dc.contributor.author | Plotkin, Gordon | |
dc.coverage.spatial | 6 | en |
dc.date.accessioned | 2003-11-05T17:33:53Z | |
dc.date.available | 2003-11-05T17:33:53Z | |
dc.date.issued | 1996 | |
dc.identifier.citation | INFORMATION AND COMPUTATION 126 (1): 74-77 APR 10 1996 | en |
dc.identifier.issn | 0890-5401 | |
dc.identifier.uri | http://hdl.handle.net/1842/213 | |
dc.description.abstract | In this paper we answer a question of Friedman, providing an ω-separable
model M of the λβη-calculus. There therefore exists an α-separable model for
any α≥0. The model M permits no non-trivial enrichment as a partial order;
neither does it permit an enrichment as a category with an initial object. The
open term model embeds in M: by way of contrast we provide a model which
cannot embed in any non-trivial model separating all pairs of distinct elements. | en |
dc.format.extent | 135833 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | ACADEMIC PRESS INC | en |
dc.subject | Laboratory for Foundations of Computer Science | |
dc.title | On a Question of H. Friedman | en |
dc.title.alternative | On the question of H. Friedman | en |
dc.type | Preprint | en |