Show simple item record

dc.contributor.advisorMedvinsky, Alexander
dc.contributor.advisorTravers, Paul
dc.contributor.authorLendínez, Javier González
dc.date.accessioned2018-01-11T10:59:16Z
dc.date.available2018-01-11T10:59:16Z
dc.date.issued2016-07-02
dc.identifier.urihttp://hdl.handle.net/1842/25897
dc.description.abstractIn the mid-gestation embryo, the first definitive transplantable hematopoietic stem cells (dHSCs) emerge by embryonic day E10.5-E11 in the aorta-gonadomesonephros (AGM) region, as a result of a step-wise maturation of precursors called pre-HSCs. The analysis of several Notch mutants suggests that Notch signalling is essential for the execution of the definitive hematopoietic programme in the AGM. Mouse embryos deficient for Notch1, RBP-Jk or Jagged1 cannot efficiently generate intra-embryonic hematopoeitic progenitors. It has also been reported that knockdown of Notch target genes (Hes1, Hes5) results in hematopoietic impairment. However a clear picture of the role of Notch pathway in HSC development is still missing. In this work we characterised precise stages and cell types during HSC development in which Notch signalling is involved. First we used a Hes1-dEGFP reporter mouse line that allowed us to monitor Notch pathway activity in a narrow window of time. The results suggest that the level of Notch activity fluctuates in HSC lineage in the AGM region and is down-regulated in dHSCs in the foetal liver (where dHSCs migrate after generation in the AGM region). By using transplantation assay, we further showed that fluctuations of Notch activity are essential for HSC development, and that this pattern in the HSC lineage might work as a switch between maturation and proliferation of PreHSC1, PreHSC2 and dHSC, in which temporary decrease might be required to mature from one type to another, both in vitro and in vivo. These findings might need to be taken into consideration for in vitro generation of haematopoietic stem cells, where a fine tuning of Notch signalling activity could greatly improve their emergence.en
dc.language.isoenen
dc.publisherThe University of Edinburghen
dc.subjecthaematopoiesisen
dc.subjectNotch signallingen
dc.subjectstem cellsen
dc.titleUnravelling a new role of Notch signalling pathway in HSC development using a Hes1-EGFP mouse modelen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen
dc.rights.embargodate2100-12-31en
dcterms.accessRightsRestricted Accessen


Files in this item

This item appears in the following Collection(s)

Show simple item record