Show simple item record

dc.contributor.authorRanicki, Andrew
dc.contributor.authorBanagl, Markus
dc.date.accessioned2003-11-17T11:59:04Z
dc.date.available2003-11-17T11:59:04Z
dc.date.issued2003-04-23
dc.identifier.citationhttp://arxiv.org/pdf/math.AT/0304362en
dc.identifier.urihttp://hdl.handle.net/1842/236
dc.description.abstractThe difference between the quadratic L-groups L.(A) and the sym- metric L-groups L*(A) of a ring with involution A is detected by generalized Arf invariants. The special case A = Z[x] gives a complete set of invariants for the Cappell UNil-groups UNil.(Z; Z, Z) for the infinite dihedral group D1 = Z2 * Z2, extending the results of Connolly and Ranicki [10], Connolly and Davis [8].en
dc.format.extent780725 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.subjectArf invarianten
dc.subjectL-theoryen
dc.subjectQ-groupsen
dc.subjectUNil-groupsen
dc.titleGeneralized Arf invariants in algebraic L-theoryen
dc.typePreprinten


Files in this item

This item appears in the following Collection(s)

Show simple item record