Show simple item record

dc.contributor.authorRein, Guillermo
dc.contributor.authorHerren, Jaime
dc.contributor.authorFernandez-Pello, Carlos
dc.contributor.authorUrban, David
dc.date.accessioned2010-07-23T13:44:07Z
dc.date.available2010-07-23T13:44:07Z
dc.date.issued2004-07
dc.identifier.citationG Rein, J.B. Herren, AC. Fernandez-Pello, DL. Urban, On the Derivation of Polyurethane Kinetics Parameters using Genetic Algorithms 30th International Symposium on Combustion, The Combustion Institute. Work-in-Progress Poster. Chicago, Jul. 2004.en
dc.identifier.urihttp://hdl.handle.net/1842/3526
dc.descriptionThis is the foundation work presented a the 30th International Combustion Symposium which was started in 2003. The continuation of this work lead ultimately to a more complete study of reaction kinetics and optimization of the inverse problem published in Combustion and Flame journal in 2006 [Combust Flame 146 (1-2), pp 95-108, http://hdl.handle.net/1842/894] and the 2005 PhD thesis of Dr Guillermo Rein [http://escholarship.org/uc/item/0bq9n8pn].en
dc.description.abstractThere is a lack of quantification for the kinetics mechanism of polyurethane thermal decomposition. The objective of this work is to derive a set of parameters for the kinetics of polyurethane valid for numerical models, with an emphasis on the conditions that pertain to smolder combustion (low-temperature, flameless form of combustion of a porous solid). Thermogravimetric analysis (TGA) is a testing procedure in which changes in the weight of a specimen are recorded as it is heated in air or in a controlled atmosphere such as nitrogen. TGA curves provide information regarding the different reactions of the solid material. The TGA experiments [Chao and Wang, J. Fire Sci. 19 (2001)] of polyurethane in inert atmosphere (100% N2) are used to study the pyrolysis paths of the foam and, in air atmosphere, to study the oxidation paths. TGA experiments for the inert atmosphere show two consecutive reaction-paths (Fig. 1a); pyrolysis of the foam and pyrolysis of the char. For air (Fig. 1b); results show three consecutive reaction-paths; the degradation (the output of the competitive reactions of oxidation and pyrolysis) of the foam, degradation of the char, and the last reaction is the secondary oxidation of char to ash. The temperature range for each reaction depends on the heating rate. The kinetics of polyurethane can be approximated by a few heterogeneous-reaction paths: pyrolysis and oxidations. A three-step chemical-reaction scheme for polyurethane foam was proposed by Ohlemiller [Progress Energy Combust. Sci. 11 (1985)]; foam pyrolysis, foam oxidation and char oxidation. The method consists of the integration of the solid weight time-change, assuming Arrhenius-type reactions rates, and comparison of experiments to extract the preexponential factors and the activation energies of each of the three reactions plus the yield coefficients for the solid products. For the three-step mechanism, the number of parameters to be optimized is on the order of 20 and, therefore, a multidimensional optimization technique, such as Genetic Algorithms (GA), is needed. GA is a robust and efficient optimization technique that imitates the principles of biological adaptation and evolution based upon the mechanics of the Darwinian survival-of-the-fittest theory. The procedure is as following; a population of parameter sets undergoes a process of selection such that only those giving the best results of every generation survive. Children of next generation are reproduced from the parameter-set pool of the parents, plus mutation. The fitness function used to measure the goodness of each parameter set is defined as the mean square error between the mathematical solution and the TGA data. The effect of different heating rates on the kinetic parameters is being studied.en
dc.contributor.sponsorNASAen
dc.contributor.sponsorGrant NAG3-2026en
dc.language.isoenen
dc.publisherInternational Symposium on Combustion, The Combustion Instituteen
dc.subjectcombustionen
dc.subjectmaterial propertiesen
dc.subjectdecompositionen
dc.subjectdegradationen
dc.subjectthermogravimetric analysisen
dc.subjectoptimizationen
dc.titleOn the Derivation of Polyurethane Kinetic Parameters Using Genetic Algorithmsen
dc.typeConference Paperen


Files in this item

This item appears in the following Collection(s)

Show simple item record