Show simple item record

dc.contributor.authorMcLean, Alexanderen
dc.date.accessioned2018-01-31T11:23:02Z
dc.date.available2018-01-31T11:23:02Z
dc.date.issued1987en
dc.identifier.urihttp://hdl.handle.net/1842/26758
dc.description.abstracten
dc.description.abstractResected lobes from patients having pre-operative pulmonary function tests were fixed by inflation with formal saline and cut into 1cm parasagittal slices. Randomly selected tissue, from the lateral two slices, was plastic embedded and sections prepared for microscopic analysis.en
dc.description.abstractA semi-automatic image analysis system was used to quantitate bronchiolar calibre and shape and peribronchiolar attachment number, inter-alveolar attachment distance and the amount of macroscopic emphysema. An automatic image analyser (IBAS2) was used to measure alveolar surface area per-unit volume (AWUV).en
dc.description.abstractMeasured bronchiolar calibre (minimum diameter and measured lumen area) was not related to patient height, lung volume, pulmonary function or other morphometric variables.en
dc.description.abstractAWUV, mean inter-alveolar attachment distance, theoretical lumen area and bronchiolar shape were independent of patient size and lung volume, but were inter-related. A combination of low AWUV and loss of attachments profoundly affected bronchiolar shape. However, AWUV and alveolar attachment loss were not always in proportion and demonstrated different functional effects: AWUV affects carbon monoxide transfer factor whereas attachments affect the slope of phase III and forced expiratory volume with bronchiolar shape affecting closing volume.en
dc.description.abstractMacroscopic emphysema did not accurately reflect the extent of alveolar wall loss as identified by AWUV and showed poor correlations with pulmonary function tests.en
dc.description.abstractComputerised axial tomography (CT scan) exhibited a strong correlation with AWUV and can be used to assess lung density in life.en
dc.publisherThe University of Edinburghen
dc.relation.ispartofAnnexe Thesis Digitisation Project 2017 Block 15en
dc.relation.isreferencedbyAlready catalogueden
dc.titleMorphometry of human lung with physiological correlationsen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen


Files in this item

This item appears in the following Collection(s)

Show simple item record