Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Engineering, School of
  • Engineering, School of
  • Engineering thesis and dissertation collection
  • View Item
  •   ERA Home
  • Engineering, School of
  • Engineering, School of
  • Engineering thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of steel silo structures on discrete supports

View/Open
Hongyu Li PhD thesis 1994.pdf (11.91Mb)
Date
12/1994
Author
Li, Hongyu
Metadata
Show full item record
Abstract
The objective of this thesis is to broaden current knowledge of the strength and buckling/collapse of shells, with special reference to steel silo structures on discrete supports, and thus to provide design guidance of practical value for future silo design and construction and to develop new research aspects for further investigation. A linear elastic solution of the cylindrical shell bending equations is presented for local loadings, with special attention to local longitudinal distributed loadings. Algebraic expressions for the displacements and stresses induced by a rectangular patch of longitudinal load on a simply supported cylindrical shell are derived using double Fourier series. The solution of this problem is general, and therefore can be applied to cylindrical shells under local I loadings in any direction and with different boundary conditions. Linear elastic analyses of discretely supported perfect cylinders under axial compression are presented using the finite element method. The pre-buckling meridional membrane stress distribution above the support centreline is examined in detail, and is followed by investigations of the linear bifurcation behaviour of the cylinders. The effects on the stress distribution and the buckling strength of different loading patterns and different geometric configurations are extensively examined. Geometrically nonlinear elastic buckling analyses are also performed using large deflection theory. Both perfect and imperfect cylinders are studied with various geometric configurations and under different loading conditions. The nonlinear elastic buckling behaviour, the buckling strength and the buckling configuration are thoroughly investigated for discretely supported cylinders Further studies extend the work into the plastic range. Discretely supported cylinders obeying the von Mises yield criterion are analysed. Limit analyses of perfect cylinders are first conducted using small deflection theory. Geometrically nonlinear elastic-plastic collapse analyses of both perfect and imperfect cylinders are performed next. Studies of different loading conditions and parametric studies of varying geometries and material strengths are presented in both types of analysis. The nonlinear elastic-plastic behaviour of discretely supported cylinders is thus explored. A complete silo which consists of a cylindrical shell, a conical roof hopper and a conical discharge hopper is briefly examined, with the aim of exploring the applicability of the established cylinder model in the elastic buckling analysis of silo structures. Finally, the conclusions drawn from this research are summarised and recommendations are also made for further research on locally supported shells.
URI
http://hdl.handle.net/1842/289
Collections
  • Engineering thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page