ON THE CALCULATION OF UNIL
dc.contributor.author | Ranicki, Andrew | |
dc.contributor.author | Connolly, Frank | |
dc.date.accessioned | 2003-11-17T17:05:56Z | |
dc.date.available | 2003-11-17T17:05:56Z | |
dc.date.issued | 2003-04-02 | |
dc.identifier.citation | www.arXiv:math.AT/0304016 v1 | en |
dc.identifier.uri | http://hdl.handle.net/1842/237 | |
dc.description.abstract | Cappell’s codimension 1 splitting obstruction surgery group UNiln is a direct summand of the Wall surgery obstruction group of an amalgamated free product. For any ring with involution R we use the quadratic Poincar´e cobordism formulation of the L-groups to prove that Ln(R[x]) = Ln(R) (+) UNiln(R;R,R) . We combine this with M. Weiss’ universal chain bundle theory to pro- duce almost complete calculations of UNil.(Z; Z,Z) and theWall surgery obstruction groups L.(Z[D1]) of the infinite dihedral group D1 = Z2 * Z2. Our main results are stated in 0.2. | en |
dc.format.extent | 341130 bytes | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.title | ON THE CALCULATION OF UNIL | en |
dc.type | Preprint | en |