Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Biological Sciences, School of
  • Biological Sciences publications
  • View Item
  •   ERA Home
  • Biological Sciences, School of
  • Biological Sciences publications
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Within host competition in genetically diverse malaria infections: Paracite virulence and competative success

View/Open
Evolution 60(7).pdf (504.3Kb)
Date
2006
Author
Bell, Andrew S
de Roode, Jacobus C
Sim, Derek
Read, Andrew F
Metadata
Show full item record
Abstract
Humans and animals often become coinfected with pathogen strains that differ in virulence. The ensuing interaction between these strains can, in theory, be a major determinant of the direction of selection on virulence genes in pathogen populations. Many mathematical analyses of this assume that virulent pathogen lineages have a competitive advantage within coinfected hosts and thus predict that pathogens will evolve to become more virulent where genetically diverse infections are common. Although the implications of these studies are relevant to both fundamental biology and medical science, direct empirical tests for relationships between virulence and competitive ability are lacking. Here we use newly developed strain-specific real-time quantitative polymerase chain reaction protocols to determine the pairwise competitiveness of genetically divergent Plasmodium chabaudi clones that represent a wide range of innate virulences in their rodent host. We found that even against their background of widely varying genotypic and antigenic properties, virulent clones had a competitive advantage in the acute phase of mixed infections. The more virulent a clone was relative to its competitor, the less it suffered from competition. This result confirms our earlier work with parasite lines derived from a single clonal lineage by serial passage and supports the virulencecompetitive ability assumption of many theoretical models. To the extent that our rodent model captures the essence of the natural history of malaria parasites, public health interventions which reduce the incidence of mixed malaria infections should have beneficial consequences by reducing the selection for high virulence.
URI
doi:10.1111/j.0014-3820.2006.tb01215.x

http://hdl.handle.net/1842/2085
Collections
  • Biological Sciences publications

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page