Show simple item record

dc.contributor.authorPlotkin, Gordon
dc.coverage.spatial6en
dc.date.accessioned2003-11-05T17:33:53Z
dc.date.available2003-11-05T17:33:53Z
dc.date.issued1996
dc.identifier.citationINFORMATION AND COMPUTATION 126 (1): 74-77 APR 10 1996en
dc.identifier.issn0890-5401
dc.identifier.urihttp://hdl.handle.net/1842/213
dc.description.abstractIn this paper we answer a question of Friedman, providing an ω-separable model M of the λβη-calculus. There therefore exists an α-separable model for any α≥0. The model M permits no non-trivial enrichment as a partial order; neither does it permit an enrichment as a category with an initial object. The open term model embeds in M: by way of contrast we provide a model which cannot embed in any non-trivial model separating all pairs of distinct elements.en
dc.format.extent135833 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherACADEMIC PRESS INCen
dc.subjectLaboratory for Foundations of Computer Science
dc.titleOn a Question of H. Friedmanen
dc.title.alternativeOn the question of H. Friedmanen
dc.typePreprinten


Files in this item

This item appears in the following Collection(s)

Show simple item record