Show simple item record

dc.contributor.advisorDjokic, Sasa
dc.contributor.advisorFriedrich, Daniel
dc.contributor.authorGunda, Jagadeesh
dc.date.accessioned2019-08-05T09:01:46Z
dc.date.available2019-08-05T09:01:46Z
dc.date.issued2019-07-03
dc.identifier.urihttp://hdl.handle.net/1842/35954
dc.description.abstractManagement of operational security constraints is one of the important tasks performed by system operators, which must be addressed properly for secure and economic operation. Constraint management is becoming an increasingly complex and challenging to execute in modern electricity networks for three main reasons. First, insufficient transmission capacity during peak and emergency conditions, which typically result in numerous constraint violations. Second, reduced fault levels, inertia and damping due to power electronic interfaced demand and stochastic renewable generation, which are making network more vulnerable to even small disturbances. Third, re-regulated electricity markets require the networks to operate much closer to their operational security limits, which typically result in stressed and overstressed operating conditions. Operational security constraints can be divided into static security limits (bus voltage and branch thermal limits) and dynamic security limits (voltage and angle stability limits). Security constraint management, in general, is formulated as a constrained, nonlinear, and nonconvex optimization problem. The problem is usually solved by conventional gradient-based nonlinear programming methods to devise optimal non-emergency or emergency corrective actions utilizing minimal system reserves. When the network is in emergency state with reduced/insufficient control capability, the solution space of the corresponding nonlinear optimization problem may be too small, or even infeasible. In such cases, conventional non-linear programming methods may fail to compute a feasible (corrective) control solution that mitigate all constraint violations or might fail to rationalize a large number of immediate post-contingency constraint violations into a smaller number of critical constraints. Although there exists some work on devising corrective actions for voltage and thermal congestion management, this has mostly focused on the alert state of the operation, not on the overstressed and emergency conditions, where, if appropriate control actions are not taken, network may lose its integrity. As it will be difficult for a system operator to manage a large number of constraint violations (e.g. more than ten) at one time, it is very important to rationalize the violated constraints to a minimum subset of critical constraints and then use information on their type and location to implement the right corrective actions at the right locations, requiring minimal system reserves and switching operations. Hence, network operators and network planners should be equipped with intelligent computational tools to “filter out” the most critical constraints when the feasible solution space is empty and to provide a feasible control solution when the solution space is too narrow. With an aim to address these operational difficulties and challenges, this PhD thesis presents three novel interdependent frameworks: Infeasibility Diagnosis and Resolution Framework (IDRF), Constraint Rationalization Framework (CRF) and Remedial Action Selection and Implementation Framework (RASIF). IDRF presents a metaheuristic methodology to localise and resolve infeasibility in constraint management problem formulations (in specific) and nonlinear optimization problem formulations (in general). CRF extends PIDRF and reduces many immediate post-contingency constraint violations into a small number of critical constraints, according to various operational priorities during overstressed operating conditions. Each operational priority is modelled as a separate objective function and the formulation can be easily extended to include other operational aspects. Based on the developed CRF, RASIF presents a methodology for optimal selection and implementation of the most effective remedial actions utilizing various ancillary services, such as distributed generation control, reactive power compensation, demand side management, load shedding strategies. The target buses for the implementation of the selected remedial actions are identified using bus active and reactive power injection sensitivity factors, corresponding to the overloaded lines and buses with excessive voltage violations (i.e. critical constraints). The RASIF is validated through both static and dynamic simulations to check the satisfiability of dynamic security constraints during the transition and static security constraints after the transition. The obtained results demonstrate that the framework for implementation of remedial actions allows the most secure transition between the pre-contingency and post-contingency stable equilibrium points.en
dc.language.isoenen
dc.publisherThe University of Edinburghen
dc.relation.hasversionJ. Gunda, S. Djokic, R. Langella and A. Testa, "Comparison of conventional and meta-heuristic methods for security-constrained OPF analysis," 2015 AEIT International Annual Conference (AEIT), Naples, 2015, pp. 1-6.en
dc.relation.hasversionJ. Gunda, S. Djokic, R. Langella and A. Testa, "On Convergence of Conventional and Meta-Heuristic Methods for Security-Constrained OPF Analysis," The 31st ACM/SIGAPP Symp. on Applied Computing, Pisa, Italy, April 4-8, 2015.en
dc.relation.hasversionJ. Gunda and S. Djokic, "Coordinated control of generation and demand for improved management of security constraints," 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Ljubljana, 2016, pp. 1-6.en
dc.relation.hasversionJ. Gunda, G. Harrison, S.Z. Djokic, “Analysis of Infeasible Cases in Optimal Power Flow Problem”, IFAC-Papers Online, vol. 49, no. 27, pp. 23–28, 2016. -en
dc.relation.hasversionD. Fang, J. Gunda, S. Z. Djokic and A. Vaccaro, "Security-and time-constrained OPF applications," IEEE Manchester PowerTech, Manchester, 2017, pp. 1-6.en
dc.relation.hasversionJ. Gunda, D. Fang, S. Djokic and M. Lehtonen, “Identification and Handling of Critical Constraints in Time-Constrained SCOPF Analysis of Power Systems,” IREP Symposium X Bulk Power Systems Dynamics and Control Symposium, Portugal, Sept 2017.en
dc.relation.hasversionJ. Gunda, G. Harrison, S.Z. Djokic, “Optimal Control of Distributed Generation for Improved Security Constraint Management”, IEEE PES ISGT Europe, Oct 2018.en
dc.relation.hasversionJ. Gunda, G. P. Harrison and S. Z. Djokic, "Remedial Actions for Security Constraint Management of Overstressed Power Systems," in IEEE Transactions on Power Systems, vol. 33, no. 5, pp. 5183-5193, Sept. 2018.en
dc.subjectoperational securityen
dc.subjecttransmission capacityen
dc.subjectpower electronic interfaced demanden
dc.subjectelectricity marketsen
dc.subjectstatic security limitsen
dc.subjectdynamic security limitsen
dc.subjectInfeasibility Diagnosis and Resolution Frameworken
dc.subjectConstraint Rationalization Frameworken
dc.subjectRemedial Action Selection and Implementation Frameworken
dc.titleAnalysis and management of security constraints in overstressed power systemsen
dc.typeThesis or Dissertationen
dc.type.qualificationlevelDoctoralen
dc.type.qualificationnamePhD Doctor of Philosophyen
dc.rights.embargodate2021-07-03en
dcterms.accessRightsRestricted Accessen


Files in this item

This item appears in the following Collection(s)

Show simple item record