Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Philosophy, Psychology and Language Sciences, School of
  • Linguistics and English Language
  • Linguistics and English Language PhD thesis collection
  • View Item
  •   ERA Home
  • Philosophy, Psychology and Language Sciences, School of
  • Linguistics and English Language
  • Linguistics and English Language PhD thesis collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical model of human lexical category disambiguation

View/Open
CorleyS_1998redux.pdf (35.39Mb)
Date
1998
Author
Corley, Steffan
Metadata
Show full item record
Abstract
 
 
Research in Sentence Processing is concerned with discovering the mechanism by which linguistic utterances are mapped onto meaningful representations within the human mind. Models of the Human Sentence Processing Mechanism (HSPM) can be divided into those in which such mapping is performed by a number of limited modular processes and those in which there is a single interactive process. A further, and increasingly important, distinction is between models which rely on innate preferences to guide decision processes and those which make use of experiencebased statistics. In this context, the aims of the current thesis are two-fold: • To argue that the correct architecture of the HSPM is both modular and statistical - the Modular Statistical Hypothesis (MSH). • To propose and provide empirical support for a position in which human lexical category disambiguation occurs within a modular process, distinct from syntactic parsing and guided by a statistical decision process. Arguments are given for why a modular statistical architecture should be preferred on both methodological and rational grounds. We then turn to the (often ignored) problem of lexical category disambiguation and propose the existence of a presyntactic Statistical Lexical Category Module (SLCM). A number of variants of the SLCM are introduced. By empirically investigating this particular architecture we also hope to provide support for the more general hypothesis - the MSH. The SLCM has some interesting behavioural properties; the remainder of the thesis empirically investigates whether these behaviours are observable in human sentence processing. We first consider whether the results of existing studies might be attributable to SLCM behaviour. Such evaluation provides support for an HSPM architecture that includes this SLCM and allows us to determine which SLCM variant is empirically most plausible. Predictions are made, using this variant, to determine SLCM behaviour in the face of novel utterances; these predictions are then tested using a self-paced reading paradigm. The results of this experimentation fully support the inclusion of the SLCM in a model of the HSPM and are not compatible with other existing models. As the SLCM is a modular and statistical process, empirical evidence for the SLCM also directly supports an HSPM architecture which is modular and statistical. We therefore conclude that our results strongly support both the SLCM and the MSH. However, more work is needed, both to produce further evidence and to define the model further.
 
URI
http://hdl.handle.net/1842/35307
Collections
  • Linguistics and English Language PhD thesis collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page