Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Techniques for solving Nonlinear Programming Problems with Emphasis on Interior Point Methods and Optimal Control Problems

View/Open
Buchanan thesis 08 texfiles.zip (134.9Kb)
Buchanan thesis 08 epsfiles.zip (1.810Mb)
Buchanan C thesis 08.pdf (1.136Mb)
Date
2008
Author
Buchanan, Catherine
Metadata
Show full item record
Abstract
The primary focus of this work is a thorough research into the current available techniques for solving nonlinear programming problems. Emphasis is placed on interior-point methods and the connection between optimal control problems and nonlinear programming is explored. The document contains a detailed discussion of nonlinear programming, introducing different methods used to find solutions to NLP problems and then describing a large variety of algorithms from the literature. These descriptions make use of a unified notation, highlighting key algorithmic differences between solvers. Specifically, the variations in problem formulation, chosen merit functions, ways of determining stepsize and dealing with nonconvexity are shown. Comparisons between reported results on standard test sets are made. The work also contains an understanding of optimal control problems, beginning with an introduction to Hamiltonians, based on their background in calculus of variations and Newtonian mechanics. Several small real-life problems are taken from the literature and it is shown that they can be modelled as optimal control problems so that Hamiltonian theory and Pontryagin's maximum principle can be used to solve them. This is followed by an explanation of how Runge-Kutta discretization schemes can be used to transform optimal control problems into nonlinear programs, making the wide range of NLP solvers available for their solution. A large focus of this work is on the interior point LP and QP solver hopdm. The aim has been to extend the solver so that the logic behind it can be used for solving nonlinear programming problems. The decisions which were made when converting hopdm into an nlp solver have been listed and explained. This includes a discussion of implementational details required for any interior point method, such as maintenance of centrality and choice of barrier parameter. hopdm has successfully been used as the basis for an SQP solver which is able to solve approximately 85% of the CUTE set and work has been carried out into extending it into an interior point NLP solver.
URI
http://hdl.handle.net/1842/2387
Collections
  • Mathematics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page