Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Royal (Dick) School of Veterinary Studies
  • Royal (Dick) School of Veterinary Studies thesis and dissertation collection
  • View Item
  •   ERA Home
  • Royal (Dick) School of Veterinary Studies
  • Royal (Dick) School of Veterinary Studies thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intestinal responses to Clostridium perfringens in broilers

View/Open
Russell2016.docx (8.510Mb)
Russell2016.pdf (2.564Mb)
Date
02/07/2016
Author
Russell, Katherine Margaret
Metadata
Show full item record
Abstract
Clostridium perfringens is the aetiological agent of Necrotic enteritis (NE); a disease that impacts on the health and welfare of broilers. This disease is a large cost to the industry and presents as lesions in the small intestine hindering productivity. Antibiotics are commonly used to treat NE but as pressure increases to limit their use further information about disease onset and broiler responses to the bacteria and it’s virulence factors during infection is required to implement new preventative measures and treatments. NetB is a secreted toxin from C. perfringens which has an important role in NE onset. Using an in situ intestinal loop model we have been able to characterise: I) temporal broiler responses to NetB positive bacterial culture supernatant (Chapter 2), ii) early host responses to different isolates possessing NetB (virulent) or not (avirulent) in the presence or absence of bacterial cells (Chapter 3) and iii) the responses of two commercial broiler breeds (Chapter 4) four hours post exposure. Samples collected from these experiments have been used for histology, mRNA expression and immunohistology. We have shown differences in mRNA expression in the duodenum of broilers after exposure to C. perfringens cells as well as the culture supernatant from the isolates used after four hours. The presence of bacteria cells resulted in up-regulation of pro-inflammatory cytokine, IFN-γ, mRNA, whereas it resulted in down-regulation of B-LA, mRNA a gene involved in presentation of pathogens to immune cells. IL-6 mRNA expression was also reduced in the presence of virulent isolates. This could indicate a possible evasion strategy for C. perfringens in broilers. Immunohistochemical analysis indicated that slower growing broilers have increased numbers of immune cells (macrophages and γδ T cells) in their duodenum compared with faster growing broilers, although this did not appear to have an effect on mRNA expression levels of pro-inflammatory cytokines, 4h post antigen infusion. Overall we detect greater changes when bacteria are included with culture supernatant and have highlighted possible mechanisms for C. perfringens to avoid the broiler immune system. Induction of NE in the literature requires pre-disposing factors, including co-infection with other intestinal pathogens and dietary manipulation of the host. The final experiment trialled protocols administering a virulent isolate of C. perfringens in-feed and via gavage along with an increased protein source to induce NE (Chapter 5). These models were not considered to be consistent for further investigation of NE in the future.
URI
http://hdl.handle.net/1842/25514
Collections
  • Royal (Dick) School of Veterinary Studies thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page