Wave energy resource modelling and energy pattern identification using a spectral wave model
View/ Open
Date
29/11/2016Author
Lavidas, George
Metadata
Abstract
The benefits of the Oceans and Seas have been exploited by societies for many centuries;
the marine offshore and naval sectors have been the predominant users of the waters. It has
been overlooked until recently, that significant amounts of energy can be harnessed by waves,
providing an additional abundant resource for renewable energy generation.
The increasing energy needs of current societies have led to the consideration of waves as
an exploitable renewable resource. During the past decades, advancements have been made
towards commercialising wave energy converters (WECs), though significant knowledge gap
exists on the accurate estimation of the potential energy that can be harnessed. In order, to
enhance our understanding of opportunities within wave energy highly resolved long-term
resource assessment of potential sites are necessary, which will allow for not only a detailed
energy estimation methodology but also information on extreme waves that are expected to
affect the survivability and reliability of future wave energy converters.
This research work aims to contribute the necessary knowledge to the estimation of wave
energy resources from both highly energetic and milder sea environment, exhibiting the opportunities
that lay within these environments. A numerical model SWAN (Simulating WAves
Nearshore), based on spectral wave formulation has been utilised for wave hindcasting which
was driven by high resolution temporal and spatially varying wind data. The capabilities of the
model, allow a detailed representation of several coastal areas, which are not usually accurately
resolved by larger ocean models.
The outcome of this research provides long-term data and characterisation of the wave environment
and its extremes for the Scottish region. Moreover, investigation on the applicability of
wave energy in the Mediterranean Sea, an area which was often overlooked, showed that wave
energy is more versatile than expected. The outcomes provide robust estimations of extreme
wave values for coastal waters, alongside valuable information about the usage of numerical
modelling and WECs to establish energy pattern production. Several key tuning factors and
inputs such as boundary wind conditions and computational domain parameters are tested. This
was done in a systematic way in order to establish a customized solution and detect parameters
that may hinder the process and lead to erroneous results.
The uncertainty of power production by WECs is reduced by the introduction of utilization
rates based on the long-term data, which include annual and seasonal variability. This will
assist to minimize assumptions for energy estimates and financial returns in business plans.
Finally, the importance of continuous improvements in resource assessment is stressed in order
to enhance our understanding of the wave environment.
Collections
Related items
Showing items related by title, author, creator and subject.
-
GIS-based energy consumption mapping
Balta, Chrysi (The University of Edinburgh, 2014-11-27)This project aims to provide a methodology to map energy consumption of the housing stock at a city level and visualise and evaluate different retrofitting scenarios. It is based on an engineering, bottom-up approach. It ... -
Local governance of energy initiatives: struggles in assembling value
Tingey, Margaret Ruth Rose (The University of Edinburgh, 2021-07-31)Local Authorities are increasingly expected to meet UK 2050 net zero climate goals. However, they struggle to assemble investment for local energy and carbon saving projects. In this thesis I examine how valuation ... -
Impact of peer-to-peer trading and flexibility on local energy systems
Kirli, Desen (The University of Edinburgh, 2023-01-20)To meet the 2050 net zero emission targets, energy systems around the globe are being revisited to achieve multi-vector decarbonisation in terms of electricity, transport, heating and cooling. As energy systems become more ...