Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Physics, School of
  • Physics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Physics, School of
  • Physics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mass-resolved resonant two-photon ionisation spectroscopy of jet-cooled Cu2 and Ag2

View/Open
ButlerAM_1989redux.pdf (23.22Mb)
Date
1990
Author
Butler, Andrew Michael
Metadata
Show full item record
Abstract
Clusters of the transition metals were generated by laser vaporisation of a sample of the metal into the throat of a pulsed supersonic expansion. This allowed clusters with internal temperatures as low as 5 K to be routinely prepared. Mass-selective detection was accomplished by multi-photon ionisation of the clusters within the ion source of a time - of - flight mass spectrometer. Use of a tunable laser to carry out electronic excitation, prior to ionisation, allowed mass - resolved resonant two - photon ionisation spectra of the clusters to be recorded.
 
Real time control of the experiment and automated data logging was achieved using software developed to run on an IBM PC - AT microcomputer. This allowed multiple ion signals to be recorded simultaneously whilst carrying out R2PI or time-resolved studies on the metal cluster species in the beam.
 
Resonant two - photon ionisation spectroscopic studies were carried out on the ( 0 - 0 ) and ( 1 - 0 ) bands of the J X system of Cu9 and the A X system of Ag->. The 0.04 cm-1 bandwidth of the tunable dye laser used allowed rotationally resolved spectra to be recorded. The spectra recorded for these systems showed them both to be AA = 0 ( or AS2 = 0 ) transitions.
 
The J state of CU2 was assigned to the 1 Zj state derived from the “P + atomic limit at Dg(X) + 45821 cm-1. Rotational analysis of the spectra yieldedl | lthe following constants for the Cu2 isotopomer: Bg = 0.1166(1) cm , ae = 0.0021(1) cm-1. This gave Rg = 2.138(1) A for the J state, shorter than the ground state bond length. Accordingly the transition was assigned to 3ditg -*•4piru, to give the above assignment.
 
The rotational constants obtained, for the *®7Ag-, isotopomer, from analysisI _ | *of the spectra of the A X system of Ag-, were: Bg = 0.0447(3) cm , ae= 0.0004(2) cm'*, and Bq = 0.0490(18) cm"1. These gave bond lengths of Rg = 2.649(9) A and Rq = 2.530(46) A. The observed Ail = 0 transition agreed with the previous assignment of the A state as 0* arising from the 5sag -+ 5sau promotion.
 
URI
http://hdl.handle.net/1842/27635
Collections
  • Physics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page