dc.contributor.advisor | Smith, Simon | en |
dc.contributor.advisor | Crow, Jim | en |
dc.contributor.author | Ward, Kate Alice | en |
dc.date.accessioned | 2018-09-17T11:06:34Z | |
dc.date.available | 2018-09-17T11:06:34Z | |
dc.date.issued | 2018-11-29 | |
dc.identifier.uri | http://hdl.handle.net/1842/33033 | |
dc.description.abstract | Before this research study began, relatively little was understood of the water
supply in Constantinople, particularly within the walls of the city.
Archaeological work had focused on collecting details of 160 cisterns and a small
number of channels and pipes were incidental finds in other excavations.
Although no-one had considered the water supply in Constantinople as a whole,
the evidence seemed to indicate a sophisticated water management system.
With the available data fragmented, and the potential for more evidence limited
to serendipitous finds associated with construction work, the only way to move
the understanding of the water supply forward is to take a radically different
perspective: civil engineers are well placed to envisage the water supply as a
working system and make use of their modern design skills and tools to fill in
the gaps between the fragmented data.
This reimagining of the water supply system was driven by a key piece of
knowledge: the water supply worked, and worked for many centuries. That fact,
combined with the fragments of physical and literary evidence, the largely
unchanged landscape and the fundamental physical laws governing gravity-fed
water systems, are enough to start filling in the information to create a complete
system.
The core work in reimagining the water supply system has been developing an
understanding of the physical infrastructure of the distribution system.
Although the two most recent and comprehensive studies appeared to agree that
there were about 159 cisterns in the city, close examination of the available data
showed that there were actually 209 with the possibility of more. An evaluation
of the aqueduct routes in previous studies highlighted inconsistencies with
newly available evidence: alternative routes were designed that tied together
the available evidence, providing a consistently downhill route, shorter and
more straightforward to construct. Having established the number and spread of
cisterns and the locations of the aqueducts, it was possible to create a network
delivering water from the aqueduct channels to the cisterns for collection by the
public. Consideration has also been given to what occurs at either end of this physical
infrastructure. At the upstream end, quantifying and characterising the water
source defines the water available to distribute and helps to indicate the
purpose of the cisterns. At the downstream end, developing even a basic model
of water consumption has enabled the distribution network to move from a
static artefact to a system with a quantifiable purpose.
The combination of the physical infrastructure, inflow data and demand
assumptions in an agent-based model demonstrate that the decisions and
assumption made within each element work together and allow a fourth
element, management, to be considered.
The agent-based model of the water supply enables consideration of a dynamic
system and the exploration of a number of “what if?” scenarios. This exploration
concludes that the cistern-based distribution system probably developed because
of fluctuations in inflow. It may have been possible for the city to use a merged
arrangement on the Aqueduct of Valens inflow, but the burden of pro-active
management required to make it successful suggests that a parallel
arrangement is more likely. There was likely to be an interconnection between
the two main aqueducts, which would have enabled the use of water stored in
the largest open-air cisterns. | en |
dc.contributor.sponsor | Engineering and Physical Sciences Research Council (EPSRC) | en |
dc.language.iso | en | |
dc.publisher | The University of Edinburgh | en |
dc.relation.hasversion | Ward, K., Crow, J., & Crapper, M. (2017). Water-supply infrastructure of Byzantine Constantinople. Journal of Roman Archaeology, 30, 175–195. https://doi.org/10.1017/S1047759400074079 | en |
dc.relation.hasversion | Ward, K., Crapper, M., Altuğ, K., & Crow, J. (2017). The Byzantine cisterns of Constantinople. Water Science and Technology: Water Supply, 6, 1499-1506. https://doi.org/10.2166/ws.2017.053 | en |
dc.subject | Constantinople | en |
dc.subject | water engineers | en |
dc.subject | cisterns | en |
dc.subject | aqueducts | en |
dc.subject | Byzantine Constantinople | en |
dc.subject | water supply | en |
dc.title | Engineering exploration of the water supply system of Constantinople | en |
dc.type | Thesis or Dissertation | en |
dc.type.qualificationlevel | Doctoral | en |
dc.type.qualificationname | PhD Doctor of Philosophy | en |