Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Physics, School of
  • Physics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Physics, School of
  • Physics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated Evaluation of One-Loop Six-Point Processes for the LHC

View/Open
Reiter T thesis 08.pdf (2.623Mb)
Date
2009
Author
Reiter, Thomas
Metadata
Show full item record
Abstract
In the very near future the first data from LHC will be available. The searches for the Higgs boson and for new physics will require precise predictions both for the signal and the background processes. Tree level calculations typically suffer from large renormalization scale uncertainties. I present an efficient implementation of an algorithm for the automated, Feynman diagram based calculation of one-loop corrections to processes with many external particles. This algorithm has been successfully applied to compute the virtual corrections of the process u¯u -> b¯bb¯b in massless QCD and can easily be adapted for other processes which are required for the LHC.
URI
http://hdl.handle.net/1842/3058
Collections
  • Physics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page