Show simple item record

dc.contributor.advisorHering, Milenaen
dc.contributor.advisorMaciocia, Antonyen
dc.contributor.authorTran, Bach Leen
dc.date.accessioned2018-08-29T11:12:07Z
dc.date.available2018-08-29T11:12:07Z
dc.date.issued2018-07-02
dc.identifier.urihttp://hdl.handle.net/1842/31531
dc.description.abstractWe study the relationship between geometric properties of toric varieties and combinatorial properties of the corresponding lattice polytopes. In particular, we give a bound for a very ample lattice polytope to be k-normal. Equivalently, we give a new combinatorial bound for the Castelnuovo-Mumford regularity of normal projective toric varieties. We also give a new combinatorial proof for a special case of Reider's Theorem for smooth toric surfaces.en
dc.language.isoen
dc.publisherThe University of Edinburghen
dc.subjectlattice polytopesen
dc.subjectk-normalen
dc.subjectcombinatorial boundsen
dc.subjectCastelnuovo-Mumford regularityen
dc.subjectReider's Theoremen
dc.titleOn k-normality and regularity of normal projective toric varietiesen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen


Files in this item

This item appears in the following Collection(s)

Show simple item record