Show simple item record

dc.contributor.authorBiteau, Huberten
dc.contributor.authorSteinhaus, Thomasen
dc.contributor.authorSimeoni, Alberten
dc.contributor.authorSchemel, Christopheren
dc.contributor.authorMarlair, Guyen
dc.contributor.authorBal, Nicolasen
dc.contributor.authorTorero, Jose Len
dc.date.accessioned2009-01-30T16:31:09Z
dc.date.available2009-01-30T16:31:09Z
dc.date.issued2008-09
dc.identifier.citationBiteau, H., Steinhaus, T., Schemel, C., Simeoni, A., Marlair, G., Bal, N. and Torero, J.L., “Calculation Methods for the Heat Release Rate of Materials of Unknown Composition”, Fire Safety Science 9, pp. 1165-1176. doi:10.3801/IAFSS.FSS.9-1165
dc.identifier.urihttp://hdl.handle.net/1842/2650
dc.description.abstractThe Heat Release Rate (HRR) is a critical parameter to characterise a fire. Different methods have been developed to estimate it. The most widespread techniques are based on mass balance. If the heat of combustion of the fuel is known, the measure of the mass loss allows its evaluation. If the burning material can not be identified, calorimetric principles can be used. They rely on oxygen consumption (OC) or carbon dioxide and carbon monoxide generation (CDG) measurements. Their asset comes from the observation that the amount of energy release per unit mass of O2 consumed or per unit mass of CO2 produced is relatively constant for a large number of materials. Thus, an accurate HRR can be obtained without knowing the composition of the burning fuel. The aim of this work is to assess this last statement and define how essential the knowledge of the chemistry to calculate HRR for complex materials such as polymers including fire retardants and/or nanocomposites, energetic materials or pine needles is. This assessment ends in an OC and CDG calorimetry comparison of several materials in order to investigate the propensity to determine whether converging or diverging HRR results when average energy constants are used.en
dc.format.extent252770 bytesen
dc.format.mimetypeapplication/pdfen
dc.language.isoen
dc.publisherInternational Association for Fire Safety Scienceen
dc.subjectFire safety engineeringen
dc.subjectcalorimetryen
dc.subjectfire chemistryen
dc.subjectpolymersen
dc.subjectenergetic materialsen
dc.subjectwildfiresen
dc.subjectrelease rateen
dc.titleCalculation Methods for the Heat Release Rate of Materials of Unknown Compositionen
dc.typePreprinten


Files in this item

This item appears in the following Collection(s)

Show simple item record