Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Informatics, School of
  • Informatics Publications
  • View Item
  •   ERA Home
  • Informatics, School of
  • Informatics Publications
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quasi-Birth-Death Processes, Tree-Like QBDs, Probabilistic 1-Counter Automata and Pushdown Systems

View/Open
qest08-tech-report_6_27.pdf (357.7Kb)
Date
31/03/2008
Author
Etessami, Kousha
Wojtczak, Dominik
Yannakakis, Mihalis
Metadata
Show full item record
Abstract
We begin by observing that (discrete-time) Quasi-Birth-Death Processes (QBDs) are equivalent, in a precise sense, to (discrete-time) probabilistic 1-Counter Automata (p1CAs), and both Tree-Like QBDs (TL-QBDs) and Tree-Structured QBDs (TS-QBDs) are equivalent to both probabilistic Pushdown Systems (pPDSs) and Recursive Markov Chains (RMCs). We then proceed to exploit these connections to obtain a number of new algorithmic upper and lower bounds for central computational problems about these models. Our main result is this: for an arbitrary QBD (even a null-recurrent one), we can approximate its termination probabilities (i.e., its $G$ matrix) to within $i$ bits of precision (i.e., within additive error $1/2^i$), in time polynomial in \underline{both} the encoding size of the QBD and in $i$, in the unit-cost rational arithmetic RAM model of computation. Specifically, we show that a decomposed Newton's method can be used to achieve this. We emphasize that this bound is very different from the well-known ``linear/quadratic convergence'' of numerical analysis, known for QBDs and TL-QBDs, which typically gives no constructive bound in terms of the encoding size of the system being solved. In fact, we observe (based on recent results for pPDSs) that for the more general TL-QBDs this bound fails badly. Specifically, in the worst case Newton's method ``converges linearly'' to the termination probabilities for TL-QBDs, but requires exponentially many iterations in the encoding size of the TL-QBD to approximate these probabilities within any non-trivial constant error $c < 1$. Our upper bound proof for QBDs combines several ingredients: a detailed analysis of the structure of 1-counter automata, an iterative application of a classic condition number bound for errors in linear systems, and a very recent constructive bound on the performance of Newton's method for monotone systems of polynomial equations.
URI
http://hdl.handle.net/1842/2152
Collections
  • Informatics Publications

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page