Show simple item record

dc.contributor.authorRobertson, Alexander Ronnfeldten
dc.date.accessioned2019-02-15T14:18:47Z
dc.date.available2019-02-15T14:18:47Z
dc.date.issued1996
dc.identifier.urihttp://hdl.handle.net/1842/33716
dc.description.abstracten
dc.description.abstractThe Hierarchical Architectural design and Simulation Environment (HASE)is intended as a flexible tool for computer architects who wish to experiment with alternative architectural configurations and design parameters. HASE is both a design environment and a simulator. Architecture components are described by a hierarchical library of objects defined in terms of an object oriented simulation language. HASE instantiates these objects to simulate and animate the execution of a computer architecture. An event trace generated by the simulator therefore describes the interaction between architecture components, for example, fetch stages, address and data buses, sequencers, instruction buffers and register files. The objects can model physical components at different abstraction levels, eg. PMS (processor memory switch), ISP (instruction set processor) and RTL (register transfer level). HASE applies the concepts of inheritance, encapsulation and polymorphism associated with object orientation, to simplify the design and implementation of an architecture simulation that models component operations at different abstraction levels. For example, HASE can probe the performance of a processor's floating point unit, executing a multiplication operation, at a lower level of abstraction, i.e. the RTL, whilst simulating remaining architecture components at a PMS level of abstraction. By adopting this approach, HASE returns a more meaningful and relevant event trace from an architecture simulation. Furthermore, an animator visualises the simulation's event trace to clarify the collaborations and interactions between architecture components. The prototype version of HASE is based on GSS (Graphical Support System), and DEMOS (Discrete Event Modelling On Simula).en
dc.publisherThe University of Edinburghen
dc.relation.ispartofAnnexe Thesis Digitisation Project 2019 Block 22en
dc.relation.isreferencedbyen
dc.titleHierarchical architecture design and simulation environmenten
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen


Files in this item

This item appears in the following Collection(s)

Show simple item record