Show simple item record

dc.contributor.advisorGillespie, Alastair
dc.contributor.authorBlagojevic, Danilo
dc.date.accessioned2008-07-21T13:36:36Z
dc.date.available2008-07-21T13:36:36Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/1842/2389
dc.description.abstractThe principal objects of study in this thesis are arbitrary spectral families, E, on a complex Banach space X. The central theme is the relationship between the geometry of X and the p-variation of E. We show that provided X is super- reflexive, then given any E, there exists a value 1 · p < 1, depending only on E and X, such that var p(E) < 1. If X is uniformly smooth we provide an explicit range of such values p, which depends only on E and the modulus of convexity of X*, delta X*(.).en
dc.format.extent596948 bytes
dc.format.mimetypeapplication/pdf
dc.language.isoenen
dc.subjectMathematicsen
dc.titleSpectral Families and Geometry Of Banach Spacesen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen


Files in this item

This item appears in the following Collection(s)

Show simple item record