Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Edinburgh Medical School
  • Edinburgh Medical School thesis and dissertation collection
  • View Item
  •   ERA Home
  • Edinburgh Medical School
  • Edinburgh Medical School thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

The role of Foxg1 in retinal axon divergence at the optic chiasm.

View/Open
Natasha Tian thesis 191207.pdf (74.03Mb)
Date
2008
Author
Tian, Natasha
Metadata
Show full item record
Abstract
During murine development, retinal ganglion cell (RGC) axons are presented with multiple navigational choices as they exit the eyes and follow a complex path to targets in the thalamus and superior colliculus of the brain. The optic chiasm is a major choice point, positioned at the ventral midline of the hypothalamus, where the majority of retinal axons cross to the contralateral side of the brain whilst only 3% remain uncrossed and project ipsilaterally. Identifying the cellular and molecular processes involved in retinal axon divergence at the chiasm is an intense area of study and knockout mice have proved useful tools. Foxg1 is a winged helix transcription factor that is expressed in the nasal retina, nasal optic stalk and anterior ventral hypothalamus, which are all structures that retinal axons encounter as they project out of the RGC layer towards the chiasm. The coincidence between the expression pattern of Foxg1 and the route followed by retinal axons led to the hypothesis that Foxg1 plays a role in guiding retinal axons at the optic chiasm. Previous experiments in this laboratory lent support to this idea by revealing an increase in the number of ipsilateral projections in Foxg1-/- mouse embryos from both nasal and temporal retina. Since Foxg1 is expressed in both the nasal retina and at the optic chiasm midline, the main hypotheses for this thesis are that Foxg1 influences retinal axon divergence by transcriptionally regulating the expression of cell surface molecules on (1) growth cones from the nasal retina or (2) guidance molecules on chiasm cells. In order to address these possibilities, the key aims of this thesis were (i) to investigate whether Foxg1 is primarily required in the nasal retina or at the chiasm for retinal axon divergence, (ii) to determine whether the Foxg1 null retina and chiasm are patterned differently from those of wild types and (iii) to investigate the expression of candidate molecules in the retina or chiasm known to influence retinal axon navigation.
URI
http://hdl.handle.net/1842/2682
Collections
  • Edinburgh Medical School thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page