Developing an environmental calculator for application in the beef industry
View/ Open
Date
19//2/03/0Author
Sykes, Alasdair James
Metadata
Abstract
Global greenhouse gas (GHG) emissions from livestock production contribute 18% to
total anthropogenic emissions. Emissions from beef and dairy represent three quarters of
this figure, and beef production emissions have risen by an estimated 59% in the past
half century in response to increasing global population and wealth. In line with
international climate commitments, there exists pressure for beef production systems to
increase the emissions efficiency of production, and life cycle assessment (LCA) studies
have proved a powerful tool to this end. Application of this knowledge to policy is
hampered by the heterogeneity of agricultural systems, however, and farm-level GHG
accounting tools contribute a flexible, bottom-up solution to this. A variety of such tools
are available, but a number of issues hinder their uptake. This thesis therefore set out to
a) identify the most important issues affecting the efficacy and uptake of extant farm-level
GHG accounting tools and b) develop a farm-level model (AgRE Calc) to address
these issues.
A review and test of existing tools found that differences in scope and methodology
cause substantial differences in results calculated from common input datasets, an issue
exacerbated by the methodological opacity of many tools. The empirical test conducted
here provides insight into this, and also highlights the need for such tools to maintain
simplicity in input data requirements, whilst maximising flexibility and detail in the
output. To this end, the impact of cattle ration composition on modelled emissions was
identified as a key parameter. The AgRE Calc model was developed to improve this
aspect of the methodology, and used to carbon footprint data from a lifetime experiment
focusing on beef finishing strategies and diets. Results of this study suggested that high
quality grass-based diets have the potential to be as efficient as housed finishes.
Additionally, the importance of good-quality, low-granularity activity data to the
precision of the footprint was identified, as was the potential for variability in
performance within treatments.
The study also highlighted the pivotal role of grazing quality in emissions intensity of
production. Literature review found that practitioners and models typically broadly
estimate this parameter; this approach lacks accuracy and flexibility, so a novel
methodology was defined to enable empirical estimation of this variable. Utilising
simplistic input data already required by AgRE Calc, a regression model was developed
to predict grazed forage digestibility in relation to sward age and nitrogen fertilisation
levels. The model predicts decreasing digestibility, resulting in lower performance and
higher enteric emissions, as swards age and fertilisation levels decrease. Monte Carlo
simulation was also used to provide an estimate of the uncertainty surrounding this
variable, and the results suggest that manipulation of pasture digestibility could be a
useful mitigation strategy for emissions from extensive beef production.
Uncertainty in modelled emissions was a common thread in these studies, and this was
explored in more detail. AgRE Calc was developed for a Monte Carlo-based assessment
of epistemic uncertainty within farm-level models. The resulting study found that
uncertainty in N2O and purchased feed emission factors was the greatest source of farm-level
emissions uncertainty. These factors greatly reduce the certainty with which
comparisons between intensive and extensive approaches can be made. As such, it is
recommended that uncertainty assessment in future form a greater aspect of farm-level
and LCA assessments for livestock, and the methods and data compiled as part of this
thesis form a basis for accomplishing this through Monte Carlo simulation.
Together, these assessments provide a framework for the development of farm-level
tools with a view to increasing their usability and relevance. A number of areas in which
further progress can be made are identified, and the thesis argues for recognition of the
niche filled by farm-level approaches by the developers of GHG accounting
methodologies. As such, the thesis as a whole provides a thorough blueprint for
advancement of farm-level modelling of GHG emissions, alongside a comprehensive
synthesis of the state of the art.
Related items
Showing items related by title, author, creator and subject.
-
Modelling geographic phenomena at multiple levels of detail: A model generalisation approach based on aggregation
Chaudhry, Omair (2008)Considerable interest remains in capturing once geographical information at the fine scale, and from this, automatically deriving information at various levels of detail and scale via the process of map generalisation. ... -
Wave energy resource modelling and energy pattern identification using a spectral wave model
Lavidas, George (The University of Edinburgh, 2016-11-29)The benefits of the Oceans and Seas have been exploited by societies for many centuries; the marine offshore and naval sectors have been the predominant users of the waters. It has been overlooked until recently, that ... -
Verification and validation of a DEM-CFD model and multiscale modelling of cohesive fluidization regimes
Gupta, Prashant (The University of Edinburgh, 2015-06-29)Fluidization of solid particles using gas flow is an important process in chemical and pharmaceutical industries. The dynamics of fluidisation are intricately related to particle scale physics. Fluid-particle interactions ...