Edinburgh Research Archive logo

Edinburgh Research Archive

University of Edinburgh homecrest
View Item 
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  •   ERA Home
  • Mathematics, School of
  • Mathematics thesis and dissertation collection
  • View Item
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tensor products of banach spaces

View/Open
MilneHK_1974redux.pdf (6.535Mb)
Date
1974
Author
Milne, Hamish K.
Metadata
Show full item record
Abstract
 
 
Chapter one consists of a general discussion of tensor products. Chapter two is concerned with the relationship between tensor products and the approximation property. In Theorem 2.1 we give an equivalent condition to the approximation property which is due to Grothendieck. In Theorem 2.5 we prove that every complex Banach space is isometrically isomorphic to a complemented subspace of a uniform algebra. From this, we prove in Theorem 2.6 that there exists a uniform algebra not having the approximation property. Tomiyama has shown that if A and B are semi-simple commutative Banach algebras, and either A or B has the approximation property, then A ⊗^ B is semi -simple. In Theorem 2.8 we establish a converse to this result, namely that if A is a commutative Banach algebra not having the approximation property, then there is a uniform algebra B such that A ⊗^0 B is not semi -simple. We next discuss the c- product and the slice product, and their relationships with the injective tensor product and with the approximation property. Then, in Theorem 2.11, we prove that a uniform algebra A has the approximation property if and only if A ⊗^ B = A # B for all uniform algebras B. In chapter three we consider injective algebras. Using techniques similar to those used in the proof of Theorem 2.5, we give a proof in Theorem 3.2 of Varopoulos's characterisation of injective commutative Banach-algebras. This states that a commutative Banachalgebra A is injective if and only if there exists a uniform algebra B, a bounded algebra homomorphism h of B onto A, and a bounded linear operator j of A into B such that hₒj = Iₐ. In Theorem 3.4 we prove a sharpening of Varopoulos's result that a normed-algebra is injective if and only if its injective tensor product with any normed-algebra is a normed-algebra. Chapter four is concerned with the question, also considered in chapter three, of whether the injective tensor product of two normed-algebras is a normed-algebra. We show that this is the case for the tensor product 1ₚ ⊗ᵛ lq (where p or q ≤ 2), and for the tensor product of two Banach- algebras which are ℓ₁ spaces. In chapter five we consider measures orthogonal to injective tensor products of uniform algebras, and we obtain an analogue of Cole's decomposition theorem for orthogonal measures to the bidisc algebra. Through a general study of bands, we set up the decomposition in Lemma 5.4, and prove that this decomposition is of the form we want in Theorem 5.7. This then gives us our main result in Theorem 5.8.
 
URI
http://hdl.handle.net/1842/35345
Collections
  • Mathematics thesis and dissertation collection

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page

 

 

All of ERACommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisorsThis CollectionBy Issue DateAuthorsTitlesSubjectsPublication TypeSponsorSupervisors
LoginRegister

Library & University Collections HomeUniversity of Edinburgh Information Services Home
Privacy & Cookies | Takedown Policy | Accessibility | Contact
Privacy & Cookies
Takedown Policy
Accessibility
Contact
feed RSS Feeds

RSS Feed not available for this page