Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Geosciences, School of
  • GeoSciences MSc thesis collection
  • View Item
  •   ERA Home
  • Geosciences, School of
  • GeoSciences MSc thesis collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Providing Automated Semantic Support for Software Agents in Spatial Decision Support Systems

View/Open
Research Paper 1(Sen LI).pdf (505.7Kb)
Research Paper 2(Sen LI).pdf (725.0Kb)
Appendix.pdf (725.5Kb)
Supporting Document.pdf (2.104Mb)
Date
05/12/2008
Item status
Restricted Access
Author
Li, Sen
Metadata
Show full item record
Abstract
Spatial Decision Support System(SDSS) is a software system that aimed at assisting decision-makers generate and evaluate alternative solutions to semi and unstructured spatial problems through the integration of spatial data and geo-processing models. There are three contemporary issues that significantly determine the functionality of SDSS, namely, (i) availability and interoperability of the required data and processes that are increasingly searchable through internet, (ii) capability of the interface to hide the technical complexity for inexperienced users, and (iii) software system’s adaptability to a dynamic decision-making environment. In order to ameliorate these limitations, a Multi-Agent based SEmantic driven (MASE) approach has been introduced. Semantic Web Service technology is used for MASE to enrich the descriptions of web based data and processes, and cooperative “software agents” are adopted to construct the software system in a way that modelling the behaviours of a GIS expert. In this paper, we detailed the theoretical background and architecture of MASE.
 
In order to demonstrate the utility of MASE, we have presented the practical work of implementing a prototype MASE system in this paper. A scenario on epidemiology management has been set up firstly with a focus on seeking spatio-temporal characteristics of a user specified epidemic. To construct the application system, we have utilised semantic web technology to publish profiles of a set of imaginary data and processes services into a web accessible registry, and adopted agent-based modelling method to build the software system. The evaluated outcome highlighted the system with a sound autonomy and flexibility to (i)implement accurate service discovering (ii)generate alternative solutions for the use case and (iii)export the result in an easy-understanding way.
 
URI
http://hdl.handle.net/1842/2472
Collections
  • GeoSciences MSc thesis collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page