyloid beta (Aβ), which aggregates to form characteristic Aβ plaques. A feature which is common across PMDs is that small assemblies (oligomers) of the misfolded proteins are thought to be the important neurotoxic species, and it has been proposed that there may be a shared mechanism leading to cell death across PMDs caused by oligomers. In this study, the toxicity of different misfolded forms of recombinant PrP (recPrP) and recombinant Aβ (recAβ) and the mechanisms leading to cell death were investigated using a primary cell culture model. In addition, the importance of the disulphide bond in recPrP in relation to oligomer formation was explored using size exclusion chromatography and mass spectrometry, the toxicity of the different resulting oligomer populations were also investigated. Both recPrP oligomers and fibrils were shown to cause toxicity to mouse primary cortical neurons. Interestingly, oligomers were shown to cause apoptotic cell death, while the fibrils did not, suggesting the activation of different pathways. By contrast, recAβ fibrils were shown to be non-toxic to cortical neurons, Aβ oligomers, however, were shown to cause toxicity. Similar to recPrP, my data showed that it is likely that recAβ 1-42 oligomers also cause apoptosis. However, by contrast this seemed to be caused by excitotoxicity, which was not found to be the case for recPrP. Additionally, I have shown that the presence or absence of the disulphide bond in PrP has a profound effect on the size of oligomers which form. RecPrP lacking a disulphide bond leads to the formation of larger oligomers which are highly toxic to primary neurons. Findings from this study suggest that structural properties such as the disulphide bond in PrP can affect the size and toxicity of oligomers, furthermore, whilst oligomers have been shown to be important in both AD and prion diseases, they may not trigger the same pathways leading to cell death.
URI
http://hdl.handle.net/1842/19542
Collections
  • Roslin Institute thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page