dc.contributor.advisor | Callanan, Anthony | en |
dc.contributor.advisor | Hay, David | en |
dc.contributor.author | Grant, Rhiannon | en |
dc.date.accessioned | 2019-08-05T10:56:44Z | |
dc.date.available | 2019-08-05T10:56:44Z | |
dc.date.issued | 2019-07-03 | |
dc.identifier.uri | http://hdl.handle.net/1842/35966 | |
dc.description.abstract | Liver disease is one of the top five leading causes of premature death in the UK, with incidence rising
sharply by 20% over the last decade, and mortality increasing over 400% since 1970. Liver disease
incidence and mortality is rising in stark contrast to trends in the other top healthcare burdens, with
stroke, cancer, heart disease and lung disease incidence and mortality rates plummeting and
continuing to fall.
Liver disease’s hallmark pathology of late diagnosis and rapid acute disease progression leads to an
urgent need for donor organs; the only curative treatment for end stage liver disease. However, a
chronic and ongoing shortage of suitable organs for transplant means many die before a donor liver
can be found, and countless others live with severe, debilitating symptoms at a high cost to both the
patient and the healthcare system.
As part of the push for a solution to this problem, tissue engineers are focussing on creating niche
microenvironments for hepatocytes which support their survival and function in as close to an in vivo
like state as possible; addressing the need for an ideal in vitro model of the human liver and for lab
created ‘organoids’ which could be used to treat patients. Such an environment would allow for the
study of new pharmaceuticals, disease biology and hepatocyte behaviour in the laboratory and lead
to more effective treatments for patients. While research to date is making inroads into this dilemma,
we are yet to see a lab created environment which accurately recapitulates the complex, finely tuned
and responsive extracellular matrix (ECM) of the liver. In an effort to address this, researchers have
been incorporating bioactivity into scaffold environments for hepatocytes.
This thesis presents three methods of incorporating bioactivity into scaffolds for liver tissue
engineering; drug induced ECM biodecoration, synthetically derived ECM biodecoration and
decellularized human liver ECM incorporation. Scaffolds were seeded with hepatocyte cells and their
response to their microenvironment analysed. Mechanical characterisation and
immunohistochemical analyses demonstrated the differences between the scaffold and the ECM
biodecoration, as well as retention of ECM proteins through the manufacturing process. Each method
altered the protein production and gene expression of hepatocytes, indicating that these methods
provide a viable, translatable platform for creating a niche microenvironment for hepatocytes,
supporting and manipulating phenotype and function. These scaffolds offer great potential for tissue
engineering and regenerative medicine strategies for liver and a translatable method for other whole
organ tissue engineering. | en |
dc.contributor.sponsor | Engineering and Physical Sciences Research Council (EPSRC) | en |
dc.language.iso | en | |
dc.publisher | The University of Edinburgh | en |
dc.relation.hasversion | Grant, R., Hay, D. C., & Callanan, A. (2017). A Drug-Induced Hybrid Electrospun Poly-Capro-Lactone: Cell-Derived Extracellular Matrix Scaffold for Liver Tissue Engineering. Tissue Engineering Part A, 23(13–14), 650–662. | en |
dc.relation.hasversion | Grant, R., Hay, D. C., & Callanan, A. (2018). From scaffold to structure: the synthetic production of cell derived extracellular matrix for liver tissue engineering. Biomedical Physics & Engineering Express. | en |
dc.subject | liver tissue engineering | en |
dc.subject | scaffolds | en |
dc.subject | extracellular matrix | en |
dc.subject | decellularization | en |
dc.subject | cell derived matrix | en |
dc.subject | human liver tissue | en |
dc.title | Building hepatocytes a home: new frontiers in bioactive scaffolding techniques for liver tissue engineering | en |
dc.type | Thesis or Dissertation | en |
dc.type.qualificationlevel | Doctoral | en |
dc.type.qualificationname | PhD Doctor of Philosophy | en |