Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Chemistry, School of
  • Chemistry thesis and dissertation collection
  • View Item
  •   ERA Home
  • Chemistry, School of
  • Chemistry thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Iron-catalysed hydride and radical transfer reactions

View/Open
Zhu2017.pdf (5.235Mb)
Date
07/07/2017
Item status
Restricted Access
Embargo end date
31/12/2100
Author
Zhu, Kailong
Metadata
Show full item record
Abstract
Iron-catalysed carbonyl reduction, nitro reduction, formal hydroamination, and the radical alkenylation of alkyl halides have been developed. A Simple, easy-to-make, air- and moisture-stable iron(III) amine-bis(phenolate) complex catalysed the hydrosilylation of carbonyl compounds efficiently using triethoxysilane as the reducing agent. The reaction tolerated a wide range of substrates to give the corresponding alcohol products in good to excellent yields after hydrolysis of the hydrosilylated products (Scheme A1). Scheme A1. Iron-Catalysed Hydrosilylation of Carbonyl Compounds. The same catalyst was also an active catalyst for the chemoselective reduction of nitro arenes into corresponding amines using triethoxysilane as reducing agent. The method exhibited excellent chemoselectivity as other reducible functional groups such as halogen, ester, nitrile all kept unchanged during the reaction. This catalytic system was then successfully applied to the formal hydroamination of alkene to give substituted amine in synthetic useful yields under mild condition. The reaction is hypothesised to proceed through a radical intermediate (Scheme A2). Scheme A2. Iron-Catalysed Nitro Reduction and Alkene Formal Hydroamination. Finally, FeCl2-catalysed formal Heck cross-coupling has been developed between alkyl halides and styrenes. The reaction tolerated both electron-rich and electron-neutral substrates to give the products in moderate to excellent yields. Initial studies revealed that the reaction also proceeds through a radical intermediate (Scheme A3). Scheme A3. Iron-Catalysed Formal Heck Cross-Coupling of Functionalised Alkyl Halides.
URI
http://hdl.handle.net/1842/28732
Collections
  • Chemistry thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page