Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Well-posedness of the one-dimensional derivative nonlinear Schrödinger equation

View/Open
Mosincat2018_Redacted.pdf (995.7Kb)
Date
29/11/2018
Author
Moşincat, Răzvan Octavian
Metadata
Show full item record
Abstract
This thesis is concerned with the well-posedness of the one-dimensional derivative non-linear Schrodinger equation (DNLS). In particular, we study the initial-value problem associated to DNLS with low-regularity initial data in two settings: (i) on the torus (namely with the periodic boundary condition) and (ii) on the real line. Our first main goal is to study the global-in-time behaviour of solutions to DNLS in the periodic setting, where global well-posedness is known to hold under a small mass assumption. In Chapter 2, we relax the smallness assumption on the mass and establish global well-posedness of DNLS for smooth initial data. In Chapter 3, we then extend this result for rougher initial data. In particular, we employ the I-method introduced by Colliander, Keel, Staffilani, Takaoka, and Tao and show the global well-posedness of the periodic DNLS at the end-point regularity. In the implementation of the I-method, we apply normal form reductions to construct higher order modified energy functionals. In Chapter 4, we turn our attention to the uniqueness of solutions to DNLS on the real line. By using an infinite iteration of normal form reductions introduced by Guo, Kwon, and Oh in the context of one-dimensional cubic NLS on the torus, we construct solutions to DNLS without using any auxiliary function space. As a result, we prove the unconditional uniqueness of solutions to DNLS on the real line in an almost end-point regularity.
URI
http://hdl.handle.net/1842/33244
Collections
  • Mathematics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page